liu.seSearch for publications in DiVA
Change search
Refine search result
23456 201 - 250 of 256
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 201.
    Tisell, Anders
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel, Jan Bertus
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Landtblom, Anne-Marie
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Absolute quantification of LCModel water scaled metabolite concentration of 1H magnetic resonance spectroscopy (MRS) using quantitative magnetic resoonance imaging (qMRI)2008In: ESMRMB,2008, 2008Conference paper (Other academic)
    Abstract [en]

      

  • 202.
    Tisell, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Absolute quantification of 1H Magnetic Resonance Spectroscopy of human brain using qMRI2009Conference paper (Other academic)
  • 203.
    Tisell, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Engström, Maria
    Linköping University, Department of Medicine and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Karlsson, T
    Vigren, P
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Combining fMRI with qMRS for understanding the etiology of periodic hypersomnia2009Conference paper (Other academic)
  • 204.
    Tisell, Anders
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Thomas
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Vigren, Patrik
    NSC.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Etiology of periodic hypersomnia explored by combined functional and molecular neuroimaging methods2008In: World Molecular Imaging Conference,,2008, 2008Conference paper (Other academic)
    Abstract [en]

      

  • 205.
    Tisell, Anders
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Toward Field Independent Quantitative MRS.2014Conference paper (Other academic)
  • 206.
    Tisell, Anders
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Toward Field Independent Quantitative MRS, TRANSACT2014Conference paper (Other academic)
  • 207.
    Tisell, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Mellergård, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahle, Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Brain Atrophy in MS Patients Correlates with Creatine Concentrations2012Conference paper (Other academic)
  • 208.
    Tisell, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Mellergård, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahle, Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in the West of Östergötland, Department of Medical Specialist.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Increased Glia in Multiple Sclerosis Patients Correlates with Intrathecal Inflammation2011Conference paper (Refereed)
  • 209.
    Tisell, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Linköping University, Faculty of Health Sciences.
    Mellergård, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahle, Charlotte
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Clinical Immunology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in the West of Östergötland, Department of Medical Specialist.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Multiple Sclerosis Severity Score (MSSS) Correlates With Changes in NAWM Metabolism During Treatment2011Conference paper (Refereed)
  • 210.
    van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Gauffin, Helena
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    McAllister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Speech and Language Pathology. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Karlsson, Thomas
    Linköping University, Department of Behavioural Sciences and Learning.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Language deficits in Epilepsy, an fMRI study2012In:  , 2012Conference paper (Refereed)
  • 211.
    van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Gauffin, Helena
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences.
    McAllister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Speech and Language Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of ENT - Head and Neck Surgery UHL.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Ulrici, Daniel
    Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Landtblom, Anne-Marie
    Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences.
    Karlsson, Thomas
    Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Language deficits in Epilepsy, an fMRI study2012Conference paper (Other academic)
    Abstract [en]

    Cognitive functions in people with epilepsy are affected by focality, number of generalized seizures, side effects of antiepileptic drugs (AEDs) or the underlying disease (Kwan, 2001). Newly diagnosed patients have cognitive deficits even before starting on AEDs. Performance declines already in the first year after diagnosis and the impairment continues in the following years (Taylor, 2010; Baker, 2011). In mesial temporal lobe epilepsy (TLE) the hippocampal damage seems to be progressive and accompanied by thinning of neocortex (Briellmann, 2002; Bernhardt, 2009). Widespread structural and functional abnormalities in left TLE can affect more distant networks (Bonilha, 2009); a damage pattern also seen in right TLE (Karunanayaka, 2011).

  • 212.
    van Ettinger-Veenstra, Helene M
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Ragnehed, Mattias
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Hällgren, Mathias
    Linköping University, Department of Clinical and Experimental Medicine, Technical Audiology. Linköping University, Faculty of Health Sciences.
    Karlsson, Thomas
    Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in the West of Östergötland, Department of Medical Specialist. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Right-hemispheric brain activation correlates to language performance2010In: NEUROIMAGE, ISSN 1053-8119, Vol. 49, no 4, p. 3481-3488Article in journal (Refereed)
    Abstract [en]

    Language function in the right-hemispheric homologues of Brocas and Wernickes areas does not only correlate with left-handedness or pathology, but occurs naturally in right-handed healthy subjects as well. In the current study, two non-invasive methods of assessing language lateralization are correlated with behavioral results in order to link hemispheric dominance to language ability in healthy subjects. Functional magnetic resonance imaging (fMRI) together with a sentence-completion paradigm was used to determine region-specific lateralization indices in the left- and right-sided Brocas and Wernickes areas, the frontal temporal lobe, the anterior cingulate cortex and the parietal lobe. In addition, dichotic listening results were used to determine overall language lateralization and to strengthen conclusions by correlating with fMRI indices. Results showed that fMRI lateralization in the superior parietal, the posterior temporal, and the anterior cingulate cortices correlated to dichotic listening. A decreased right ear advantage (REA), which indicates less left- hemispheric dominance in language, correlated with higher performance in most administered language tasks, including reading, language ability, fluency, and non-word discrimination. Furthermore, right hemispheric involvement in the posterior temporal lobe and the homologue of Brocas area suggests better performance in behavioral language tasks. This strongly indicates a supportive role of the right-hemispheric counterparts of Brocas and Wernickes areas in language performance.

  • 213.
    van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    McAllister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Karlsson, T
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Neural Adaptability During Sentence Reading: Higher Language Ability but nor Semantic Sentence Complexity Increases Neural Activity, SNL (Soc Neurobiol Language).2014Conference paper (Other academic)
  • 214.
    Van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Mcallister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Karolinska Institute, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Karlsson, Thomas
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Higher Language Ability is Related to Angular Gyrus Activation Increase During Semantic Processing, Independent of Sentence Incongruency2016In: Frontiers in Human Neuroscience, ISSN 1662-5161, E-ISSN 1662-5161, Vol. 10, no 110Article in journal (Refereed)
    Abstract [en]

    This study investigates the relation between individual language ability and neural semantic processing abilities. Our aim was to explore whether high-level language ability would correlate to decreased activation in language-specific regions or rather increased activation in supporting language regions during processing of sentences. Moreover, we were interested if observed neural activation patterns are modulated by semantic incongruency similarly to previously observed changes upon syntactic congruency modulation. We investigated 27 healthy adults with a sentence reading task which tapped language comprehension and inference, and modulated sentence congruency employing functional magnetic resonance imaging (fMRI). We assessed the relation between neural activation, congruency modulation, and test performance on a high-level language ability assessment with multiple regression analysis. Our results showed increased activation in the left-hemispheric angular gyrus extending to the temporal lobe related to high language ability. This effect was independent of semantic congruency, and no significant relation between language ability and incongruency modulation was observed. Furthermore, there was a significant increase of activation in the inferior frontal gyrus (IFG) bilaterally when the sentences were incongruent, indicating that processing incongruent sentences was more demanding than processing congruent sentences and required increased activation in language regions. The correlation of high-level language ability with increased rather than decreased activation in the left angular gyrus, a region specific for language processing, is opposed to what the neural efficiency hypothesis would predict. We can conclude that no evidence is found for an interaction between semantic congruency related brain activation and highlevel language performance, even though the semantic incongruent condition shows to be more demanding and evoking more neural activation.

  • 215.
    van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    McAllister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Speech and Language Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Otorhinolaryngology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Karlsson, Thomas
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Laterality shifts in neural activation coupled to language ability2013Manuscript (preprint) (Other academic)
    Abstract [en]

    The right-hemispheric homologues to Broca’s and Wernicke’s area play an important, but currently poorly understood role in language ability. In the current study, we tested 27 healthy adults for their language ability. We acquired functional magnetic resonance imaging (fMRI) data when the participants performed a sentence reading and a word fluency task. The fMRI data were used to calculate a measure of brain laterality – the laterality index – in the inferior frontal gyrus, the superior and middle temporal gyrus, and the angular gyrus. These laterality measurements were correlated with performance scores on language tasks administered prior to fMRI. We expected to see that high performance was characterized by a more efficient, i.e. decreased, neural activation pattern in typical language areas. Furthermore, we expected to see activation in additional, right-hemispheric brain regions in high performing subjects as a sign of neural adaptability.

    High performance in a test measuring subtle language deficits (BeSS test) was related to increased activation in the right middle temporal gyrus when the participants were reading sentences. Thus, semantic ability correlated negatively with laterality in the temporal lobe, but not in the frontal lobe. For increased verbal fluency ability, we did observe a decreased left-hemispheric dominance in the inferior frontal gyrus when the participants were generating words. Increased task demands in the word generation task were not related to brain activation, but in the sentence reading task, the bilateral inferior frontal gyrus did exhibit an increase in activation when the sentences increased in difficulty. This result was independent of individual language ability. Increased brain activation at increased difficulty of a language task is interpreted as a sign that the brain recruits additional resources upon higher demands. The negative correlation between language ability and laterality in the in right-hemispheric middle temporal gyrus indicates a higher degree of neural adaptability in the temporal lobes of high skilled individuals.

  • 216.
    van Ettinger-Veenstra, Helene
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Ragnehed, Mattias
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    McAllister, Anita
    Linköping University, Department of Clinical and Experimental Medicine, Speech and Language Pathology. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Right-hemispheric cortical contributions to language ability in healthy adults2012In: Brain and Language, ISSN 0093-934X, E-ISSN 1090-2155, Vol. 120, no 3, p. 395-400Article in journal (Refereed)
    Abstract [en]

    In this study we investigated the correlation between individual linguistic ability based on performance levels and their engagement of typical and atypical language areas in the brain. Eighteen healthy subjects between 21 and 64 years participated in language ability tests, and subsequent functional MRI scans measuring brain activity in response to a sentence completion and a word fluency task. Performance in both reading and high-level language tests correlated positively with increased right-hemispheric activation in the inferior frontal gyrus (specifically Brodmann area 47), the dorsolateral prefrontal cortex (DLPFC), and the medial temporal gyrus (Brodmann area 21). In contrast, we found a negative correlation between performance and left-hemispheric DLPFC activation.

    Our findings indicate that the right lateral frontal and right temporal regions positively modulate aspects of language ability.

  • 217.
    Veenstra, Helene
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Alföldi, Péter
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Pain and Rehabilitation Center.
    Södermark, Martin
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Graven-Nielsen, Thomas
    Aalborg Univ, Denmark.
    Sjors, Anna
    Univ Gothenburg, Sweden.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gerdle, Björn
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Pain and Rehabilitation Center. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity2019In: Journal of Pain Research, ISSN 1178-7090, E-ISSN 1178-7090, Vol. 12, p. 1743-1755Article in journal (Refereed)
    Abstract [en]

    Purpose: The remodeling of functional neuronal connectivity in chronic widespread pain (CWP) patients remains largely unexplored. This study aimed to investigate functional connectivity in CWP patients in brain networks related to chronic pain for changes related to pain sensitivity, psychological strain, and experienced pain.

    Patients and methods: Functional connectivity strength of the default mode network (DMN) and the salience network (SN) was assessed with functional magnetic resonance imaging. Between-group differences were investigated with an independent component analysis for altered connectivity within the whole DMN and SN. Then, changes in connectivity between nodes of the DMN and SN were investigated with the use of a seed-target analysis in relation to the covariates clinical pain intensity, pressure pain sensitivity, psychological strain, and as an effect of experienced experimental cuff-pressure pain.

    Results: CWP patients showed decreased connectivity in the inferior posterior cingulate cortex (PCC) in the DMN and increased connectivity in the left anterior insula/superior temporal gyrus in the SN when compared to controls. Moreover, higher pain sensitivity in CWP when compared to controls was related to increased connectivity within the SN (between left and right insula) and between SN and DMN (between right insula and left lateral parietal cortex).

    Conclusion: This study shows that connectivity within the DMN was decreased and connectivity within the SN was increased for CWP. Furthermore, we present a novel finding of interaction of pain sensitivity with SN and DMN-SN functional connectivity in CWP.

  • 218.
    Vigren, Patrick
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Neurosurgery.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Karlsson, Thomas
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Low Thalamic NAA-Concentration Corresponds to Strong Neural Activation in Working Memory in Kleine-Levin Syndrome2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 2Article in journal (Refereed)
    Abstract [en]

    Background

    Kleine Levin Syndrome (KLS) is a rare disorder of periodic hypersomnia and behavioural disturbances in young individuals. It has previously been shown to be associated with disturbances of working memory (WM), which, in turn, was associated with higher activation of the thalamus with increasing WM load, demonstrated with functional magnetic resonance imaging (fMRI). In this study we aimed to further elucidate how these findings are related to the metabolism of the thalamus.

    Methods

    fMRI and magnetic resonance spectroscopy were applied while performing a WM task. Standard metabolites were examined: n-acetylaspartate (NAA), myo-inositol, choline, creatine and glutamate-glutamine. Fourteen KLS-patients and 15 healthy controls participated in the study. The patients with active disease were examined in asymptomatic periods.

    Results

    There was a statistically significant negative correlation between thalamic fMRI-activation and thalamic NAA, i.e., high fMRI-activation corresponded to low NAA-levels. This correlation was not seen in healthy controls. Thalamic levels of NAA in patients and controls showed no significant differences between the groups. None of the other metabolites showed any co-variation with fMRI-activiation.

    Conclusion

    This study shows negative correlation between NAA-levels and fMRI-activity in the left thalamus of KLS-patients while performing a WM task. This correlation could not be found in healthy control subjects, primarily interpreted as an effect of increased effort in the patient group upon performing the task. It might indicate a disturbance in the neuronal networks responsible for WM in KLS patients, resulting in higher effort at lower WM load, compared with healthy subjects. The general relationship between NAA and BOLD-signal is also discussed in the article.

  • 219.
    Vogel, Hans J
    et al.
    Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
    Uptake, metabolism, and storage of phosphate and nitrogen in plant cells; an NMR perspective1990In: NMR applications in biopolymers, Plenum Press, New York, USA , 1990, p. 329-348Chapter in book (Refereed)
    Abstract [en]

    A number of Nuclear Magnetic Resonance (NMR) Spectroscopy techniques can be used to study pH regulation and various aspects of nutrient metabolism in plant material. In this study phosphorus-31 NMR has been used to determine the energy state (ATP) and the intracellular cytoplasmic and vacuolar pH of cultured plant cells and algae. For the algae it was found that the chemical shift of the terminal polyphosphate resonance provided a good monitor of the vacuolar pH which was estimated at pH 5.5. A cytoplasmic pH of 7.2 was determined from the chemical shifts of the Pi and glucose-6-phosphate resonances. Phosphate uptake could also be followed by 31P NMR and these studies showed that Pi was stored as polyphosphates in algae, but as vacuolar Pi in certain higher plants such as Catharanthus roseus and Nicotiana tabacum.

  • 220.
    Vogel, Hans J.
    et al.
    Department of Physical Chemistry 2, University of Lund, Lund, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Department of Physical Chemistry 2, University of Lund, Lund, Sweden.
    Fabiansson, Stefan
    Department of Physical Chemistry 2, University of Lund, Lund, Sweden.
    Ruderus, Håkan
    Department of Physical Chemistry 2, University of Lund, Lund, Sweden.
    Tornberg, Eva
    Department of Physical Chemistry 2, University of Lund, Lund, Sweden.
    Post-mortem energy metabolism in bovine muscles studied by non-invasive phosphorus-31 nuclear magnetic resonance1985In: Meat Science, ISSN 0309-1740, E-ISSN 1873-4138, Vol. 13, no 1, p. 1-18Article in journal (Refereed)
    Abstract [en]

    Phosphorus-31 Nuclear Magnetic Resonance ((31)P-NMR) has been utilized to follow non-invasively the post-mortem metabolism of the major phosphorylated metabolites in muscles from beef slaughter carcasses. In addition to adenosine-5'-triphosphate (ATP), creatine phosphate (CP) and inorganic phosphate (P(i)) considerable amounts of glucose- and fructose-6-phosphate (G6P and F6P, respectively) as well as glycerol-3-phosphate (Glyc3P) were detected. ATP was mainly present as a Mg(2+)-ATP complex. Adenosine-5'-diphosphate (ADP) appeared to be mainly bound to muscle proteins. A good quantitative agreement was found for the levels of ATP, CP and sugar phosphates (SP) when estimated by NMR or enzymatic assays. Since the chemical shifts of the P(i) and sugar phosphate resonances are a function of the pH, the intracellular pH could be directly deduced from the NMR spectra. Values obtained in this manner were, within the errors of both methods, the same as those determined in iodoacetate/KCl homogenates. The pH gradients within the tissue never exceeded 0.3 pH units. In a final set of experiments we used (31)P-NMR 10 study the effects of electrical stimulation on the intracellular pH and post-mortem metabolism. It was concluded that (31)P-NMR, due to its non-invasive nature plus the fact that some of the NMR parameters are sensitive to the intracellular environment, provides a useful complement to existing methods for the study of post-mortem metabolism.

  • 221. Vogel, HJ
    et al.
    Lundberg, Peter
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.
    Bagh, K
    Non-invasive NMR studies of metabolism in cultures Cathranthus roses cells (Invited rewiew)1999In: In vitro Cellular & Developmental Biology-Animal, ISSN 1071-2690, E-ISSN 1543-706X, Vol. 35, p. 144-151Article in journal (Refereed)
  • 222. Vogel, HJ
    et al.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Stephenson, J
    Thorpe, TA
    Nitrogen-14 and Introen-15 NMR studies of cultured plants1988Conference paper (Other academic)
  • 223.
    Walter, Susanna A
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Forsgren, Mikael
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Lundengård, Karin
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Simon, Rozalyn
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Torkildsen Nilsson, Maritha
    The National Board of Forensic Medicine and Linköping University, Linköping, Sweden.
    Söderfeldt, Birgitta
    Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Positive Allosteric Modulator of GABA Lowers BOLD Responses in the Cingulate Cortex2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 3Article in journal (Refereed)
    Abstract [en]

    Knowledge about the neural underpinnings of the negative blood oxygen level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is still limited. We hypothesized that pharmacological GABAergic modulation attenuates BOLD responses, and that blood concentrations of a positive allosteric modulator of GABA correlate inversely with BOLD responses in the cingulate cortex. We investigated whether or not pure task-related negative BOLD responses were co-localized with pharmacologically modulated BOLD responses. Twenty healthy adults received either 5 mg diazepam or placebo in a double blind, randomized design. During fMRI the subjects performed a working memory task. Results showed that BOLD responses in the cingulate cortex were inversely correlated with diazepam blood concentrations; that is, the higher the blood diazepam concentration, the lower the BOLD response. This inverse correlation was most pronounced in the pregenual anterior cingulate cortex and the anterior mid-cingulate cortex. For subjects with diazepam plasma concentration > 0.1 mg/L we observed negative BOLD responses with respect to fixation baseline. There was minor overlap between cingulate regions with task-related negative BOLD responses and regions where the BOLD responses were inversely correlated with diazepam concentration. We interpret that the inverse correlation between the BOLD response and diazepam was caused by GABA-related neural inhibition. Thus, this study supports the hypothesis that GABA attenuates BOLD responses in fMRI. The minimal overlap between task-related negative BOLD responses and responses attenuated by diazepam suggests that these responses might be caused by different mechanisms.

  • 224.
    Warntjes, J.B.M.
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medicine and Care, Clinical Physiology. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Novel method for rapid, simultaneous T1, T*2, and proton density quantification2007In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 57, no 3, p. 528-537Article in journal (Refereed)
    Abstract [en]

    An imaging method called “quantification of relaxation times and proton density by twin-echo saturation-recovery turbo-field echo” (QRAPTEST) is presented as a means of quickly determining the longitudinal T1 and transverse T relaxation time and proton density (PD) within a single sequence. The method also includes an estimation of the B1 field inhomogeneity. High-resolution images covering large volumes can be achieved within clinically acceptable times of 5–10 min. The range of accuracy for determining T1, T, and PD values is flexible and can be optimized relative to any anticipated values. We validated the experimental results against existing methods, and provide a clinical example in which quantification of the whole brain using 1.5 mm3 voxels was achieved in less than 8 min.

  • 225.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences.
    Blystad, Ida
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Multiparametric Quantitative Magnetic Resonance Imaging of the Normal Appearing Brain in Multiple Sclerosis2012Conference paper (Other academic)
  • 226.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Method for rapid, high-resolution, whole volume T1, T2* and proton density quantification2006Conference paper (Other academic)
  • 227.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    The 5 Minutes Exam using Rapid Quantification of T1, T2* and Proton Density2007Conference paper (Other academic)
  • 228.
    Warntjes, Marcel, Jan Bertus
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Dahlqvist, Olof
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    West, Janne
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Rapid magnetic resonance quantification on the brain: Optimization for clinical usage2008In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 60, no 2, p. 320-329Article in journal (Refereed)
    Abstract [en]

    A method is presented for rapid simultaneous quantification of the longitudinal T1 relaxation, the transverse T2 relaxation, the proton density (PD), and the amplitude of the local radio frequency B 1 field. All four parameters are measured in one single scan by means of a multislice, multiecho, and multidelay acquisition. It is based on a previously reported method, which was substantially improved for routine clinical usage. The improvements comprise of the use of a multislice spin-echo technique, a background phase correction, and a spin system simulation to compensate for the slice-selective RF pulse profile effects. The aim of the optimization was to achieve the optimal result for the quantification of magnetic resonance parameters within a clinically acceptable time. One benchmark was high-resolution coverage of the brain within 5 min. In this scan time the measured intersubject standard deviation (SD) in a group of volunteers was 2% to 8%, depending on the tissue (voxel size = 0.8 x 0.8 x 5 mm). As an example, the method was applied to a patient with multiple sclerosis in whom the diseased tissue could clearly be distinguished from healthy reference values. Additionally it was shown that, using the approach of synthetic MRI, both accurate conventional contrast images as well as quantification maps can be generated based on the same scan. © 2008 Wiley-Liss, Inc.

  • 229.
    Warntjes, Marcel Jan Bertus
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Brain Characterization Using Normalized Quantitative Magnetic Resonance Imaging2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 8Article in journal (Refereed)
    Abstract [en]

    Objectives

    To present a method for generating reference maps of typical brain characteristics of groups of subjects using a novel combination of rapid quantitative Magnetic Resonance Imaging (qMRI) and brain normalization. The reference maps can be used to detect significant tissue differences in patients, both locally and globally.

    Materials and Methods

    A rapid qMRI method was used to obtain the longitudinal relaxation rate (R1), the transverse relaxation rate (R2) and the proton density (PD). These three tissue properties were measured in the brains of 32 healthy subjects and in one patient diagnosed with Multiple Sclerosis (MS). The maps were normalized to a standard brain template using a linear affine registration. The differences of the mean value ofR1, R2 and PD of 31 healthy subjects in comparison to the oldest healthy subject and in comparison to an MS patient were calculated. Larger anatomical structures were characterized using a standard atlas. The vector sum of the normalized differences was used to show significant tissue differences.

    Results

    The coefficient of variation of the reference maps was high at the edges of the brain and the ventricles, moderate in the cortical grey matter and low in white matter and the deep grey matter structures. The elderly subject mainly showed significantly lower R1 and R2 and higher PD values along all sulci. The MS patient showed significantly lower R1 and R2 and higher PD values at the edges of the ventricular system as well as throughout the periventricular white matter, at the internal and external capsules and at each of the MS lesions.

    Conclusion

    Brain normalization of rapid qMRI is a promising new method to generate reference maps of typical brain characteristics and to automatically detect deviating tissue properties in the brain.

  • 230.
    Warntjes, Marcel Jan Bertus
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tisell, Anders
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI2016In: Frontiers in Neurology, ISSN 1664-2295, E-ISSN 1664-2295, Vol. 7, no 16Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to present a model that uses multi-parametric quantitative MRI to estimate the presence of myelin and edema in the brain. The model relates simultaneous measurement of R-1 and R-2 relaxation rates and proton density to four partial volume compartments, consisting of myelin partial volume, cellular partial volume, free water partial volume, and excess parenchymal water partial volume. The model parameters were obtained using spatially normalized brain images of a group of 20 healthy controls. The pathological brain was modeled in terms of the reduction of myelin content and presence of excess parenchymal water, which indicates the degree of edema. The method was tested on spatially normalized brain images of a group of 20 age-matched multiple sclerosis (MS) patients. Clear differences were observed with respect to the healthy controls: the MS group had a 79 mL smaller brain volume (1069 vs. 1148 mL), a 38 mL smaller myelin volume (119 vs. 157 mL), and a 21 mL larger excess parenchymal water volume (78 vs. 57 mL). Template regions of interest of various brain structures indicated that the myelin partial volume in the MS group was 1.6 +/- 1.5% lower for gray matter (GM) structures and 2.8 +/- 1.0% lower for white matter (WM) structures. The excess parenchymal water partial volume was 9 +/- 10% larger for GM and 5 +/- 2% larger for WM. Manually placed ROls indicated that the results using the template ROls may have suffered from loss of anatomical detail due to the spatial normalization process. Examples of the application of the method on high-resolution images are provided for three individual subjects: a 45-year-old healthy subject, a 72-year-old healthy subject, and a 45-year-old MS patient. The observed results agreed with the expected behavior considering both age and disease. In conclusion, the proposed model may provide clinically important parameters, such as the total brain volume, degree of myelination, and degree of edema, based on a single qMRI acquisition with a clinically acceptable scan time.

  • 231.
    Warntjes, Marcel Jan Bertus
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV). SyntheticMR AB, Linkoping, Sweden.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Håkansson, Irene
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Ernerudh, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Improved Precision of Automatic Brain Volume Measurements in Patients with Clinically Isolated Syndrome and Multiple Sclerosis Using Edema Correction2018In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 39, no 2, p. 296-302Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE: The presence of edema will result in increased brain volume, which may obscure progressing brain atrophy. Similarly, treatment-induced edema reduction may appear as accelerated brain tissue loss (pseudoatrophy). The purpose of this study was to correlate brain tissue properties to brain volume, to investigate the possibilities for edema correction and the resulting improvement of the precision of automated brain volume measurements. MATERIALS AND METHODS: A group of 38 patients with clinically isolated syndrome or newly diagnosed MS were imaged at inclusion and after 1, 2, and 4 years using an MR quantification sequence. Brain volume, relaxation rates (R-1 and R-2), and proton density were measured by automated software. RESULTS: The reduction of normalized brain volume with time after inclusion was 0.273%/year. The mean SDs were 0.508%, 0.526%, 0.454%, and 0.687% at baseline and 1, 2, and 4 years. Linear regression of the relative change of normalized brain volume and the relative change of R-1, R-2, and proton density showed slopes of -0.198 (P amp;lt; .001), 0.156 (P = .04), and 0.488 (P amp;lt; .001), respectively. After we applied the measured proton density as a correction factor, the mean SDs decreased to 24.2%, 4.8%, 33.3%, and 17.4%, respectively. The observed atrophy rate reduced from 0.273%/year to 0.238%/year. CONCLUSIONS: Correlations between volume and R-1, R-2, and proton density were observed in the brain, suggesting that a change of brain tissue properties can affect brain volume. Correction using these parameters decreased the variation of brain volume measurements and may have reduced the effect of pseudoatrophy.

  • 232.
    Warntjes, Marcel Jan Bertus
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Effects of Gadolinium Contrast Agent Administration on Automatic Brain Tissue Classification of Patients with Multiple Sclerosis2014In: American Journal of Neuroradiology, ISSN 0195-6108, E-ISSN 1936-959X, Vol. 35, no 7, p. 1330-1336Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND PURPOSE:

    The administration of gadolinium contrast agent is a common part of MR imaging examinations in patients with MS. The presence of gadolinium may affect the outcome of automated tissue classification. The purpose of this study was to investigate the effects of the presence of gadolinium on the automatic segmentation in patients with MS by using the synthetic tissue-mapping method.

    MATERIALS AND METHODS:

    A cohort of 20 patients with clinically definite multiple sclerosis were recruited, and the T1 and T2 relaxation times and proton density were simultaneously quantified before and after the administration of gadolinium. Synthetic tissue-mapping was used to measure white matter, gray matter, CSF, brain parenchymal, and intracranial volumes. For comparison, 20 matched controls were measured twice, without gadolinium.

    RESULTS:

    No differences were observed for the control group between the 2 measurements. For the MS group, significant changes were observed pre- and post-gadolinium in intracranial volume (-13 mL, P < .005) and cerebrospinal fluid volume (-16 mL, P < .005) and the remaining, unclassified non-WM/GM/CSF tissue volume within the intracranial volume (+8 mL, P < .05). The changes in the patient group were much smaller than the differences, compared with the controls, which were -129 mL for WM volume, -22 mL for GM volume, +91 mL for CSF volume, 24 mL for the remaining, unclassified non-WM/GM/CSF tissue volume within the intracranial volume, and -126 mL for brain parenchymal volume. No significant differences were observed for linear regression values against age and Expanded Disability Status Scale.

    CONCLUSIONS:

    The administration of gadolinium contrast agent had a significant effect on automatic brain-tissue classification in patients with MS by using synthetic tissue-mapping. The observed differences, however, were much smaller than the group differences between MS and controls.

  • 233.
    Warntjes, Marcel
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Blystad, Ida
    Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Landtblom, A-M
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Normalized Quantitative Magnetic Resonance Imaging on Multiple Sclerosis2013Conference paper (Other academic)
  • 234.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Fully Automatic Brain Tissue Mapping on Multiple Sclerosis Based on Quantitative MRI2011Conference paper (Refereed)
  • 235.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Birgander, R
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Semi-automatic Brain Ventricle Segmentation using Partial Volume Fraction Calculation of CSF based on Quantitative MRI2010Conference paper (Other academic)
  • 236.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Helms, G.
    University Medical Center, Göttingen, Germany.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Estimation of total myelin volume in the brain2011In: Internationell Society for Magnetic Resonance in Medicin, 2011, 2011, p. 2175-2175Conference paper (Refereed)
  • 237.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Helms, G.
    University Medical Center, Göttingen, Germany.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Using multi-parametric quantitative MRI to model myelin in the brain2011In: Internationell Society for Magnetic Resonance in Medicin, 2011, 2011, p. 536-536Conference paper (Refereed)
  • 238.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Psychiatry. Östergötlands Läns Landsting, Sinnescentrum, Department of Neurosurgery UHL. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Absolute Quantification of Myelin related Volume in the Brain2010Conference paper (Other academic)
  • 239.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Health Sciences.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Method for accurate brain atrophy follow-up using functional relaxometric classification2009Conference paper (Other academic)
  • 240.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Method for accurate tumor volume estimation in the brain using healthy tissue subtraction2009Conference paper (Other academic)
  • 241.
    Warntjes, Marcel
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    West, Janne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Fully Automatic Brain Tissue Segmentation on Multiple Sclerosis Patients with a High and a Low Number of White Matter Lesions2012Conference paper (Other academic)
  • 242. Weich, R
    et al.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Vogel, HJ
    Jensén, P
    Formation of extra cellular phosphorus compounds in Ulva lactuca detected by 31P NMR1987Conference paper (Other academic)
  • 243.
    Weich, Rainer G.
    et al.
    Department of Plant Physiology, University of Lund, S-220 07 Lund, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
    Vogel, Hans J.
    Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
    Jensén, Paul
    Department of Plant Physiology, University of Lund, S-220 07 Lund, Sweden.
    Phosphorus-31 NMR studies of cell wall-associated calcium-phosphates in Ulva lactuca1989In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 90, no 1, p. 230-236Article in journal (Refereed)
    Abstract [en]

    Phosphate concentrations in the range 0.1 to 2.0 millimolar induced the formation of extracellular amorphous calcium-phosphates in the cell wall of the marine macro algae Ulva lactuca when they were cultivated in light in seawater at 20°C. A broad resonance representing these compounds as well as resonances for extracellular orthophosphate and polyphosphates could be followed by 31P-nuclear magnetic resonance spectroscopy. The presence of the calcium-phosphate made the cells brittle and it inhibited the growth of the macro algae and caused mortality within 1 week. The formation of the calcium-phosphates was influenced by the external phosphate concentration, the extracellular pH and the nature and concentration of the external nitrogen source. Furthermore, no formation of these compounds was observed when Ulva lactuca was cultivated in the dark, at low temperatures (5°C) or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The complex could be removed through washes with ethylenediaminetetraacetate; this treatment did not alter the intracellular pH or the orthophosphate and polyphosphate pools and it restored growth.

  • 244.
    West, Janne
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Aalto, Anne
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Tisell, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology. Östergötlands Läns Landsting, Local Health Care Services in West Östergötland, Department of Medical Specialist in Motala.
    Smedby, Örjan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Normal Appearing and Diffusely Abnormal White Matter in Patients with Multiple Sclerosis, Assessed with Quantitative MR: Optimization for clinical usage2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 4, p. e95161-Article in journal (Refereed)
    Abstract [en]

    Introduction: Magnetic Resonance Imaging is a sensitive technique for detecting white matter (WM) MS lesions, but the relation with clinical disability is low. Because of this, changes in both ‘normal appearing white matter’ (NAWM) and ‘diffusely abnormal white matter’ (DAWM) have been of interest in recent years. MR techniques, including quantitative magnetic resonance imaging (qMRI) and quantitative magnetic resonance spectroscopy (qMRS), have been developed in order to detect and  quantify such changes.

    In this study, a combination of qMRI and qMRS was used to investigate NAWM and DAWM in typical MS patients and in MS patients with low number of WM lesions. Patient data were compared to ‘normal white matter’ (NWM) in healthy controls.

    Methods: QMRI and qMRS measurements were performed on a 1.5T Philips MR-scanner. 35 patients with clinically definite MS and 20 healthy controls were included. Fifteen of the patients showed few WM lesions (‘MRIneg‘) and 20 showed radiologically typical findings (‘MRIpos’). QMRI properties were determined in ROIs of NAWM, DAWM and WM lesions in the MS groups and of NWM in controls. Descriptive statistical analysis and comparisons were performed. Correlations were calculated between qMRI measurements and (1) clinical parameters and (2) WM metabolite concentrations. Regression analyses were performed with brain parenchyma fraction and MSSS.

    Results: NAWM in the MRIneg group was significantly different from NAWM in the MRIpos group and NWM. In addition, R1 and R2 of NAWM in the MRIpos group correlated negatively with EDSS and MSSS. DAWM was significantly different from NWM, but similar in the two MS groups. N-acetyl aspartate correlated negatively with R1 and R2 in MRIneg. Finally, R2 of DAWM was associated with BPF.

    Conclusions: Changes in NAWM and DAWM are independent pathological entities in the disease. Combined qMRI and qMRS measurements of NAWM and DAWM provide important markers for disease status.

  • 245.
    West, Janne
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Aalto, Anne
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Clinical Physiology UHL.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Landtblom, Anne-Marie
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Neurology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Neurology.
    Smedby, Örjan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL.
    Characterizing Normal Appearing White and Diseased Matter in Multiple Sclerosis Using Quantitative MRI2012Conference paper (Other academic)
  • 246.
    West, Janne
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Blystad, Ida
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Warntjes, Marcel Jan Bertus
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Östergötlands Läns Landsting, Center for Diagnostics, Department of Radiology in Linköping.
    Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 9Article in journal (Refereed)
    Abstract [en]

    Background

    Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences.

    Methods

    In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences.

    Results

    Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem.

    Conclusions

    Most of the brain was identically classified at the two field strengths, although some regional differences were observed.

  • 247.
    West, Janne
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Blystad, Ida
    Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel Jan Bertus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    On fully automated whole-brain tissue segementation at 1.5 T and 3 T based on quantitative MRI.2013Conference paper (Other academic)
  • 248.
    West, Janne
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Blystad, Ida
    Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel Jan Bertus
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    QMRI of normal appearing white matter in MS patients with normal MR imaging brain scans2013Conference paper (Refereed)
  • 249.
    West, Janne
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping.
    Quantitative Magnetic Resonance Imaging: Sensitivity to Acquisition Parameters2011Conference paper (Refereed)
  • 250.
    West, Janne
    et al.
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences. Linköping University, Faculty of Health Sciences.
    Dahlqvist Leinhard, Olof
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Faculty of Health Sciences.
    Lundberg, Peter
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics. Linköping University, Department of Medicine and Health Sciences, Radiology. Östergötlands Läns Landsting, Centre for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics UHL. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Radiology in Linköping. Linköping University, Faculty of Health Sciences.
    Absolute Quantification of T1, T2, PD and B1 on Patients with Multiple Sclerosis, Covering the Brain in 5 Minutes2008Conference paper (Other academic)
23456 201 - 250 of 256
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf