liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
234567 201 - 250 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201.
    Melling, Daniel
    et al.
    Cranfield University, USA.
    Wilson, Stephen
    Cranfield University, USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Altering the structure of polypyrrole and the influence on electrodynamic performance2011Ingår i: Proceedings of SPIE - The International Society for Optical Engineering - Volume 7976: Electroactive Polymer Actuators and Devices (EAPAD), 2011, s. 79760Z-1-79760Z-13Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    A synthetic chemical strategy aimed at altering the cross-linking density of the electropolymerized conjugated polymer polypyrrole has been devised and implemented. The actuation performance of the synthesized material was assessed using a new type of apparatus capable of making rapid, non-contact dynamic measurements. The affect of cross-linking on the actuation performance of polypyrroles, was investigated.

  • 202.
    Melling, Daniel
    et al.
    Cranfield University.
    Wilson, Stephen
    Cranfield University.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska högskolan.
    The Influence of Polypyrrole Structure on Electromechanical Perfomance2011Ingår i: 6th World Conference on Biomimetics, Artificial Muscles and Nanobiology, 2011Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Polypyrrole is electromechanically active and actuates due to ion and solvent movements during redox switching, causing both reversible and irreversible swelling. The swelling of polymers is known to be highly dependent on the degree of cross-linking. Despite this, little research has been undertaken to date on the affect that cross-linking has on the actuation of conjugated polymers. It is likely that there exists a level of cross-linking, that results in optimum actuation performance. An understanding of this relationship, would allow actuators to be designed that are capable of greater movement, operating speeds and force generation. We have implemented novel synthetic strategies aimed at altering the degree of cross-linking of electrosynthesised polypyrrole. The actuating performance of these materials has been assessed using new apparatus capable of making non-contact dynamic measurements. After highlighting a number of applications that use the anisotropic strain of PPy(DBS) e.g. the mechanostimulation of cells, we will describe our synthetic strategies, measurement setup and results.

  • 203.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jafari, Mohammad Javad
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Ederth, Thomas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Oxygen-induced doping on reduced PEDOT2017Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 9, s. 4404-4412Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) has shown promise as air electrode in renewable energy technologies like metal-air batteries and fuel cells. PEDOT is based on atomic elements of high abundance and is synthesized at low temperature from solution. The mechanism of oxygen reduction reaction (ORR) over chemically polymerized PEDOT: Cl still remains controversial with eventual role of transition metal impurities. However, regardless of the mechanistic route, we here demonstrate yet another key active role of PEDOT in the ORR mechanism. Our study demonstrates the decoupling of conductivity (intrinsic property) from electrocatalysis (as an extrinsic phenomenon) yielding the evidence of doping of the polymer by oxygen during ORR. Hence, the PEDOT electrode is electrochemically reduced (undoped) in the voltage range of ORR regime, but O-2 keeps it conducting; ensuring PEDOT to act as an electrode for the ORR. The interaction of oxygen with the polymer electrode is investigated with a battery of spectroscopic techniques.

  • 204.
    Mitraka, Evangelia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Douheret, O.
    University of Mons UMons, Belgium.
    Leclere, P.
    University of Mons UMons, Belgium.
    Nilsson, M.
    Acreo AB, Sweden.
    Andersson Ersman, P.
    Acreo AB, Sweden.
    Gustafsson, G.
    Acreo AB, Sweden.
    Lazzaroni, R.
    University of Mons UMons, Belgium.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Solution processed liquid metal-conducting polymer hybrid thin films as electrochemical pH-threshold indicators2015Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 3, nr 29, s. 7604-7611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A global and accurate mapping of the environment could be achieved if sensors and indicators are mass-produced at low cost. Printed electronics using polymeric (semi) conductors offer a platform for such sensor/indicator based circuits. Herein, we present the material concept for an electrochemical pH-threshold indicator based on a printable hybrid electrode which comprises a liquid metal alloy (GaInSn) embedded in a conducting polymer matrix (PEDOT). This hybrid electrode displays a large variation in open circuit potential versus pH in an electrochemical cell, which when connected to the gate of an electrochemical transistor leads to a dramatic change in the drain current in a narrow range of pH.

  • 205.
    Méhes, Gábor
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Mulla, Yusuf
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Res Inst Sweden, Sweden.
    Che, Canyan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Res Inst Sweden, Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Solar Heat-Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSS-Nanocellulose Electrodes2020Ingår i: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, artikel-id 1900100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Energy harvesting from photosynthetic membranes, proteins, or bacteria through bio-photovoltaic or bio-electrochemical approaches has been proposed as a new route to clean energy. A major shortcoming of these and solar cell technologies is the underutilization of solar irradiation wavelengths in the IR region, especially those in the far IR region. Here, a biohybrid energy-harvesting device is demonstrated that exploits IR radiation, via convection and thermoelectric effects, to improve the resulting energy conversion performance. A composite of nanocellulose and the conducting polymer system poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used as the anode in biohybrid cells that includes thylakoid membranes (TMs) and redox mediators (RMs) in solution. By irradiating the conducting polymer electrode by an IR light-emitting diode, a sixfold enhancement in the harvested bio-photovoltaic power is achieved, without compromising stability of operation. Investigation of the output currents reveals that IR irradiation generates convective heat transfer in the electrolyte bulk, which enhances the redox reactions of RMs at the anode by suppressing diffusion limitations. In addition, a fast-transient thermoelectric component, originating from the PEDOT:PSS-nanocellulose-electrolyte interphase, further increases the bio-photocurrent. These results pave the way for the development of energy-harvesting biohybrids that make use of heat, via IR absorption, to enhance energy conversion efficiency.

  • 206.
    Nilsson, David
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Chen, Miaoxiang
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Andersson, Peter
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Svensson, Per-Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Organic Electrochemical Transistors, Based on Electrolytes-Conducting Polymer Bilayers2001Ingår i: Material Reseach Socity Fall Meeting,2001, 2001Konferensbidrag (Refereegranskat)
  • 207.
    Nilsson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Chen, Miaoxiang
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kugler, Thomas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Remonen, Tommi
    ACREO Institute, Norrköping, Sweden.
    Armgarth, Mårten
    ACREO Institute, Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Bi-stable and dynamic current modulation in electrochemical organic transistors2002Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 14, nr 1, s. 51-54Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Novel electrochemical transistors, based on the conductive polymer PEDOT, operating at driving voltages of only a few volts in bulk material, and with little demand on substrate planarity, are described by the authors. The underlying polymer ion pair PEDOT:PSS is conductive in both oxidized and reduced state. Two transistor architectures, a bi-stable and a dynamic transistor (the first electrochemical specimen of its kind) with an on/off ratio of 105 and 200 Hz modulation speed, were realized.

  • 208.
    Nilsson, David
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Chen, Miaoxiang
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Svensson, Per-Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    All-organic electrochemical device with bi-stable and dynamic functionality2003Ingår i: SPIE,2003, Bellingham: SPIE Publication Service , 2003, s. 468-Konferensbidrag (Refereegranskat)
  • 209.
    Nilsson, David
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Chen, Miaoxiang
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Svensson, Per-Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi.
    Kugler, Thomas
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    All-organic electrochemical device with bi-stable and dynamic functionality2003Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    We will present organic electrochemical transistors that show both bi-stable and dynamic current modulation. In electrochemical devices, both ions and electrons are used as charge carriers. The device is all-organic and has been realized using common printing techniques, such as screen-printing. As the substrate, both cellulose-based paper and polyester foil have been used. PEDOT:PSS (poly(3,4-ethylenedioxythiophene):Poly(styrene sulphonic acid)) is used as the conducting and electrochemical active material. PEDOT:PSS is switched between different redox states, corresponding to semi-conducting and conducting states. Operating voltages is below 2V and on/off ratios up to 105 have been reached (typical value is 5000). The operation of these devices does not depend on any critical dimensions, typical dimensions used are around 200 microns. With a certain geometrical design the dynamic transistor can be employed for frequency doubling. For the bi-stable transistor the modulation of the current is done by direct electronic contact, compared to the dynamic transistor that is modulated by induction of electrochemistry. The electrolyte in these devices can either be solidified or a liquid. The bi-stable device in combination with a layer of Nafion® as electrolyte demonstrates humidity sensor functionality. Since substrates based on paper and common printing techniques can be used for fabrication, this give rise to an environmental friendly and non-expensive device setup.

  • 210.
    Nilsson, David
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    All organic printable logic circuits on paper substrates2004Ingår i: Material Research Society Spring Meeting,2004, 2004Konferensbidrag (Refereegranskat)
  • 211.
    Nilsson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    The electrochemical transistor and circuit design considerations2005Ingår i: Proceedings of the 2005 European Conference on Circuit Theory and Design, IEEE conference proceedings, 2005, s. III/349-III/352Konferensbidrag (Refereegranskat)
    Abstract [en]

    The electrochemical transistor is presented from a functional point-of-view. It is shown that this transistor has characteristics that are similar to p-channel depletion-mode MOSFET devices. Electrical design rules for proper operation are given. Based on these rules, we show how logical circuits such as inverters and gates can be constructed.

  • 212.
    Nilsson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kugler, Thomas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Svensson, Per-Olof
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Bergren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper2002Ingår i: Sensors and Actuators B: Chemical, ISSN 0925-4005, Vol. 86, nr 2-3, s. 193-197Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel transducer concept based on an organic electrochemical transistor is described. Its function as an integral part of an air humidity sensor, in which the proton conductor Nafion acts as sensitivity layer has been realised. The resulting electrochemical sensor–transistor, based on the conducting polymer PEDOT:PSS, operates at low voltages, on the order of 1 V. The sensor response, measured as the drain–source current of the electrochemical transistor, versus air humidity, has a close to exponential behaviour. The sensor can be realised using exclusively printing and coating fabrication techniques. Here, we demonstrate devices realised on plastic foils and on ordinary coated fine paper substrates. This organic electrochemical transducer promise future applications such as all-integrated low-cost sensor tags for single-use chemical sensors.

  • 213.
    Nilsson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik. Linköpings universitet, Tekniska högskolan.
    Electrochemical Logic Circuits2005Ingår i: Advanced Materials, ISSN 0935-9648, Vol. 17, nr 3, s. 353-358Artikel i tidskrift (Refereegranskat)
  • 214.
    Oladiran Bamgbopa, Musbadeen
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    RISE Acreo, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Understanding the characteristics of conducting polymer-redox biopolymer supercapacitors2019Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, nr 41, s. 23973-23980Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The growth of renewable energy production has sparked a huge demand for cheap and large-scale electrical storage solutions. Organic supercapacitors and batteries are envisioned as one, among several, candidates for this task due to the great abundance of their constituent materials. In particular, the class of supercapacitors based on conjugated polymer-redox biopolymer composites are of great interest, since they combine the benefit of high electrical conductivity of the conducting polymers with the low cost and high specific capacitance of redox biopolymers. The optimization of such complex systems is a grand challenge and until now there have been a lack of models available to ease that task. Here, we present a novel model that combines the charge transport and impedance properties of conducting polymers with the electrochemical characteristics of redox polymers. The model reproduces a wide range of experimental data and elucidates the coupling of several critical processes within these supercapacitors, such as the double-layer capacitance, redox kinetics and dissolution/release of the redox polymer to the electrolyte. Further, the model also predicts the dependencies of the power and energy densities on the electrode composition. The developed model shows how organic supercapacitors can be analyzed beyond archetypical equivalent circuit models and thus constitutes a promising tool for further advancements and optimization within the field of research of green energy storage technology.

  • 215.
    Ostrick, J. R.
    et al.
    Bell Laboratories, Murray Hill, New Jersey .
    Dodabalapur, A.
    Bell Laboratories, Murray Hill, New Jersey .
    Torsi, L.
    Bell Laboratories, Murray Hill, New Jersey .
    Lovinger, A, J.
    Bell Laboratories, Murray Hill, New Jersey .
    Kwock, E. W.
    Bell Laboratories, Murray Hill, New Jersey .
    Miller, T. M.
    Bell Laboratories, Murray Hill, New Jersey .
    Galvin, M.
    Bell Laboratories, Murray Hill, New Jersey .
    Berggren, Magnus
    Bell Laboratories, Murray Hill, New Jersey .
    Katz, H. E.
    Bell Laboratories, Murray Hill, New Jersey .
    Conductivity-type anisotropy in molecular solids1997Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 81, nr 10, s. 6804-6808Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thin polycrystalline films of perylenetetracarboxylic dianyhydride (PTCDA), an organic molecular solid, exhibits substantial anisotropies in its electronic transport properties. Only electrons transport in the directions along molecular planes, while mainly holes transport in the direction normal to molecular planes. A series of measurements on both field effect transistors with PTCDA active layers and light emitting diodes with PTCDA transport layers documents the anisotropy seen in the electronic transport in thin films of PTCDA. (C) 1997 American Institute of Physics.

  • 216.
    Persson, Kristin
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Lönnqvist, Susanna
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. ETH, Switzerland.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, David
    Acreo Swedish ICT AB, Sweden.
    Kratz, Gunnar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Hand- och plastikkirurgiska kliniken US.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Matrix Addressing of an Electronic Surface Switch Based on a Conjugated Polyelectrolyte for Cell Sorting2015Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, nr 45, s. 7056-7063Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Spatial control of cell detachment is potentially of great interest when selecting cells for clonal expansion and in order to obtain a homogeneous starting population of cells aimed for tissue engineering purposes. Here, selective detachment and cell sorting of human primary keratinocytes and fibroblasts is achieved using thin films of a conjugated polymer. Upon electrochemical oxidation, the polymer film swells, cracks, and finally detaches taking cells cultured on top along with it. The polymer can be patterned using standard photolithography to fabricate a cross-point matrix with polymer pixels that can be individually addressed and thus detached. Detachment occurs above a well-defined threshold of +0.7 V versus Ag/AgCl, allowing the use of a relatively simple and easily manufactured passive matrix-addressing configuration, based on a resistor network, to control the cell-sorting device.

  • 217.
    Persson, Kristin M
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Sawatdee, Anurak
    Department of Printed Electronics, Acreo Swedish ICT AB, Norrköping, Sweden.
    Nilsson, David
    Department of Printed Electronics, Acreo Swedish ICT AB, Norrköping, Sweden.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Electronic control over detachment of a self-doped water-soluble conjugated polyelectrolyte2014Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, nr 21, s. 6257-6266Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Water-soluble conducting polymers are of interest to enable more versatile processing in aqueous media as well as to facilitate interactions with biomolecules. Here, we report a substituted poly(3,4-ethylenedioxythiophene) derivative (PEDOT-S:H) that is fully water-soluble and selfdoped. When electrochemically oxidizing a PEDOT-S:H thin film, the film detaches from the under-laying electrode. The oxidation of PEDOT-S:H starts with an initial phase of swelling followed by cracking before it finally disrupts and detaches from the electrode. We investigated the detachment mechanism and found that parameters such as the size, charge and concentration of ions in the electrolyte, the temperature and also the pH influence the characteristics of detachment. When oxidizing PEDOT-S:H, the positively charged polymer backbone is balanced by anions from the electrolyte solution and also by the sulphonate groups on the side chains (more self-doping). From our experiments, we conclude that detachment of the PEDOT-S:H film upon oxidation occurs in part due to swelling caused by an inflow of solvated anions and associated water, and in part due to rearrangements and strain within the film, caused by more self-doping. We believe that PEDOT-S:H detachment can be of interest in a number of different applications, including addressed and active control of the release of materials such as biomolecules and cell cultures.

  • 218.
    Persson, Kristin M
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Karlsson, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    Svennersten, Karl
    Karolinska Institutet.
    Löffler, Susanne
    Karolinska Institutet.
    Jager, Edwin W H
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Konradsson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Organisk Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Electronic control of cell detachment using a self-doped conducting polymer2011Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 23, nr 38, s. 4403-4408Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An electronic detachment technology based on thin films of a poly(3,4-ethylene-dioxythiophene) derivative is evaluated for controlled release of human epithelial cells. When applying a potential of 1 V, the redox-responsive polymer films detach and disintegrate and at the same time release cells cultured on top in the absence of any enzymatic treatment with excellent preservation of membrane proteins and cell viability.

  • 219.
    Persson, Kristin M
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Lönnqvist, Susanna Lönnqvist
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Department of Printed Electronics, Acreo Swedish ICT AB, Norrköping, Sweden.
    Kratz, Gunnar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Sinnescentrum, Hand- och plastikkirurgiska kliniken US.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Selective Detachment of Human Primary Keratinocytes and Fibroblasts Using an Addressable Conjugated Polymer Matrix2014Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Conjugated polymers have been used in several applications for electronic control of cell cultures over the last years. We have shown detachment of human endothelial cells using a thin film of a self-doped water-soluble conjugated polymer. Upon electrochemical oxidation, the film swells, cracks and finally detaches taking cells cultured on top along with it. The polymer can be patterned using standard photolithography. The detachment only occurs above a threshold potential of +0.7 V and this fact has been used to create a simple actively addressed matrix, based on a resistor network placed in an encapsulated back plane. The matrix has individually detachable pixels. In this paper we have evaluated detachment of human primary keratinocytes and fibroblasts using PEDOT-S:H. In addition, we have studied effects of serum proteins, added as nutrients to the cell culture medium, on the detachment properties. It was found that at prolonged incubation times protein adhesion effectively stopped the detachment. Using shorter incubation times before detachment, both keratinocytes and fibroblasts can be detached using a regular planar device as well as the matrix device for selective detachment. Spatial control of detachment could be of use when selecting cells for clonal expansion and in order to obtain a homogeneous starting population of cells aimed for tissue engineering purposes.

  • 220.
    Petsagkourakis, Ioannis
    et al.
    University of Bordeaux, France.
    Pavlopoulou, Eleni
    Institute Polytech Bordeaux Bordeaux INP, France.
    Cloutet, Eric
    University of Bordeaux, France.
    Fang Chen, Yan
    University of Bordeaux, France.
    Liu, Xianjie
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Dilhaire, Stefan
    University of Bordeaux, France.
    Fleury, Guillaume
    University of Bordeaux, France.
    Hadziioannou, Georges
    University of Bordeaux, France.
    Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism2018Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 52, s. 335-341Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Room temperature flexible heat harvesters based on conducting polymers are ideally suited to cover the energy demands of the modern nomadic society. The optimization of their thermoelectric efficiency is usually sought by tuning the oxidation levels of the conducting polymers, even if such methodology is detrimental to the Seebeck coefficient (S) as both the Seebeck coefficient and the electrical conductivity (sigma) are antagonistically related to the carrier concentration. Here we report a concurrent increase of S and sigma and we experimentally derive the dependence of Seebeck coefficient on charge carrier mobility for the first time in organic electronics. Through specific control of the conducting polymer synthesis, we enabled the formation of a denser percolation network that facilitated the charge transport and the thermodiffusion of the charge carriers inside the conducting polymer layer, while the material shifted from a Fermi glass towards a semi-metal, as its crystallinity increased. This work sheds light upon the origin of the thermoelectric properties of conducting polymers, but also underlines the importance of enhanced charge carrier mobility for the design of efficient thermoelectric polymers.

  • 221.
    Poxson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Bonisoli, Alberto
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Ist Italiano Tecnol, Italy; St Anna Sch Adv Studies, Italy.
    Linderhed, Ulrika
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Res Inst Sweden, Sweden.
    Abrahamsson, Tobias
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Matthiesen, Isabelle
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Capillary-Fiber Based Electrophoretic Delivery Device2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 15, s. 14200-14207Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple one-pot fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including large substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

    Publikationen är tillgänglig i fulltext från 2020-03-27 15:15
  • 222.
    Poxson, David
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Karady, Michal
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Alkattan, Aziz Yousif Aziz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Gustavsson, Anna
    Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
    Doyle, Siamsa M.
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Robert, Stéphanie
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Ljung, Karin
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Grebe, Markus
    Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden; Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Golm, Germany.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Regulating plant physiology with organic electronics.2017Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 18, s. 4597-4602Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  • 223.
    Qian, Deping
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Liu, Bo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Himmelberger, Scott
    Stanford University, CA 94305 USA.
    Linares, Mathieu
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk kemi. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Muller, Christian
    Chalmers, Sweden.
    Zaifei, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Salleo, Alberto
    Stanford University, CA 94305 USA.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zou, Yingping
    Central S University, Peoples R China.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells2015Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, nr 48, s. 24349-24357Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In conjugated polymers and small molecules of organic solar cells, aggregation induced by intermolecular interactions governs the performance of photovoltaics. However, little attention has been paid to the connection between molecular structure and aggregation within solar cells based on soluble small molecules. Here we demonstrate modulation of intermolecular aggregation of two synthesized molecules through heteroatom substitution to develop an understanding of the role of aggregation in conjugated molecules. Molecule 1 (M1) based on 2-ethylhexyloxy-benzene substituted benzo[1,2-b:4,5-b]dithiophene (BDTP) and diketopyrrolopyrrole (DPP) displays strong aggregation in commonly used organic solvents, which is reduced in molecule 2 (M2) by facile oxygen atom substitution on the BDTP unit confirmed by absorption spectroscopy and optical microscopy, while it successfully maintains molecular planarity and favorable charge transport characteristics. Solar cells based on M2 exhibit more than double the photocurrent of devices based on M1 and yield a power conversion efficiency of 5.5%. A systematic investigation of molecular conformation, optoelectronic properties, molecular packing and crystallinity as well as film morphology reveals structure dependent aggregation responsible for the performance difference between the two conjugated molecules.

  • 224.
    Riera-Galindo, Sergi
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Orbelli Biroli, Alessio
    CNR, Italy.
    Forni, Alessandra
    CNR, Italy.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Tessore, Francesca
    Univ Milan, Italy.
    Pizzotti, Maddalena
    Univ Milan, Italy.
    Pavlopoulou, Eleni
    Univ Bordeaux, France.
    Solano, Eduardo
    ALBA Synchrotron Light Source, Spain.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wang, Gang
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Ruoko, Tero-Petri
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Kemerink, Martijn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Komplexa material och system. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    di Carlo, Gabriele
    Univ Milan, Italy.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Impact of Singly Occupied Molecular Orbital Energy on the n-Doping Efficiency of Benzimidazole Derivatives2019Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 41, s. 37981-37990Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigated the impact of singly occupied molecular orbital (SOMO) energy on the n-doping efficiency of benzimidazole derivatives. By designing and synthesizing a series of new air-stable benzimidazole-based dopants with different SOMO energy levels, we demonstrated that an increase of the dopant SOMO energy by only similar to 0.3 eV enhances the electrical conductivity of a benchmark electron-transporting naphthalenediimide-bithiophene polymer by more than 1 order of magnitude. By combining electrical, X-ray diffraction, and electron paramagnetic resonance measurements with density functional theory calculations and analytical transport simulations, we quantitatively characterized the conductivity, Seebeck coefficient, spin density, and crystallinity of the doped polymer as a function of the dopant SOMO energy. Our findings strongly indicate that charge and energy transport are dominated by the (relative) position of the SOMO level, whereas morphological differences appear to play a lesser role. These results set molecular-design guidelines for next-generation n-type dopants.

  • 225.
    Rivnay, Jonathan
    et al.
    Northwestern Univ, IL 60208 USA.
    Inal, Sahika
    King Abdullah Univ Sci and Technol KAUST, Saudi Arabia.
    Salleo, Alberto
    Stanford Univ, CA 94305 USA.
    Owens, Roisin M.
    Univ Cambridge, England.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Univ Stellenbosch, South Africa.
    Malliaras, George G.
    Univ Cambridge, England.
    Organic electrochemical transistors2018Ingår i: NATURE REVIEWS MATERIALS, ISSN 2058-8437, Vol. 3, nr 2, artikel-id 17086Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  • 226.
    Robinson, Linda
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Hentzell, Anders
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Isaksson, Joakim
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Electrochemical wettability switches gate aqueous liquids in microfluidic systems2006Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 6, s. 1277-1278Artikel i tidskrift (Refereegranskat)
    Abstract [en]

     We demonstrate a simple low-voltage technique for gating the flow of aqueous liquids in microfluidic systems employing the electrochemically-controlled surface energy of the conjugated polymer poly(3-hexylthiophene).

  • 227.
    Robinson, Linda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Isaksson, Joakim
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Electrochemical Control of Surface Wettability of poly(3-alkylthiophenes)2006Ingår i: Surface Science, ISSN 0039-6028, Vol. 600, nr 11, s. L148-L152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effect of n-alkyl side-chain length on water contact angle with films in neutral and electrochemically doped states are studied. Increasing the side-chain from butyl to hexyl to octyl increases the contact angle of water on conjugated polymer films in both electrochemical states, but decreases the difference in angle between the states in the same film. Devices based on these films have potential application in, for example, guiding water and other liquids through microfluidic channels in lab-on-a-chip and micro-electro-mechanical (MEM) applications.

  • 228.
    Robinson, Nathaniel D.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Shin, Joon-Ho
    Umeå University.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Edman, Ludvig
    Umeå University.
    Doping front propagation in light-emitting electrochemical cells2006Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 74, nr 155210Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Observations of the expansion of the p- and n-doped regions in planar (lateral) polymer light-emitting electrochemical cells with large (mm-sized) interelectrode gaps driven with 5  to  50  V have inspired a model describing the doping front propagation. We find that the propagation is limited by the movement of ions in the electronically insulating region between the p- and n-doped regions. Two consequences of an ion-limited front propagation are that the doping fronts accelerate as they approach each other, and that fingerlike protrusions are formed, particularly at larger drive voltages.

  • 229.
    Robinson, Nathaniel D
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Printing Organic Electronics on Flexible Substrates2007Ingår i: Handbook of Conducting Polymers, 2 Volume Set / [ed] T. A. Skotheim and J. Reynolds, CRC Press, 2007, 3, s. -1680Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Learn how recent advances are fueling new possibilities in textiles, optics, electronics, and biomedicine!

    As the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymershas been there to document and celebrate these changes along the way. Now split into two volumes, this new edition continues to provide the expertise of world-renowned contributors while maintaining the clear format of previous editions as it incorporates the latest developments in both the fundamental science and practical applications of polymers.

    The first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind π-conjugated materials and electron–lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.

    Picking up where the first volume left off, the second volume concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators.

    As the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.

  • 230.
    Robinson, Nathaniel D
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Svensson, Per-Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Nilsson, David
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Electrochromism as a tool for understanding the electrochemical polymer transistor2005Ingår i: MRS Fall Meeting,2005, 2005Konferensbidrag (Refereegranskat)
  • 231.
    Robinson, Nathaniel D
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Svensson, Per-Olof
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Nilsson, David
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    On the Current Saturation Observed in Electrochemical Polymer Transistors2006Ingår i: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 153, s. 39-44Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemical transistors based on conjugated polymers are proposed as a path to printed electronics on paper. The electrochemical doping/dedoping of conjugated polymers clearly plays a role in the current vs potential (I-V) characteristics of these devices, however, the mechanism of current saturation (often referred to as pinch-off) is not clearly understood, and the relationship between electrochemical devices and field-effect transistors is unclear. This paper offers a semiempirical model of the steady-state behavior of electrochemical transistors and compares this model with experimental observations of potential and electrochromic measurements within a device to illustrate the science behind the functionality observed. ©2006 The Electrochemical Society

  • 232. Roman, L.S.
    et al.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Polymer diodes with high rectification1999Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 75, s. 3557-3557Artikel i tidskrift (Refereegranskat)
  • 233.
    Said, Elias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Andersson, Peter
    ACREO AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Electrochromic display cells driven by an electrolyte-gated organic field-effect transistor2009Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 10, nr 6, s. 1195-1199Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Monolithic integration of an electrolyte-gated organic field-effect transistor (OFET) and an organic electrochromic pixel is reported. Thanks to its versatility, the polyanionic proton conductor poly(styrenesulfonic acid) (PSSH) can serve both as the gate “insulator” in OFETs and as the electrolyte in electrochromic display pixels. Employing identical materials in both the display cells and in the driver transistors is a necessary prerequisite to achieve robust displays possible to manufacture on flexible carriers using printing tools. Smart pixels combining depletion mode electrochemical transistors and electrochromic displays have been reported in the past. Here, an enhancement mode OFET as the driver enables relatively shorter updating times and much simpler addressing and updating schemes.

  • 234.
    Said, Elias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Elhag, Sami
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film2006Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 89, nr 14, s. 143507-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A polyanionic proton conductor, named poly(styrenesulfonic acid) (PSSH), is used to gate an organic field-effect transistor (OFET) based on poly(3-hexylthiophene) (P3HT). Upon applying a gate bias, large electric double layer capacitors (EDLCs) are formed quickly at the gate-PSSH and P3HT-PSSH interfaces due to proton migration in the polyelectrolyte. This type of robust transistor, called an EDLC-OFET, displays fast response (<1  ms) and operates at low voltages (<1  V). The results presented are relevant for low-cost printed polymer electronics.

  • 235.
    Said, Elias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Oscar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Effects of the Ioinc Currents in Electrolyte-gated Organic Field-Effect Transistors2008Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 18, nr 21, s. 3529-3536Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Polyelectrolytes are promising materials as gate dielectrics in organic field-effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10-500 µF cm-2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in 50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.

  • 236.
    Said, Elias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Oscar
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Role of the ionic currents in electrolyte-gated organic field effect transistorsManuskript (Övrig (populärvetenskap, debatt, mm))
  • 237.
    Said, Elias
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Svensson, Per-Olof
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Visualizing the Electric Field in Electrolytes Using Electrochromism from a Conjugated Polymer2005Ingår i: Electrochemical and solid-state letters, ISSN 1099-0062, E-ISSN 1944-8775, Vol. 8, nr 2, s. H12-H16Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochromic polymer films, employed as display elements, smart windows, and the base material for electrochemical electronic devices, can be addressed solely through ionic transport via an electrolyte, without direct electronic connection as typically employed in the above examples. We present a demonstration of induced electrochromism to quantify the direction and magnitude of the electric field in an electrolyte using poly(3,4-ethylenedioxythiophene) doped with polystyrene-sulfonate. After further development, this simple yet effective technique will be potentially applicable for optimizing batteries and fuel cells, as the active detection element in electrochemical sensors and as a detector in ionic separation in electrolytes (electrophoresis).

  • 238.
    Salto, Carmen
    et al.
    Karolinska Institute.
    Saindon, Emilien
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Bolin, Maria
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kanciurzewska, Anna
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tengvall, Pentti
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik.
    Arenas, Ernest
    Karolinska Institute.
    Berggren , Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Control of Neural Stem Cell Adhesion and Density by an Electronic Polymer Surface Switch2008Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, nr 24, s. 14133-14138Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adhesion is an essential parameter for stem cells. It regulates the overall cell density along the carrying surface, which further dictates the differentiation scheme of stem cells toward a more matured and specified population as well as tissue. Electronic control of the seeding density of neural stem cells (c17.2) is here reported. Thin electrode films of poly(3,4-ethylenedioxythiophene) (PEDOT):Tosylate were manufactured along the floor of cell growth dishes. As the oxidation state of the conjugated polymer electrodes was controlled, the seeding density could be varied by a factor of 2. Along the oxidized PEDOT:Tosylate-electrodes, a relatively lower density of, and less tightly bonded, human serum albumin (HSA) was observed as compared to reduced electrodes. We found that this favors adhesion of the specific stem cells studied. Surface analysis experiments, such as photoelectron spectroscopy, and water contact angle measurements, were carried out to investigate the mechanisms responsible for the electronic control of the seeding density of the c17.2 neural stem cells. Further, our findings may provide an opening for electronic control of stem cell differentiation.

  • 239.
    Sandberg, Mats
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ICT, Norrköping, Sweden; .
    Tordera, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, Norrköping, Sweden.
    Dedic, Dina
    Innventia AB, Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Photoconductive zinc oxide-composite paper by pilot paper machine manufacturing2016Ingår i: Flexible and printed electronics, ISSN 2058-8585, Vol. 1, nr 4, artikel-id 044003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smartmaterials can be used for awide variety of applications, including sensing and energy harvesting.Implementation of smartmaterials in large area devices requires scalablemanufacturing. The use ofpaper-making techniques would offer an enormous production capacity, allowing for low-cost andlarge-scalemanufacturing. In thisworkwe present a successful pilot scale papermachinemanufacturingof functional composite papers (100mmin−1 with aweb width of 30 cm) based on cellulose fibres andcommercial tetrapodal zinc oxidemicrowhiskers (ZnO-Ts).Carbon electrodes could successfully beprinted on the paper to form complete electronic devices where the paper itself is the active material.Thisenabled development of aZnO-composite paper photosensor,where we characterized its stability,sensitivity and speed. The devices show excellent photosensing properties over awide range of lightirradiances (0.01–1Sun), including short response times (∼10 s) and long-term stability. Under simulatedsunlight and a bias voltage of 1 V, small (0.5 cm2) two-probe interdigitated photosensor devices provided12 μAphotocurrent.Under the same conditions, four-probe measurements of the composite papershowed a sheet resistance of 6.9·107Ω/sq. Four-probe measurements also demonstrated that the paperconductivity varies linearlywith light irradiance. To the best of ourknowledge, this is the first example ofpilot paper machine production of an optoelectronic paper, demonstrating the potential for large-scalepapermanufacturing of active smart paper from low-cost industrial bulk materials.

  • 240.
    Seitanidou, Maria
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Franco-Gonzalez, Juan Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Arbring Sjöström, Theresia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    pH Dependence of γ-Aminobutyric Acid Iontronic Transport2017Ingår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, nr 30, s. 7284-7289Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The organic electronic ion pump (OEIP) has been developed as an “iontronic” tool for delivery of biological signaling compounds. OEIPs rely on electrophoretically “pumping” charged compounds, either at neutral or shifted pH, through an ion-selective channel. Significant shifts in pH lead to an abundance of H+ or OH–, which are delivered along with the intended substance. While this method has been used to transport various neurotransmitters, the role of pH has not been explored. Here we present an investigation of the role of pH on OEIP transport efficiency using the neurotransmitter γ-aminobutyric acid (GABA) as the model cationic delivery substance. GABA transport is evaluated at various pHs using electrical and chemical characterization and compared to molecular dynamics simulations, all of which agree that pH 3 is ideal for GABA transport. These results demonstrate a useful method for optimizing transport of other substances and thus broadening OEIP applications.

  • 241.
    Seitanidou, Maria S
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Blomgran, Robert
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi, infektion och inflammation. Linköpings universitet, Medicinska fakulteten.
    Pushpamithran, Giggil
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för mikrobiologi, infektion och inflammation. Linköpings universitet, Medicinska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Modulating Inflammation in Monocytes Using Capillary Fiber Organic Electronic Ion Pumps2019Ingår i: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, nr 19, artikel-id 1900813Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An organic electronic ion pump (OEIP) delivers ions and drugs from a source, through a charge selective membrane, to a target upon an electric bias. Miniaturization of this technology is crucial and will provide several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. To miniaturize OEIPs, new configurations have been developed based on glass capillary fibers filled with an anion exchange membrane (AEM). Fiber capillary OEIPs can be easily implanted in proximity to targeted cells and tissues. Herein, the efficacy of such a fiber capillary OEIP for modulation of inflammation in human monocytes is demonstrated. The devices are located on inflammatory monocytes and local delivery of salicylic acid (SA) is initiated. Highly localized SA delivery results in a significant decrease in cytokine (tumor necrosis factor alpha and interleukin 6) levels after lipopolysaccharide stimulation. The findings-the first use of such capillary OEIPs in mammalian cells or systems-demonstrate the utility of the technology for optimizing transport and delivery of different therapeutic substances at low concentrations, with the benefit of local and controlled administration that limits the adverse effect of oral/systemic drug delivery.

    Publikationen är tillgänglig i fulltext från 2020-09-10 13:45
  • 242.
    Seitanidou, Maria S
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Overcoming transport limitations in miniaturized electrophoretic delivery devices2019Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 19, nr 8, s. 1427-1435Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and iontronic technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

  • 243.
    Simon, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Larsson, K
    Karolinska Institutet, Inst för Neurovetenskap.
    Kurup, Sinduh
    Karolinska Institutet, Inst för Neurovetenskap.
    Richter-Dahlfors, Agneta
    Karolinska Institutet, Inst för Neurovetenskap.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    An Organic Electronic Ion Pump to Regulate Intracellular Signaling at High Spatiotemporal Resolution2009Ingår i: Transducers 2009: The 15th international conference on Solid-State Sensor, Actuators and Microsystems, IEEE conference proceedings, 2009, s. 1790-1793Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Current technologies for cell stimulation suffer from a variety of drawbacks. Indeed, precise, localized, and minimally disruptive machine-to-cell interfacing is difficult to achieve. Here we present the organic electronic ion pump (OEIP), a polymer-based delivery system exhibiting high spatial, temporal, and dosage precision. Based on electrophoretic transport of positively charged species, the OEIP can deliver - with high precision - an array of biologically relevant substances without fluid flow, thus eliminating convective disturbance of the target system's environment. We discuss our results to date, including oscillatory delivery profiles and stimulation of neuronal cells in vitro, as well as our ongoing work.

  • 244.
    Simon, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Karin
    Karolinska Institutet.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Organic Electronics toward Artificial Neurons2009Ingår i: BIOforum Europe, ISSN 1611-597X, Vol. 11-12, s. 17-19Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    When nerve cells are exposed to chemical stimuli, an electric potential is triggered. Migrating along the axon, the signal reaches the synapse, where it is converted into the release of neurotransmitters. This mode of cell-to-cell communication inspired us to develop an artificial nerve cell based on conducting polymers. Its use for precise stimulation of nerve cells in vivo illustrates its potential as an implantable device for automated correction of malfunctioning signaling pathways in pathophysiological conditions.

  • 245.
    Simon, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    LARSSON, Karin C.
    Karolinska Institutet.
    BERGGREN, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    RICHTER-DAHLFORS, Agneta
    Karolinska Institutet.
    Precise Neurotransmitter-Mediated Communication with Neurons In Vitro and In Vivo Using Organic Electronics2010Ingår i: Journal of Biomechanical Science and Engineering, ISSN 1880-9863, Vol. 5, nr 3, s. 208-217Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Attempts to interface human-made systems with neural systems are commonly based on direct electrical stimulation or exogenous drug delivery. Few techniques have attempted to mimic neurons' own combination of electronic and chemical signaling with endogenous substances. We demonstrate below the organic electronic ion pump (OEIP), a technology which aims to accomplish just that: electronically controlled delivery of ions, neurotransmitters and other bio-substances. Based on electrophoretic migration through an organic electronic system, delivery is diffusive and non-convective, that is, without fluid flow. Various experiments involving OEIP technology are reviewed, culminating in its use, in an encapsulated form, to modulate sensory function in a living animal. As a first step towards an “artificial neuron”, this technology has significant potential for both neural system interfacing and in the treatment of various neurological disorders.

  • 246.
    Simon, Daniel
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Karolinska Institute, Sweden; Karolinska Institute, Sweden.
    Larsson, Karin C.
    Karolinska Institute, Sweden; Karolinska Institute, Sweden.
    Nilsson, David
    Acreo Swedish ICT AB, Sweden.
    Burstrom, Gustav
    Karolinska Institute, Sweden; Karolinska Institute, Sweden.
    Galter, Dagmar
    Karolinska Institute, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Richter-Dahlfors, Agneta
    Karolinska Institute, Sweden; Karolinska Institute, Sweden.
    An organic electronic biomimetic neuron enables auto-regulated neuromodulation2015Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 71, s. 359-364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Current therapies for neurological disorders are based on traditional medication and electric stimulation. Here, we present an organic electronic biomimetic neuron, with the capacity to precisely intervene with the underlying malfunctioning signalling pathway using endogenous substances. The fundamental function of neurons, defined as chemical-to-electrical-to-chemical signal transduction, is achieved by connecting enzyme-based amperometric biosensors and organic electronic ion pumps. Selective biosensors transduce chemical signals into an electric current, which regulates electrophoretic delivery of chemical substances without necessitating liquid flow. Biosensors detected neurotransmitters in physiologically relevant ranges of 5-80 mu M, showing linear response above 20 mu m with approx. 0.1 nA/mu M slope. When exceeding defined threshold concentrations, biosensor output signals, connected via custom hardware/software, activated local or distant neurotransmitter delivery from the organic electronic ion pump. Changes of 20 mu M glutamate or acetylcholine triggered diffusive delivery of acetylcholine, which activated cells via receptor-mediated signalling. This was observed in real-time by single-cell ratiometric Ca2+ imaging. The results demonstrate the potential of the organic electronic biomimetic neuron in therapies involving long-range neuronal signalling by mimicking the function of projection neurons. Alternatively, conversion of glutamate-induced descending neuromuscular signals into acetylcholine-mediated muscular activation signals may be obtained, applicable for bridging injured sites and active prosthetics. (C) 2015 Elsevier B.V. All rights reserved.

  • 247.
    Simon, Daniel T
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology2016Ingår i: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 116, nr 21, s. 13009-13041Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.

  • 248.
    Simon, Daniel T
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kurup, Sindhulakshmi
    Karolinska Institutet.
    Larsson, Karin C
    Karolinska Institutet.
    Hori, Ryusuke
    Karolinska Institutet.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Goiny, Michel
    Karolinska Institutet.
    Jager, Edwin W H
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Canlon, Barbara
    Karolinska Institutet.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function.2009Ingår i: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 8, nr 9, s. 742-746Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Significant advances have been made in the understanding of the pathophysiology, molecular targets and therapies for the treatment of a variety of nervous-system disorders. Particular therapies involve electrical sensing and stimulation of neural activity, and significant effort has therefore been devoted to the refinement of neural electrodes. However, direct electrical interfacing suffers from some inherent problems, such as the inability to discriminate amongst cell types. Thus, there is a need for novel devices to specifically interface nerve cells. Here, we demonstrate an organic electronic device capable of precisely delivering neurotransmitters in vitro and in vivo. In converting electronic addressing into delivery of neurotransmitters, the device mimics the nerve synapse. Using the peripheral auditory system, we show that out of a diverse population of cells, the device can selectively stimulate nerve cells responding to a specific neurotransmitter. This is achieved by precise electronic control of electrophoretic migration through a polymer film. This mechanism provides several sought-after features for regulation of cell signalling: exact dosage determination through electrochemical relationships, minimally disruptive delivery due to lack of fluid flow, and on-off switching. This technology has great potential as a therapeutic platform and could help accelerate the development of therapeutic strategies for nervous-system disorders.

  • 249.
    Sinno, Hiam
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Bias stress effect in polyelectrolyte-gated organic field-effect transistors2013Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, nr 11Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A main factor contributing to bias stress instability in organic transistors is charge trapping of mobile carriers near the gate insulator-semiconductor interface into localized electronic states. In this paper, we study the bias stress behavior in low-voltage (p-type) polyelectrolyte-gated organic field effect transistors (EGOFETs) at various temperatures. Stressing and recovery in these EGOFETs are found to occur six orders of magntiude faster than typical bias stress/recovery reported for dielectric-gated OFETs. The mechanism proposed for EGOFETs involves an electron transfer reaction between water and the charged semiconductor channel that promotes the creation of extra protons diffusing into the polyelectrolyte.

  • 250.
    Sinno, Hiam
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Bias stress effect in inverters based on polyelectrolyte-gated organic field effect transistors2013Manuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    Prolonged gate bias application causes undesirable operational instabilities in organic transistors involving threshold voltage shift and drain current degradation; an effect known as bias stress. In this paper, we report how this instability is manifested in inverter circuits based on polyelectrolytegated p-type organic field effect transistors (EGOFETs) operating at low voltage. We find that bias stress causes a significant, but recoverable, shift in inverter switching threshold voltage. Measurements with two different polyelectrolytes reveal significant differences in the stressing and recovery behaviour, which is ascribed to the distinct nature of the ion conductive groups in the polyelectrolyte. Moreover, we report a large influence of illumination on the recovery process for one of the polyelectrolytes but not for the other, which demonstrates the need to characterize bias stress behavior for each new materials combination.

234567 201 - 250 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf