liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
2345 201 - 208 av 208
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201. Xiong, Changsheng
    et al.
    Sjöberg, Birgitta Janero
    Linköpings universitet, Institutionen för medicin och hälsa, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Östergötlands Läns Landsting, Hjärt- och Medicincentrum, Fysiologiska kliniken US.
    Sveider, Per
    Linköpings universitet, Institutionen för medicinsk teknik.
    Ask, Per
    Linköpings universitet, Institutionen för medicinsk teknik, Fysiologisk mätteknik. Linköpings universitet, Tekniska högskolan.
    Loyd, Dan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska högskolan.
    Wranne, Bengt
    Linköpings universitet, Institutionen för medicin och vård, Klinisk fysiologi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Hjärt- och Medicincentrum, Fysiologiska kliniken US.
    Problems in timing of respiration with the nasal thermistor technique.1993Ingår i: Journal of the American Society of Echocardiography, ISSN 0894-7317, E-ISSN 1097-6795, Vol. 6, nr 2, s. 210-216Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    When one analyzes transvalvular and venous flow velocity patterns, it is important to relate them to respiration. For this reason a nasal thermistor technique is often used, although it is known that this signal is delayed in relation to intrathoracic pressure changes. The magnitude and variation in delay have not been investigated previously and were, therefore, studied in a model experiment in 10 normal subjects, in 10 patients with obstructive, and in 10 patients with restrictive pulmonary disease. Esophageal pressure variations measured with an air-filled balloon served as a gold standard for intrathoracic pressure changes. During basal conditions there was, for both patient groups and normal subjects, a considerable delay of the thermistor signal. The average delay for all subjects was 370 msec with a wide variation (from 120 to 720 msec). At higher breathing frequencies the delay shortened to 310 msec (P < 0.01) but there was still a wide variation (ranging from 200 to 470 msec). Theoretic calculations show that the delay caused by the respiratory system accounts for only a minor portion of the total delay. Model experiments confirmed that the response characteristics of the thermistor probes limit the accuracy in timing of respiration. The total delay with the investigated thermistor technique is too long and variable to fulfil clinical demands.

  • 202. Beställ onlineKöp publikationen >>
    Zajac, Jakub
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten.
    Assessment of Ventricular Function in Normal and Failing Hearts Using 4D Flow CMR2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Heart failure is a common disorder and a major cause of illness and death in the population, creating an enormous health-care burden. It is a complex condition, representing the end-point of many cardiovascular diseases. In general heart failure progresses slowly over time and once it is diagnosed it has a poor prognosis which is comparable with that of many types of cancer.

    The heart has an ability to adapt in response to long lasting increases in hemodynamic demand; the heart conforms its shape and size in order to maintain adequate cardiac output. This process is called remodeling and can be triggered by pathologies such as hypertension or valvular disease. When the myocardial remodeling is maintained chronically it becomes maladaptive and is associated with an increased risk of heart failure.

    In many cases, heart failure is associated with left bundle branch block (LBBB). This electrical disturbance leads to dyssynchronous left ventricular (LV) contraction and relaxation which may contribute to cardiac dysfunction and ultimately heart failure. Mechanical dyssynchrony can be treated with cardiac resynchronization therapy (CRT). However, many heart failure patients do not demonstrate clinical improvement despite CRT.

    Blood flow plays an important role in the normal development of the fetal heart. However, flow-induced forces may also induce changes in the heart cells that could lead to pathological remodeling in the adult heart. Until recently, measurement tools have been inadequate in describing the complex three-dimensional and time-varying characteristics of blood flow within the beating heart.

    4D (3D + time) flow cardiovascular magnetic resonance (CMR) enables acquisition of three-dimensional, three-directional, time-resolved velocity data from which visualization and quantification of the blood flow patterns over a complete cardiac cycle can be performed. In this thesis, novel 4D Flow CMR based methods are used to study the intraventricular blood flow in healthy subjects and heart failure patients with and without ventricular dyssynchrony in order to gain new knowledge of the ventricular function.

    Different flow components were assessed in normal heart ventricles. It was found that inflowing blood that passes directly to outflow during the same heartbeat (the Direct Flow component) was larger and possessed more kinetic energy (KE) than other flow components. Diastolic flow through the normal heart appears to create favorable conditions for effective systolic ejection. This organized blood flow pattern within the normal LV is altered in heart failure patients and is associated with decreased preservation of KE which might be unfavorable for efficient LV ejection. Inefficient flow of blood through the heart may influence diastolic wall stress, and thus contribute to pathological myocardial remodeling.

    In dyssynchronous LVs of heart failure patients with LBBB, Direct Flow showed even more reduced preservation of KE compared to similarly remodeled LVs without LBBB. Furthermore, in LBBB patients, LV filling hemodynamic forces, acting on the myocardium, were more orthogonal to the main flow direction compared to patients without LBBB. Deviation of LV flow forces and reduction of KE preservation and may reflect impairment of LV diastolic function and less efficient ensuing ejection related to dyssynchrony in these failing ventricles.

    Blood flow patterns were also studied with respect to fluctuations of the velocity of the flow (turbulent flow) in normal and failing LVs. In failing hearts, turbulent kinetic energy (TKE) was higher during diastole than in healthy subjects. TKE is a cause of energy loss and can thus be seen as a measure of flow inefficiency.

    Elucidating the transit of multidimensional blood flow through the heart chambers is fundamental in understanding the physiology of the heart and to detect abnormalities in cardiac function. The 4D Flow CMR parameters presented in this thesis can be utilized to detect altered intracardiac blood flow and may be used as markers of deteriorating cardiac function, pathological remodeling and mechanical dyssynchrony in heart failure.

    Delarbeten
    1. 4-D blood flow in the human right ventricle
    Öppna denna publikation i ny flik eller fönster >>4-D blood flow in the human right ventricle
    Visa övriga...
    2011 (Engelska)Ingår i: American Journal of Physiology. Heart and Circulatory Physiology, ISSN 0363-6135, E-ISSN 1522-1539, Vol. 301, nr 6, s. H2344-H2350Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Right ventricular (RV) function is a powerful prognostic indicator in many forms of heart disease, but its assessment remains challenging and inexact. RV dysfunction may alter the normal patterns of RV blood flow, but those patterns have been incompletely characterized. We hypothesized that, based on anatomic differences, the proportions and energetics of RV flow components would differ from those identified in the left ventricle (LV) and that the portion of the RV inflow passing directly to outflow (Direct Flow) would be prepared for effective systolic ejection as a result of preserved kinetic energy (KE) compared with other RV flow components. Three-dimensional, time-resolved phase-contrast velocity, and balanced steady-state free-precession morphological data were acquired in 10 healthy subjects using MRI. A previously validated method was used to separate the RV and LV end-diastolic volumes into four flow components and measure their volume and KE over the cardiac cycle. The RV Direct Flow: 1) followed a smoothly curving route that did not extend into the apical region of the ventricle; 2) had a larger volume and possessed a larger presystolic KE (0.4 +/- 0.3 mJ) than the other flow components (P andlt; 0.001 and P andlt; 0.01, respectively); and 3) represented a larger part of the end-diastolic blood volume compared with the LV Direct Flow (P andlt; 0.01). These findings suggest that diastolic flow patterns distinct to the normal RV create favorable conditions for ensuing systolic ejection of the Direct Flow component. These flow-specific aspects of RV diastolic-systolic coupling provide novel perspectives on RV physiology and may add to the understanding of RV pathophysiology.

    Ort, förlag, år, upplaga, sidor
    American Physiological Society, 2011
    Nyckelord
    cardiac disease, interventricular function, kinetic energy, phase-contrast magnetic resonance imaging, pump physiology
    Nationell ämneskategori
    Medicin och hälsovetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-74161 (URN)10.1152/ajpheart.00622.2011 (DOI)000298325200020 ()
    Anmärkning
    Funding Agencies|Swedish Research Council||Swedish Heart-Lung Foundation||Emil and Wera Cornell Foundation||Tillgänglig från: 2012-01-20 Skapad: 2012-01-20 Senast uppdaterad: 2017-12-08
    2. Turbulent Kinetic Energy in Normal and Myopathic Left Ventricles
    Öppna denna publikation i ny flik eller fönster >>Turbulent Kinetic Energy in Normal and Myopathic Left Ventricles
    Visa övriga...
    2015 (Engelska)Ingår i: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 41, nr 4, s. 1021-1029Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Purpose: To assess turbulent kinetic energy (TKE) within the left ventricle (LV) of healthy subjects using novel 4D flow MRI methods and to compare TKE values to those from a spectrum of patients with dilated cardiomyopathy (DCM).

    Methods: 4D flow and morphological MRI-data were acquired in 11 healthy subjects and 9 patients with different degrees of diastolic dysfunction. TKELV was calculated within the LV at each diastolic time frame. At peak early (E) and late (A) diastolic filling, the TKELV was compared to transmitral peak velocity, LV diameter and mitral annular diameter.

    Results: In the majority of all subjects, peaks in TKELV could be observed at E and A. Peak TKELV at E was not different between the groups, and correlated with mitral annular dimensions. Peak TKELV at A was higher in DCM patients compared to healthy subjects, and was related to LV diameter and transmitral velocity.

    Conclusions: In normal LVs, TKE values are low. Values are highest during early diastole, and diminish with increasing LV size. In a heterogeneous group of DCM patients, late diastolic TKE values are higher than in healthy subjects. Kinetic energy loss due to elevated late diastolic TKE may reflect inefficient flow in dilated LVs.

    Ort, förlag, år, upplaga, sidor
    Wiley-Blackwell, 2015
    Nyckelord
    Magnetic resonance imaging, blood flow, turbulent flow, cardiac function, diastolic dysfunction, heart failure
    Nationell ämneskategori
    Medicinteknik Kardiologi
    Identifikatorer
    urn:nbn:se:liu:diva-99957 (URN)10.1002/jmri.24633 (DOI)000351521700019 ()
    Anmärkning

    Contract grant sponsor: Swedish Heart-Lung Foundation; Contract grant sponsor: Swedish Research Council; Contract grant sponsor: European Research Council.

    Tillgänglig från: 2013-10-24 Skapad: 2013-10-24 Senast uppdaterad: 2017-12-06Bibliografiskt granskad
    3. Left ventricular hemodynamic forces as a marker of mechanical dyssynchrony in heart failure patients with left bundle branch block
    Öppna denna publikation i ny flik eller fönster >>Left ventricular hemodynamic forces as a marker of mechanical dyssynchrony in heart failure patients with left bundle branch block
    Visa övriga...
    2017 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 2971Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Left bundle branch block (LBBB) causes left ventricular (LV) dyssynchrony which is often associated with heart failure. A significant proportion of heart failure patients do not demonstrate clinical improvement despite cardiac resynchronization therapy (CRT). How LBBB-related effects on LV diastolic function may contribute to those therapeutic failures has not been clarified. We hypothesized that LV hemodynamic forces calculated from 4D flow MRI could serve as a marker of diastolic mechanical dyssynchrony in LBBB hearts. MRI data were acquired in heart failure patients with LBBB or matched patients without LBBB. LV pressure gradients were calculated from the Navier-Stokes equations. Integration of the pressure gradients over the LV volume rendered the hemodynamic forces. The findings demonstrate that the LV filling forces are more orthogonal to the main LV flow direction in heart failure patients with LBBB compared to those without LBBB during early but not late diastole. The greater the conduction abnormality the greater the discordance of LV filling force with the predominant LV flow direction (r(2) = 0.49). Such unique flow-specific measures of mechanical dyssynchrony may serve as an additional tool for considering the risks imposed by conduction abnormalities in heart failure patients and prove to be useful in predicting response to CRT.

    Ort, förlag, år, upplaga, sidor
    NATURE PUBLISHING GROUP, 2017
    Nationell ämneskategori
    Kardiologi
    Identifikatorer
    urn:nbn:se:liu:diva-138889 (URN)10.1038/s41598-017-03089-x (DOI)000402879800027 ()28592851 (PubMedID)
    Anmärkning

    Funding Agencies|Swedish Heart Lung foundation [20140398]; Swedish Research Council [2014-6191]; European Research Council [310612]

    Tillgänglig från: 2017-06-27 Skapad: 2017-06-27 Senast uppdaterad: 2018-04-17
    Ladda ner fulltext (pdf)
    Assessment of Ventricular Function in Normal and Failing Hearts Using 4D Flow CMR
    Ladda ner (pdf)
    omslag
    Ladda ner (jpg)
    presentationsbild
  • 203.
    Ziegler, Magnus
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Welander, Martin
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Thorax-kärlkliniken i Östergötland.
    Lantz, Jonas
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Lindenberger, Marcus
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Kardiologiska kliniken US.
    Bjarnegård, Niclas
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Fysiologiska kliniken US.
    Karlsson, Matts
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanisk värmeteori och strömningslära. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Ebbers, Tino
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Fysiologiska kliniken US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Länne, Toste
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Hjärt- och Medicincentrum, Thorax-kärlkliniken i Östergötland.
    Dyverfeldt, Petter
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för kardiovaskulär medicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Visualizing and quantifying flow stasis in abdominal aortic aneurysms in men using 4D flow MRI2019Ingår i: Magnetic Resonance Imaging, ISSN 0730-725X, E-ISSN 1873-5894, Vol. 57, s. 103-110Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: To examine methods for visualizing and quantifying flow stasis in abdominal aortic aneurysms (AAA) using 4D Flow MRI. Methods: Three methods were investigated: conventional volumetric residence time (VRT), mean velocity analysis (MVA), and particle travel distance analysis (TDA). First, ideal 4D Flow MRI data was generated using numerical simulations and used as a platform to explore the effects of noise and background phase-offset errors, both of which are common 4D Flow MRI artifacts. Error-free results were compared to noise or offset affected results using linear regression. Subsequently, 4D Flow MRI data for thirteen (13) subjects with AAA was acquired and used to compare the stasis quantification methods against conventional flow visualization. Results: VRT (R-2 = 0.69) was more sensitive to noise than MVA (R-2 = 0.98) and TDA (R-2 = 0.99) at typical noncontrast signal-to-noise ratio levels (SNR = 20). VRT (R-2 = 0.14) was more sensitive to background phase-offsets than MVA (R-2 = 0.99) and TDA (R-2 = 0.96) when considering a 95% effective background phase-offset correction. Qualitatively, TDA outperformed MVA (Wilcoxon p amp;lt; 0.005, mean score improvement 1.6/5), and had good agreement (median score 4/5) with flow visualizations. Conclusion: Flow stasis can be quantitatively assessed using 4D Flow MRI. While conventional residence time calculations fail due to error accumulation as a result of imperfect measured velocity fields, methods that do not require lengthy particle tracking perform better. MVA and TDA are less sensitive to measurement errors, and TDA generates results most similar to those obtained using conventional flow visualization.

    Ladda ner fulltext (pdf)
    fulltext
  • 204.
    Zsigmond, Peter
    et al.
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Neurokirurgi. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Rekonstruktionscentrum, Neurokirurgiska kliniken US.
    Åström, Mattias
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Diczfalusy, Elin
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Kullman, Anita
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Neurokirurgi. Linköpings universitet, Hälsouniversitetet.
    Dizdar, Nil
    Wårdell, Karin
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Biochemical Monitoring and Simulation of the Electric Field during Deep Brain Stimulation2009Konferensbidrag (Refereegranskat)
  • 205. Beställ onlineKöp publikationen >>
    Zötterman, Johan
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för kirurgi, ortopedi och onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Hand- och plastikkirurgiska kliniken US.
    Laser Speckle Contrast Imaging in Reconstructive Surgery2020Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Objectives

    Reconstructive surgery aims to restore function or normal appearance by reconstructing defective organs after trauma or disease. In patients undergoing reconstructive surgery, previous trauma, surgery or radiotherapy can result in compromised blood supply. This will affect the viability of the tissue and increases the risk for postoperative complications, such as ischemia and infection. It is therefore important to assess the tissue viability, both before, during and after the surgery. This can be done using different techniques that monitor the perfusion of the skin covering the affected area. In this thesis, LSCI have been evaluated for tissue monitoring in reconstructive surgery. The technique allows for a fast and noninvasive assessment of superficial tissue perfusion over a wide field. Based on previous work on the technology, we have seen clear advantages with LSCI compared to other methods, for example laser Doppler flowmetry (LDF). We have evaluated laser speckle contrast imaging (LSCI) as a tool for tissue monitoring in reconstructive surgery in four studies.

    Methods

    In study I we used a bench top model and healthy subjects to address methodological concerns subjected to the LSCI technology. We investigated the effect of motion distance and angle on the assessed perfusion value In study II we used a porcine model to compare LSCI and LDF as tools to detect partial and full venous outflow obstruction. We used both methods to assess a flap based on the cranial gluteal artery perforator with partial and complete occlusion of the vein and artery. In study III we used the same porcine model as in study II to investigate the possibility to use LSCI intraoperatively to identify flap areas with compromised circulation and thereby predict areas with a high risk of postoperative necrosis. In study IV we used LSCI for intraoperative evaluation of tissue viability during deep inferior epigastric perforator (DIEP) free flap surgery and to investigate the perfusion distribution according to the Hartrampf zones, as measured with LSCI, in relation to the selected perforator in the deep inferior epigastric perforator free flap.

    Results

    In study I we saw that tissue perfusion as measured with LSCI increases with increasing tissue motion, independent of frame rate, number of images, and tissue perfusion. Measured perfusion will decrease when images are acquired at an angle larger than 45° but distances between 15 and 40 cm do not affect the measured perfusion. In study II we observed significant decreases in perfusion during both partial and complete venous occlusion with both LSCI and LDF. However, higher variability seen with LDF, measured as % coefficient of variation. In study III a decrease in perfusion during the first 30 min after raising the flap and a perfusion value below 25 PU after 30 min was a predictor for tissue morbidity 72h after surgery. In study IV the highest perfusion values were found in zone I and higher perfusion in zone II compared to zone III, directly after the flap was raised. No remaining significant difference between zone I, II and III could be seen after anastomosis of the vessels. All flaps with a minimum perfusion <30 PU, measured after the flap was shaped and inserted, later suffered from partial flap necrosis.

    Conclusion

    LSCI is a technology that has the potential to contribute to tissue monitoring in reconstructive surgery. It has many advantages over other techniques, such as the fast acquisition time, the spatial resolution and the fact that it is completely non-invasive. However, the current system is still too bulky to be easily introduced into a clinical setting and the technology is also subject to certain drawbacks which limit its usability. It is sensitive to motion artefacts; only superficial tissue is assessed and cannot offer absolute perfusion data. If these disadvantages could be addressed, LSCI could contribute to a more accurate survey of tissue perfusion and thus better outcome in reconstructive surgery.

    Delarbeten
    1. Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation
    Öppna denna publikation i ny flik eller fönster >>Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation
    Visa övriga...
    2017 (Engelska)Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 3, artikel-id e0174703Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Background Laser Speckle Contrast Imaging (LSCI) is a non-invasive and fast technique for measuring microvascular blood flow that recently has found clinical use for burn assessment and evaluation of flaps. Tissue motion caused by for example breathing or patient movements may however affect the measurements in these clinical applications, as may distance between the camera and the skin and tissue curvature. Therefore, the aims of this study were to investigate the effect of frame rate, number of frames/image, movement of the tissue, measuring distance and tissue curvature on the measured perfusion. Methods Methyl nicotinate-induced vasodilation in the forearm skin was measured using LSCI during controlled motion at different speeds, using different combinations of frame rate and number of frames/image, and at varying camera angles and distances. Experiments were made on healthy volunteers and on a cloth soaked in a colloidal suspension of polystyrene microspheres. Results Measured perfusion increased with tissue motion speed. The relation was independent of the absolute perfusion in the skin and of frame rate and number of frames/image. The measured perfusion decreased with increasing angles (16% at 60, p = 0.01). Measured perfusion did not vary significantly between measurement distances from 15 to 40 cm (p = 0.77, %CV 0.9%). Conclusion Tissue motion increases and measurement angles beyond 45 decrease the measured perfusion in LSCI. These findings have to be taken into account when LSCI is used to assess moving or curved tissue surfaces, which is common in clinical applications.

    Ort, förlag, år, upplaga, sidor
    PUBLIC LIBRARY SCIENCE, 2017
    Nationell ämneskategori
    Radiologi och bildbehandling
    Identifikatorer
    urn:nbn:se:liu:diva-137098 (URN)10.1371/journal.pone.0174703 (DOI)000399174800074 ()28358906 (PubMedID)
    Anmärkning

    Funding Agencies|ALF grants, Region Ostergotland

    Tillgänglig från: 2017-05-05 Skapad: 2017-05-05 Senast uppdaterad: 2020-03-18
    2. Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging
    Öppna denna publikation i ny flik eller fönster >>Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging
    Visa övriga...
    2016 (Engelska)Ingår i: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1532-1959, Vol. 69, nr 7, s. 936-943Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Background: In microsurgery, there is a demand for more reliable methods of postoperative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruction, as well as full arterial occlusion, in a porcine flap model. Methods: Cranial gluteal artery perforator flaps (CGAPs) were raised, and arterial and venous blood flow to and from the flaps was monitored using ultrasonic flow probes. The venous flow was altered with an inflatable cuff to simulate partial and full (50% and 100%) venous obstruction, and arterial flow was completely obstructed using clamps. The flap microcirculation was monitored using LSCI and LDF. Results: Both LDF and the LSCI detected significant changes in flap perfusion. After partial (50%) venous occlusion, perfusion decreased from baseline, LSCI: 63.5 +/- 12.9 PU (p = 0.01), LDF 31.3 +/- 15.7 (p = 0.64). After 100% venous occlusion, a further decrease in perfusion was observed: LSCI 54.6 +/- 14.2 PU (p amp;lt; 0.001) and LDF 16.7 +/- 12.8 PU (p amp;lt; 0.001). After release of the venous cuff, LSCI detected a return of the perfusion to a level slightly, but not significantly, below the baseline level 70.1 +/- 11.5 PU (p=0.39), while the LDF signal returned to a level not significant from the baseline 36.1 +/- 17.9 PU (p amp;gt; 0.99). Perfusion during 100% arterial occlusion decreased significantly as measured with both methods, LSCI: 48.3 +/- 7.7 (PU, pamp;lt;0.001) and LDF: 8.5 +/- 4.0 PU (pamp;lt;0.001). During 50% and 100% venous occlusion, LSCI showed a 20% and 26% inter-subject variability (CV%), respectively, compared to 50% and 77% for LDF. Conclusions: LSCI offers sensitive and reproducible measurements of flap microcirculation and seems more reliable in detecting decreases in blood perfusion caused by venous obstruction. It also allows for perfusion measurements in a relatively large area of flap tissue. This may be useful in identifying areas of the flap with compromised microcirculation during and after surgery. (C) 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

    Ort, förlag, år, upplaga, sidor
    ELSEVIER SCI LTD, 2016
    Nyckelord
    Free flaps; Venous occlusion; Arterial occlusion; Laser Doppler; Laser speckle contrast imaging
    Nationell ämneskategori
    Kirurgi
    Identifikatorer
    urn:nbn:se:liu:diva-130059 (URN)10.1016/j.bjps.2016.02.015 (DOI)000377698600010 ()27026039 (PubMedID)
    Anmärkning

    Funding Agencies|county of Ostergotland

    Tillgänglig från: 2016-07-06 Skapad: 2016-07-06 Senast uppdaterad: 2020-03-18
    3. The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model
    Öppna denna publikation i ny flik eller fönster >>The use of laser speckle contrast imaging to predict flap necrosis: An experimental study in a porcine flap model
    2019 (Engelska)Ingår i: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1532-1959, Vol. 72, nr 5, s. 771-777Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Background: We evaluated the use of laser speckle contrast imaging (LSCI) in the perioperative planning in reconstructive flap surgery. The aim of the study was to investigate whether LSCI can predict regions with a high risk of developing postoperative necrosis. Our hypothesis was that, perioperatively, such regions have perfusion values below a threshold value and show a negative perfusion trend. Methods: A porcine flap model based on the cranial gluteal artery perforator was used. Images were acquired before surgery, immediately after surgery (t = 0), after 30 min (t =30 min), and after 72h (t = 72 h). Regions of interest (ROIs) were chosen along the central axis of the flap. Clinical evaluation of the flap was made during each time point. Results: At t = 72 h, a demarcation line could be seen at a distance of 15.8 +/- 0.4 cm away from the proximal border of the flaps. At t =0, perfusion decreased gradually from the proximal to the distal ROI. At t =30 min, perfusion was significantly lower in the ROI distal to the final demarcation line than that at t = 0, and in all flaps, these ROIs had a perfusion amp;lt;25 PU. At t= 72 h, perfusion in the ROI proximal to this line returned to baseline levels, whereas perfusion in the distal ROI remained low. Conclusions: In our model, a decrease in perfusion during the first 30 min after surgery and a perfusion amp;lt;25 PU at t = 30 min was a predictor for tissue morbidity 72 h after surgery, which indicates that LSCI is a promising technique for perioperative monitoring in reconstructive flap surgery. (C) 2018 Published by Elsevier Ltd on behalf of British Association of Plastic, Reconstructive and Aesthetic Surgeons.

    Ort, förlag, år, upplaga, sidor
    ELSEVIER SCI LTD, 2019
    Nyckelord
    Flap monitoring; Reconstructive surgery; Laser speckle contrast imaging; Partial flap necrosis
    Nationell ämneskategori
    Kirurgi
    Identifikatorer
    urn:nbn:se:liu:diva-156911 (URN)10.1016/j.bjps.2018.11.021 (DOI)000464986400009 ()30711464 (PubMedID)
    Anmärkning

    Funding Agencies|County of Ostergotland

    Tillgänglig från: 2019-05-28 Skapad: 2019-05-28 Senast uppdaterad: 2020-05-02
    4. Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study
    Öppna denna publikation i ny flik eller fönster >>Intraoperative Laser Speckle Contrast Imaging in DIEP Breast Reconstruction: A Prospective Case Series Study
    Visa övriga...
    2020 (Engelska)Ingår i: Plastic and reconstructive surgery. Global open, ISSN 2169-7574, Vol. 8, nr 1, s. e2529-e2529Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Laser speckle contrast imaging (LSCI) is a laser-based perfusion imaging technique that recently has been shown to predict ischemic necrosis in an experimental flap model and predicting healing time of scald burns. The aims were to investigate perfusion in relation to the selected perforator during deep inferior epigastric artery perforator (DIEP) flap surgery, and to evaluate LSCI in assisting of prediction of postoperative complications. METHODS: Twenty-three patients who underwent DIEP-procedures for breast reconstruction at 2 centers were included. Perfusion was measured in 4 zones at baseline, after raising, after anastomosis, and after shaping the flap. The perfusion in relation to the selected perforator and the accuracy of LSCI in predicting complications were analyzed. RESULTS: After raising the flap, zone I showed the highest perfusion (65 ± 10 perfusion units, PU), followed by zone II (58 ± 12 PU), zone III (53 ± 10 PU), and zone IV (45 ± 10 PU). The perfusion in zone I was higher than zone III (P = 0.002) and zone IV (P < 0.001). After anastomosis, zone IV had lower perfusion than zone I (P < 0.001), zone II (P = 0.01), and zone III (P = 0.02). Flaps with areas <30 PU after surgery had partial necrosis postoperatively (n = 4). CONCLUSIONS: Perfusion is highest in zone I. No perfusion difference was found between zones II and III. Perfusion <30 PU after surgery was correlated with partial necrosis. LSCI is a promising tool for measurement of flap perfusion and assessment of risk of postoperative ischemic complications.

    Ort, förlag, år, upplaga, sidor
    Wolters Kluwer, 2020
    Nationell ämneskategori
    Kirurgi
    Identifikatorer
    urn:nbn:se:liu:diva-164324 (URN)10.1097/GOX.0000000000002529 (DOI)32095386 (PubMedID)
    Anmärkning

    32095386[pmid]; PMC7015619[pmcid]

    Tillgänglig från: 2020-03-17 Skapad: 2020-03-17 Senast uppdaterad: 2020-04-09Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 206.
    Åkerlind, Christina
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. FOI, Department Electroopt Syst, SE-58111 Linkoping, Sweden.
    Hallberg, Tomas
    FOI, Department Electroopt Syst, SE-58111 Linkoping, Sweden.
    Eriksson, Johan
    FOI, Department Electroopt Syst, SE-58111 Linkoping, Sweden.
    Kariis, Hans
    FOI, Department Electroopt Syst, SE-58111 Linkoping, Sweden.
    Bergstrom, David
    FOI, Department Electroopt Syst, SE-58111 Linkoping, Sweden.
    Optical polarization - Background and Camouflage2017Ingår i: TARGET AND BACKGROUND SIGNATURES III, SPIE-INT SOC OPTICAL ENGINEERING , 2017, Vol. 10432, artikel-id UNSP 1043204Konferensbidrag (Refereegranskat)
    Abstract [en]

    Polarimetric imaging sensors in the electro-optical region, already military and commercially available in both the visual and infrared, show enhanced capabilities for advanced target detection and recognition. The capabilities arise due to the ability to discriminate between man-made and natural background surfaces using the polarization information of light. In the development of materials for signature management in the visible and infrared wavelength regions, different criteria need to be met to fulfil the requirements for a good camouflage against modern sensors. In conventional camouflage design, the aimed design of the surface properties of an object is to spectrally match or adapt it to a background and thereby minimizing the contrast given by a specific threat sensor. Examples will be shown from measurements of some relevant materials and how they in different ways affect the polarimetric signature. Dimensioning properties relevant in an optical camouflage from a polarimetric perspective, such as degree of polarization, the viewing or incident angle, and amount of diffuse reflection, mainly in the infrared region, will be discussed.

  • 207.
    Åström, Mattias
    et al.
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Diczfalusy, Elin
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Wårdell, Karin
    Linköpings universitet, Institutionen för medicinsk teknik, Biomedicinsk instrumentteknik. Linköpings universitet, Tekniska högskolan.
    Computational analysis of the electric field during deep brain stimulation (oral, invited)2010Konferensbidrag (Refereegranskat)
  • 208.
    Özarslan, Evren
    et al.
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
    Yolcu, Cem
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten.
    Herberthson, Magnus
    Linköpings universitet, Matematiska institutionen, Matematik och tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Knutsson, Hans
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Westin, Carl-Fredrik
    Linköpings universitet, Institutionen för medicinsk teknik, Avdelningen för medicinsk teknik. Linköpings universitet, Tekniska fakulteten. Laboratory for Mathematics in Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA.
    Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal2018Ingår i: Frontiers in Physics, E-ISSN 2296-424X, Vol. 6, s. 1-10, artikel-id 17Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neuronal and glial projections can be envisioned to be tubes of infinitesimal diameter as far as diffusion magnetic resonance (MR) measurements via clinical scanners are concerned. Recent experimental studies indicate that the decay of the orientationally-averaged signal in white-matter may be characterized by the power-law, Ē(q) ∝ q−1, where q is the wavenumber determined by the parameters of the pulsed field gradient measurements. One particular study by McKinnon et al. [1] reports a distinctively faster decay in gray-matter. Here, we assess the role of the size and curvature of the neurites and glial arborizations in these experimental findings. To this end, we studied the signal decay for diffusion along general curves at all three temporal regimes of the traditional pulsed field gradient measurements. We show that for curvy projections, employment of longer pulse durations leads to a disappearance of the q−1 decay, while such decay is robust when narrow gradient pulses are used. Thus, in clinical acquisitions, the lack of such a decay for a fibrous specimen can be seen as indicative of fibers that are curved. We note that the above discussion is valid for an intermediate range of q-values as the true asymptotic behavior of the signal decay is Ē(q) ∝ q−4 for narrow pulses (through Debye-Porod law) or steeper for longer pulses. This study is expected to provide insights for interpreting the diffusion-weighted images of the central nervous system and aid in the design of acquisition strategies.

    Ladda ner fulltext (pdf)
    Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal
2345 201 - 208 av 208
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf