liu.seSearch for publications in DiVA
Change search
Refine search result
3456789 251 - 300 of 456
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    From Low Bandgap to Black: APFO/Fullerene Blends in New Geometries2007In: Complutense Internacional Symposium SIC-07: Materials for Renewable Energies: Orgnic and Hybrid Solar Cells,2007, 2007Conference paper (Other academic)
  • 252. De, S.
    et al.
    Pascher, T.
    Maiti, M.
    Kesti, T.
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Yartsev, A.
    Sundstrom, V.
    Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends2007In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 129, no 27, p. 8466-8472Article in journal (Refereed)
    Abstract [en]

    By measuring excited state and charge dynamics in blends of an alternating polyfluorene copolymer and fullerene derivative over nine orders in time and two orders in light intensity, we have monitored the light-induced processes from ultrafast charge photogeneration to much slower decay of charges by recombination. We find that at low light intensities relevant to solar cell operation relatively fast (∼30 ns) geminate recombination is the dominating charge decay process, while nongeminate recombination has a negligible contribution. The conclusion of our work is that under solar illumination conditions geminate recombination of charges may be directly competing with efficient charge collection in polymer/fullerene solar cells. © 2007 American Chemical Society.

  • 253.
    Nilsson, Peter
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Åslund, Andreas
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry.
    Berg, Ina
    Nyström, Sofie
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biochemistry.
    Konradsson, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry.
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Stabo-Eeg, Frantz
    Lindgren, Mikael
    Westermark, Gunilla
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Lannfelt, Lars
    Nilsson, Lars N G
    Hammarström, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biochemistry.
    Imaging distinct conformational states of amyloid-β fibrils in Alzheimer's disease using novel luminescent probes2007In: ACS Chemical Biology, ISSN 1554-8929, Vol. 2, no 8, p. 553-560Article in journal (Refereed)
    Abstract [en]

    Using luminescent conjugated polyelectrolyte probes (LCPs), we demonstrate the possibility to distinguish amyloid-β 1-42 peptide (Aβ1-42) fibril conformations, by analyzing in vitro generated amyloid fibrils of Aβ1-42 formed under quiescent and agitated conditions. LCPs were then shown to resolve such conformational heterogeneity of amyloid deposits in vivo. A diversity of amyloid deposits depending upon morphology and anatomic location was illustrated with LCPs in frozen ex vivo brain sections from a transgenic mouse model (tg-APPswe) of Alzheimer's disease. Comparative LCP fluorescence showed that compact-core plaques of amyloid β precursor protein transgenic mice were composed of rigid dense amyloid. A more abundant form of amyloid plaque displayed morphology of a compact center with a protruding diffuse exterior. Surprisingly, the compact center of these plaques showed disordered conformations of the fibrils, and the exterior was composed of rigid amyloid protruding from the disordered center. This type of plaque appears to grow from more loosely assembled regions toward solidified amyloid tentacles. This work demonstrates how application of LCPs can prove helpful to monitor aggregate structure of in vivo formed amyloid deposits such as architecture, maturity, and origin.

  • 254.
    Gadisa, Abay
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Sharma, Deepak
    Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India.
    Svensson, Mattias
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, Göteborg, Sweden.
    Andersson, Mats R.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors2007In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 5, p. 3126-3131Article in journal (Refereed)
    Abstract [en]

    The photovoltaic characteristics of solar cells based on alternating polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)) (APFO-3), and poly(2,7-(9,9-didodecyl-fluorene)-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)) (APFO-4), blended with an electron acceptor fullerene molecule [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), have been investigated and compared. The two copolymers have the same aromatic backbone structure but differ by the length of their alkyl side chain. The overall photovoltaic performance of the solar cells is comparable irrespective of the copolymer used in the active layer. However, the fill factor (FF) values of the devices are strongly affected by the copolymer type. Higher FF values were realized in solar cells with APFO-4 (with longer alkyl side chain)/PCBM bulk heterojunction active layer. On the other hand, devices with blends of APFO-3/APFO-4/PCBM were found to render fill factor values that are intermediate between the values obtained in solar cells with APFO-3/PCBM and APFO-4/PCBM active film. Upon using APFO-3/APFO-4 blends as electron donors, the cell efficiency can be enhanced by about 16% as compared to cells with either APFO-3 or APFO-4. The transport of holes in each polymer obeys the model of hopping transport in disordered media. However, the degree of energetic barrier against hopping was found to be larger in APFO-3. The tuning of the photovoltaic parameters will be discussed based on studies of hole transport in the pure polymer films, and morphology of blend layers. The effect of bipolar transport in PCBM will also be discussed.

  • 255.
    Karlsson, Roger H.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Herland, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Hamedi, Mahiar
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Åslund, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry . Linköping University, The Institute of Technology.
    Iron Catalyzed Polymerization of Alkoxysulfonate-Functionalized EDOT gives2007In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002Article in journal (Refereed)
  • 256.
    Wigenius, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Limits to Nanopatterning of Fluids on Surfaces2007In: E-MRS Strasbourg 2007,2007, 2007Conference paper (Other academic)
  • 257.
    Mammo, W.
    et al.
    CTH.
    Admassie, S.
    Addis Abeba university.
    Gadisa, Abay
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Zhang, Fengling
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, m.R
    CTH.
    New low band gap alternating polyfluorene copolymer-based photovoltaic cells2007In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 91, no 11, p. 1010-1018Article in journal (Refereed)
    Abstract [en]

    New low band gap alternating polyfluorene copolymers were synthesized for use in plastic solar cells and their optical, electrochemical, and photovoltaic characteristics were determined. These polymers incorporated fluorene units alternating with groups including electron-withdrawing (A) and electron-donating (D) groups in donor-acceptor-donor (DAD) sequence to achieve the lowering of band gaps. The HOMO-LUMO values were estimated from electrochemical studies. By varying the donor and acceptor strength and position of the solubilizing substituents, similar HOMO values were obtained. These values were also found to correlate well with the open circuit voltage (VOC) values determined from photovoltaic data of the polymers blended with the acceptor PCBM. Despite similar HOMO values, the absorption spectra of the polymers differ significantly. This prompted the preparation of photovoltaic devices consisting of blends of two polymers with complementary absorptions in combination with PCBM to harvest more photons in the polymer solar cells. © 2007 Elsevier B.V. All rights reserved.

  • 258.
    Inganäs, Olle
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mats R., Andersson
    Chalmers Tekniska Högskola.
    New polymers for plastic solar cells2007In: Proceedings of SPIE, ISSN 0361-0748Article in journal (Other (popular science, discussion, etc.))
  • 259.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Non-equilibrium effects on electronic transport in organic field effect transistors2007In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 8, no 4, p. 423-430Article in journal (Refereed)
    Abstract [en]

    Non-ideal behavior in organic field effect transistors, in particular threshold voltage drift and light sensitivity, is argued to be due to intrinsic carrier dynamics. The discussion is based on the theory for hopping transport within a Gaussian density of states. Carrier concentration is shown to be of fundamental importance, and the time required to reach equilibrium at different bias is responsible for device behavior, with implications for mobility evaluation. Experimental results from various conjugated polymers in a field effect transistor illustrate the theory.

  • 260.
    Persson, Nils-Krister
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Wang, Xiangjun
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 8, p. 083503-Article in journal (Refereed)
    Abstract [en]

    Photovoltaic devices from the low-band-gap alternating copolymer APFO-Green1, blended with the fullerene derivative BTPF70 as electron acceptor, show a pronounced variation of the external quantum efficiency with varying thickness. Device simulation, based on ellipsometric characterization, reveals that this behavior is to be expected and valid also for most low-band-gap polymers and that it can be explained by optical interference. Requirements for materials suitable for wide spectral coverage in thin-film organic solar cells are delineated. Furthermore, the internal quantum efficiency is calculated to be ≈ 0.4.

  • 261.
    Nilsson, Peter
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Optical sensors based on conjugated polymers2007In: Handbook of conducting polymers (Third Edition) / [ed] Terje A. Skotheim,John Reynolds, CRC Press, 2007, 3, p. -1680Chapter in book (Refereed)
    Abstract [en]

    Learn how recent advances are fueling new possibilities in textiles, optics, electronics, and biomedicine!

    As the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymershas been there to document and celebrate these changes along the way. Now split into two volumes, this new edition continues to provide the expertise of world-renowned contributors while maintaining the clear format of previous editions as it incorporates the latest developments in both the fundamental science and practical applications of polymers.

    The first volume in the set focuses on the concepts and basic physical aspects needed to understand the behavior and performance of conjugated polymers. The book describes the theories behind π-conjugated materials and electron–lattice dynamics in organic systems. It also details synthesis methods and electrical and physical properties of the entire family of conducting polymers.

    Picking up where the first volume left off, the second volume concentrates on the numerous processing methods for conducting polymers and their integration into various devices and applications. It first examines coating, printing, and spinning methods for complex patterned films and fibers. The book then shows how conducting and semiconducting polymers are applied in many devices, such as light-emitting displays, solar cells, field effect transistors, electrochromic panels, charge storage devices, biosensors, and actuators.

    As the science of conjugated and conducting polymers progresses, further applications will be realized, fueling greater possibilities in textiles, optics, electronics, and biomedicine. This handbook will be there to provide essential information on polymers as well as the most up-to-date developments.

  • 262.
    Zhang, Fengling
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Optimizing Absorption and Transport in APFO3: PCBM Polymer Solar Cells2007In: MRS Spring Meeting 2007,2007, 2007, p. 535-Z3.4Conference paper (Other academic)
  • 263.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Polymera och Organiska Solceller2007In: Energitinget,2007, 2007Conference paper (Other academic)
    Abstract [sv]

      

  • 264. Frantz, S.E.A.
    et al.
    Mikael, L.A.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics.
    Hammarström, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biochemistry.
    Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures2007In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 336, no 2-3, p. 121-126Article in journal (Refereed)
    Abstract [en]

    Amyloid diseases such as Alzheimer's and spongiform encephalopathies evolve from aggregation of proteins due to misfolding of the protein structure. Early disease handling require sophisticated but yet simple techniques to follow the complex properties of the aggregation process. Conjugated polyelectrolytes (CPEs) have shown promising capabilities acting as optical biological sensors, since they can specifically bind to polypeptides both in solution and in solid phase. The structural changes in biomolecules can be monitored by changes of the optical spectra of the CPEs, both in absorption and emission modes. Notably, the studied CPEs possess multi-photon excitation capability, making them potential for in vivo imaging using laser scanning microscopy. Aggregation of proteins depends on concentration, temperature and pH. The optical effect on the molecular probe in various environments must also be investigated if applied in these environments. Here we present the results of quantum efficiency and two-photon absorption cross-section of three CPEs: POMT, POWT and PTAA in three different pH buffer systems. The extinction coefficient and quantum efficiency were measured. POMT was found to have the highest quantum efficiency being approximately 0.10 at pH 2.0. The two-photon absorption cross-section was measured for POMT and POWT and was found to be more than 18-25 times and 7-11 times that of Fluorescein, respectively. We also show how POMT fluorescence can be used to distinguish conformational differences between amyloid fibrils formed from reduced and non-reduced insulin in spectrally resolved images recorded with a laser scanning microscope using both one- and two-photon excitation. © 2007 Elsevier B.V. All rights reserved.

  • 265.
    Gadisa, Abay
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Perzon, Erik
    Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.
    Andersson, M. R.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Red and near infrared polarized light emission from polyfluorene copolymer based light emitting diodes2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 90, no 11, p. 113510-Article in journal (Refereed)
    Abstract [en]

    The authors report polarized red, electroluminescence peak at 705  nm and near infrared, electroluminescence peak at 950  nm, light emission from light emitting diodes based on two polyfluorene copolymers. The copolymers are synthesized from a fluorene monomer combined with donor-acceptor-donor comonomers and designed to have a low band gap and form birefringent liquid crystalline phases. Emission occurs from aligned thin films of polymer layers. The emissive layers are aligned by spin coating on a layer of rubbed conducting polymer poly(3,4-ethylene dioxythiophene)-poly(styrene sulphonate) and thermally converted into glassy nematic liquid crystalline state.

  • 266.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Single Molecule Printing with Biomolecular Nanowires Complexed with Luminescent Conjugated Polyelectrolytes2007In: MRS Spring Meeting 2007,2007, 2007Conference paper (Other academic)
    Abstract [en]

       

  • 267.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Stoichiometry, mobility, and performance in bulk heterojunction solar cells2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 7, p. 071108-Article in journal (Refereed)
    Abstract [en]

    Bipolar transport in blends of a copolymer of fluorene, thiophene and electron accepting groups, and the substituted fullerene [6,6]-phenyl-C61-butyric acid methylester have been studied through charge extraction by linearly increasing voltage on solar cells and with field effect transistors. Between 10% and 90% polymer has been used and the results show a clear correlation to solar cell performance. Optimal solar cells comprise 20% polymer and have a power conversion efficiency of 3.5%. The electron mobility is increasing strongly with fullerene content, but is always lower than the hole mobility, thus explaining the low amount of polymer in optimized devices.

  • 268.
    Åslund, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Herland, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biochemistry. Linköping University, The Institute of Technology.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Jonsson, Bengt-Harald
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Biotechnology. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Organic Chemistry. Linköping University, The Institute of Technology.
    Studies of luminescent conjugated polythiophene derivatives-Enhanced spectral discrimination of protein conformational states2007In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 18, no 6, p. 1860-1868Article in journal (Refereed)
    Abstract [en]

    Improved probes for amyloid fibril formation are advantageous for the early detection and better understanding of this disease-associated process. Here, we report a comparative study of eight luminescent conjugated polythiophene derivates (LCPs) and their discrimination of a protein (insulin) in the native or amyloid-like fibrillar state. For two of the LCPs, the synthesis is reported. Compared to their monomer-based analogues, trimer-based LCPs showed significantly better optical signal specificity for amyloid-like fibrils, seen from increased quantum yield and spectral shift. The trimer-based LCPs alone were highly quenched and showed little interaction with native insulin, as seen from analytical ultracentrifugation and insignificant spectral differences from the trimer-based LCP in buffered and native protein solution. Hence, the trimer-based LCPs showed enhanced discrimination between the amyloid-like fibrillar state and the corresponding native protein.

  • 269.
    Tvingstedt, Kristofer
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Rahachou, Aliaksandr
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Persson, Nils-Krister
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zozoulenko, Igor V.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Surface plasmon increased absorption in polymer photovoltaic cells2007In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 91, no 11, p. 113514 -Article in journal (Refereed)
    Abstract [en]

    The authors demonstrate the triggering of surface plasmons at the interface of a metal grating and a photovoltaic bulk heterojunction blend of alternating polyfluorenes and a fullerene derivative. An increased absorption originating from surface plasmon resonances is confirmed by experimental reflection studies and theoretical modeling. Plasmonic resonances are further confirmed to influence the extracted photocurrent from devices. More current is generated at the wavelength position of the plasmon resonance peak. High conductivity polymer electrodes are used to build inverted sandwich structures with top anode and bottom metal grating, facilitating for triggering and characterization of the surface plasmon effects.

  • 270.
    Hamedi, Mahiar
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Image Coding. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Towards woven logic from organic electronic fibres2007In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 6, p. 357-362Article in journal (Refereed)
    Abstract [en]

    The use of organic polymers for electronic functions is mainly motivated by the low-end applications, where low cost rather than advanced performance is a driving force. Materials and processing methods must allow for cheap production. Printing of electronics using inkjets1 or classical printing methods has considerable potential to deliver this. Another technology that has been around for millennia is weaving using fibres. Integration of electronic functions within fabrics, with production methods fully compatible with textiles, is therefore of current interest, to enhance performance and extend functions of textiles2. Standard polymer field-effect transistors require well defined insulator thickness and high voltage3, so they have limited suitability for electronic textiles. Here we report a novel approach through the construction of wire electrochemical transistor (WECT) devices, and show that textile monofilaments with 10–100 µm diameters can be coated with continuous thin films of the conducting polythiophene poly(3,4-ethylenedioxythiophene), and used to create micro-scale WECTs on single fibres. We also demonstrate inverters and multiplexers for digital logic. This opens an avenue for three-dimensional polymer micro-electronics, where large-scale circuits can be designed and integrated directly into the three-dimensional structure of woven fibres.

  • 271.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene2006In: Applied Physics Letters, ISSN 0003-6951, Vol. 88, p. 082103-Article in journal (Refereed)
    Abstract [en]

    Hole mobility in polyfluorene/fullerene blends has been studied with field effect transistors. Two different C60 derivatives and one C70 derivative have been investigated together with two different polyfluorenes. Mobility is presented as a function of acceptor loading at ratios suitable for photovoltaics and varies between 10–3 and 10–5  cm2  V–1  s–1 depending on the polymer/acceptor combination. The hole mobility is increased in blends with the commonly used acceptor [6-6]-phenyl-C61-butyric acid methylester (PCBM). With related C60 and C70 derivatives the hole mobility is decreased under the same circumstances.

  • 272.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Alternating Copolymers of Fluorence for Wide Spectral Coverage and Good Electrical Transport in Polymer Solar Cells2006In: MRS meeting, Boston Nov 26-Dec 1,2006, 2006Conference paper (Other academic)
  • 273.
    Perzon, Erik
    et al.
    Chalmers University of Technology.
    Wang, Xiangjun
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Admassie, Shimelis
    IFM Linköpings university.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Andersson, Mats R
    Chalmers university of Technology.
    An alternating low band-gap polyfluorene for optoelectronic devices2006In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 47, p. 4261-4268Article in journal (Refereed)
  • 274.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomacromolecules and Electronic Polymers at the Crossroads2006In: Swedish French Symposium on Bionanotechnology,2006, 2006Conference paper (Other academic)
  • 275.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Tvingstedt, Kristofer
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa spring meeting 06 Köpenhamn,2006, 2006Conference paper (Other academic)
  • 276.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Björk, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Biomolecules and conjugated polyelectrolytes in patterning2006In: NaPa fall meeting 06 Glasgow,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 277.
    Lindgren, Mikael
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Stabo-Eeg, Frantz
    Norwegian University of Science and Technology.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Biochemistry. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Biosensing and -imaging with enantiomeric luminescent conjugated polythiophenes using single - and multiphoton excitation2006In: Proceedings of International Symposium on Biophotonics, Nanophotonics and Metamaterials, IEEE , 2006, p. 226-226Conference paper (Refereed)
  • 278.
    Gadisa, Abay
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Wang, X.
    Tvingstedt, Kristofer
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Oswald, F.
    Langa, F.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Bipolar transport and infrared light emission in C60 and C70 derivative electron acceptors2006In: Applied Physics Letters, ISSN 0003-6951Article in journal (Refereed)
  • 279.
    Andersson, Lars Mattias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Bipolar transport observed through extraction currents on organic photovoltaic blend materials2006In: Applied Physics Letters, ISSN 0003-6951, Vol. 89, p. 142111-Article in journal (Refereed)
    Abstract [en]

    Both electron and hole mobilities have been simultaneously measured through charge extraction by linearly increasing voltage on polymer heterojunction solar cells with varying stoichiometry of polymer and acceptor. The polymer is a low band gap copolymer of fluorene, thiophene, and electron accepting groups named APFO-Green 5, and the acceptor is [6,6]-phenyl-C61-butyric acid methylester. Results are correlated to field effect transistor measurements on the same material system. A monotonous increase in mobility for both carrier types is observed with increased acceptor loading.

  • 280.
    Jespersen, Kim G
    et al.
    Chemical Physics Kemicentrum.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Gadisa, Abay
    Linköping University, Department of Physics, Chemistry and Biology.
    Sundström, Villy
    Chemical Physics Kemicentrum.
    Yartsev, Arkady
    Chemical Physics Kemicentrum.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Charge formation and transport in bulk-heterojunction solar cells based on alternating polyfluorene copolymers blended with fullerenes2006In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 7, p. 235-242Article in journal (Refereed)
  • 281.
    Filippini, Daniel
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Åsberg, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Nilsson, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Computer screen photo-asssited detection of complementary DNA strands using a luminescent zwitterionic polythiophene derivative2006In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 1132006, p. 410-418Article in journal (Refereed)
  • 282.
    Nilsson, Peter
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Hammarström, Per
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biochemistry.
    Ahlgren, Fredrik
    Division of Cell Biology Linköpings universitet.
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Schnell, Edrun A
    The Norwegian University of Science and Technology.
    Lindgren, Mikael
    The Norwegian University of Science and Technology.
    Westermark, Gunilla
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated Polyelectrolytes - Conformation - Sensitive Optical Probes for staining and Characterization of Amyloid Deposits2006In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 7, p. 1096-1104Article in journal (Refereed)
    Abstract [en]

      

  • 283.
    Andersson, Jens
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Åsberg, Peter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Herland, Anna
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Fransson, Sophia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    von Post, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Conjugated polyelectrolytes as reporter molecules; biochip constructed by Soft litography methods2006In: ICSM summer 06 Dublin,2006, 2006Conference paper (Other academic)
    Abstract [en]

       

  • 284.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Decorated DNA-Templates for Organic Nanoelectronics2006In: Swedish Japanese Symposium on Bionanotechnology,2006, 2006Conference paper (Other academic)
  • 285.
    Gadisa, Abay
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Wang, Xiangjun
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Perzon, Erik
    Chalmers Tekniska högskola.
    Oswald, Frederic
    Universidad de castilla-La Mancha.
    Langa, F
    Universidad de Castilla -la mancha.
    Andersson, M R
    Chalmers Tekniska Högskola.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Effect of acceptor type on hole transport in polymer/acceptor bulk heterojunction films2006In: European Conference on Hybrid and Organic Cells, ECHOS 06,2006, 2006Conference paper (Other academic)
  • 286.
    Zhang, Fengling
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, W.
    Addis Ababa University.
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Efficient Bilayer Low Bandgap Polymer Solar Cells2006In: European Conference on Hybrid and Organic Solar Celss ECHOS06,2006, 2006, p. N29-03-3-Conference paper (Other academic)
    Abstract [en]

       

  • 287.
    Zhang, Fengling
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Bijleveld, Johan
    Chalmers University of Technology.
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Efficient Near Infrared Polymer Solar Cells with Photoresponse Extended to 900NM2006In: IPS16,2006, 2006Conference paper (Other academic)
  • 288.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Electroactive Polymers in Redox Devices- from Printed Electrochemical Hybrid Systems to Soft Matter actuators and Electrical Biointerfaces2006In: International Electrochemical Society,2006, 2006Conference paper (Other academic)
    Abstract [en]

    Invited Plenary Lecture

  • 289.
    Admassie, Shimelis
    et al.
    Addis Ababa University.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, Wendimagegn
    Chalmers university of Technology.
    Perzon, Erik
    Chalmers university of Technology.
    Andersson, Mats R
    Chalmers university of Technology.
    Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers2006In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 156, no 7-8, p. 614-623Article in journal (Refereed)
    Abstract [en]

    The electrochemical and optical properties of a series of alternating polyfluorene copolymers with low band gaps were determined. These polymers incorporated fluorene units alternating with groups including electron-withdrawing (A) and electron-donating (D) groups in donor-acceptor-donor (DAD) sequence to achieve the lowering of band gaps. The polymers were solvent-casted on platinum disk electrode and the band gaps were estimated from cyclic voltammetry (CV). These values were compared with values obtained from optical absorption measurements. Although the electrochemically determined band gaps were found to be slightly higher than the optical band gap in most cases, values are well correlated. The values of the band gaps determined range from 2.1 to 1.3 eV. © 2006 Elsevier B.V. All rights reserved.

  • 290.
    Zhang, Fengling
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Jespersen, K.G.
    Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Bjorstrom, C.
    Björström, C., Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Svensson, M.
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
    Andersson, M.R.
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
    Sundstrom, V.
    Sundström, V., Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Magnusson, K.
    Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Moons, E.
    Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Yartsev, A.
    Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends2006In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 16, no 5, p. 667-674Article in journal (Refereed)
    Abstract [en]

    The influence of the solvent on the morphology and performance of polymer solar cells is investigated in devices based on blends of the polyfluorene copolymer, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2- thienyl-2',1',3'-benzothiadiazole)), and [6,6]-phenyl-C 61-: -butyric acid methyl ester. The blends are spin-coated from chloroform or from chloroform mixed with small amounts of xylene, toluene, or chlorobenzene. The devices are characterized under monochromatic light and solar illumination AM1.5 (AM: air mass). An enhancement of the photocurrent density is observed in diodes made from chloroform mixed with chlorobenzene, and reduced photocurrent density is observed in diodes made from chloroform mixed with xylene or toluene, compared to diodes made from neat chloroform. The open-circuit voltages are almost the same in all diodes. The surfaces of the active layers are imaged using atomic force microscopy. Height images indicate that a finer and more uniform distribution of domains corresponds to the diodes with enhanced photocurrent that are made from chloroform mixed with chlorobenzene, while a structure with larger domains is associated with the lower photocurrents in the diodes made from chloroform mixed with xylene or toluene. The influence of the morphology on the excited-state dynamics and charge generation is investigated using time-resolved spectroscopy. Fast formation of bound charge pairs followed by their conversion into free charge carriers is resolved, and excitation-intensity-dependent non-geminate recombination of free charges is observed. A significant enhancement in free-charge-carrier generation is observed on introducing chlorobenzene into chloroform. Imaging photocurrent generation from the solar cells with a light-pulse technique shows an inhomogeneous photocurrent distribution, which is related to the undulations in the thickness of the active layer. Thicker parts of the diodes yield higher photocurrent values. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  • 291.
    Bjorstrom, Cecilia M.
    et al.
    Karlstad University.
    Nilsson, Svante
    Karlstad University.
    Magnusson, Kjell O.
    Karlstad University.
    Moons, Ellen
    Karlstad University.
    Bernasik, Andrzej
    AGH-Univ. of Science and Technology .
    Rysz, Jakub
    Jagiellonian Univ.
    Budkowski, Andrzej
    Jagiellonian Univ.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Andersson, Mats R.
    Chalmers.
    Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices - art. no. 61921X2006In: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 6192, p. X1921-X1921Article in journal (Refereed)
    Abstract [en]

    Spin-coated thin films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (APFO-3) blended with [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) are used as the active material in polymer photovoltaic cells. Such blends are known for their tendency to phase separate during film formation. Tuning the morphology of the blend in a controlled way is one possible road towards higher efficiency. We studied the effect of adding chlorobenzene to chloroform-based blend solutions before spin-coating on the conversion efficiency of APFO-3:PCBM photodiodes, and related that to the lateral and vertical morphology of thin films of the blend. The lateral morphology is imaged by atomic force microscopy (AFM) and the vertical compositional profile is obtained by dynamic secondary ion mass spectrometry (SIMS). The profiles reveal compositional variations consisting of multilayers of alternating polymer-rich and PCBM-rich domains in the blend film spin-coated from chloroform. The vertical compositional variations are caused by surface-directed spinodal waves and are frozen in during the rapid evaporation of a highly volatile solvent. With addition of the low-vapour pressure solvent chlorobenzene, a more homogeneous vertical composition is found. The conversion efficiency for solar cells of this blend was found to be optimal for chloroform: chlorobenzene mixtures with a volume-ratio of 80:1. We have also investigated the role of the substrate on the morphology. We found that blend films spin-coated from chloroform solutions on PEDOT:PSS-coated ITO show a similar compositional structure as the films on silicon, and that changing the substrate from silicon to gold only affects the vertical phase separation in a region close to the substrate interface.

  • 292.
    Wang, Xiangjun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Ederth, Thomas
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    In-situ Wilhelmy balance surface energy determination of poly(3-hexylthiophene) and poly(3,4-ethylenedioxythiophene) during electrochemical doping-dedoping2006In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 22, no 22, p. 9287-9294Article in journal (Refereed)
    Abstract [en]

    Changes in the contact angle between conjugated polymers surface poly(3-hexylthiophene) [P3HT] and poly(3,4-ethylenedioxythiophene) (PEDOT) upon electrochemical doping−dedoping in aqueous electrolyte were determined in situ using a Wilhelmy plate tensiometer in an electrochemical cell. The hydrophobic P3HT was less hydrophobic in the oxidized state than in the neutral state; the more hydrophilic PEDOT was less hydrophilic in the oxidized state than when neutral. The tensiometry results were in good agreement with those measured by contact angle goniometry, and further corroborated by the capillary rise upon doping in a fluid cell with two parallel polymer coated plates, another in situ dynamic determination method. The contact angle changes depend on doping potential, electrolyte type, and concentration. We also deconvoluted the surface energy into components of van der Waals and acid−base interactions, using three probe liquids on the polymer surfaces, ex situ the electrochemical cell. The methods and the obtained results are relevant for the science and technology areas of printed electronics and electrochemical devices and for the understanding of surface energy modification by electrochemical doping.

  • 293.
    Tvingstedt, Kristofer
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Tormen, Massimo
    National Lab. TASC, INFM-CNR, Italy.
    Businaro, Luca
    National Lab. TASC, INFM-CNR, Italy.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Light Confinement in Thin Film Organic Photovoltaic cells2006In: Photonics Europe, Strasbourg, 2006, Vol. 6197Conference paper (Refereed)
    Abstract [en]

    Microstructuring of polymer surfaces on optical spacers allows formation of reflective light traps. Such flexible reflectors can be combined with flexible polymer solar cells. We have demonstrated enhanced absorption using Lambertian and regular light reflectors, demonstrated via luminescence from fluorescent layers. Such light traps are suitable to use in combination with polymer solar cells incorporating transparent electrodes. The possibility to enhance the concentration of excited states and photogenerated charges through light trapping also helps to increase charge carrier mobility. These experimental results indicate that light confinement may be an alternative approach for boosting the efficiency of thin film conjugated polymer photovoltaics.

  • 294.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Low Bandgap Alternating Polyfluorene Copolymers in Plastic Solar Cells2006In: International Conference on Photochemical Conversation and Storage of Solar Energy,2006, 2006Conference paper (Other academic)
  • 295.
    Zhang, Fengling
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Mammo, Wendimagegn
    Addis Ababa Univeristy.
    Andersson, Mattias
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Admassie, Shimelis
    Addis Ababa Univeristy.
    Andersson, Mats R
    Chalmers University of Technology.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells2006In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 18, p. 2169-2173Article in journal (Refereed)
  • 296.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Organic Photovoltaics - Towards High Performance Low Bandgap Polyfluorene/fullerene Bulk Heterojunction Devices2006In: Technologies for Printed Electronics,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 297.
    Inganäs, Olle
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics .
    Organic Photovoltaics - Towards High Performance Low Bandgap Polyfluorene/fullerene Bulk Heterojunction Devices2006In: American Physical Society,2006, 2006Conference paper (Other academic)
    Abstract [en]

       

  • 298.
    Persson, Nils-Krister
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Organic tandem solar cells - modelling and predictions2006In: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 90, no 20, p. 3491-3507Article in journal (Refereed)
    Abstract [en]

    Tandem combinations of organic photovoltaic devices are studied from an optical point of view. We unify coherent (wave-based) as well as incoherent (irradiance-based) light addition in our treatment of the incoming and reflected electromagnetic waves, and calculate the spatially resolved absorption profile in the cells. The model allows for any number and any order of thin and thick layers to be analysed. Irradiation is monochromatic or polychromatic, AM 1.5 or AM 1.0, and therefore applicable for solar cell simulation. The optical modelling is unified with electrical models of charge generation and transport in the solar cells. Through this, de-coupling of optical and electrical processes is possible. Moreover, the model allows identification of limiting processes in the devices. The model is applied to a tandem cell with copolymers of polyfluorene combined in bulk heterojunctions with fullerene acceptors, one device for high energy absorption and one for lower, where anodes and cathodes for the cells are semi-transparent metallic polymer layers. It is concluded that these materials do not at present have an electrical performance, which can be enhanced by the tandem cell combination.

  • 299.
    Wang, Xiangjun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Perzon, Erik
    Mammo, Wendimagegn
    Oswald, Frédéric
    Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Toledo, Spain.
    Admassie, Shimelis
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Persson, Nils-Krister
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Langa, Fernando
    Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Toledo, Spain.
    Andersson, Mats R.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm2006In: Thin Solid Films, ISSN 0040-6090, Vol. 511-512, p. 576-580Article in journal (Refereed)
    Abstract [en]

    A new series of low-bandgap alternating polyfluorenes with different donor–acceptor–donor moieties have been synthesized. Electrochemical and optical absorption measurement show that onset bandgaps of these polymers range from 1.2 to 1.5 eV. These polymers, blended with a C70-derivative as acceptor, are used for solar cell fabrication. Devices show promising photovoltaic properties, and the spectral response of photocurrent covers all visible and near-infrared wavelength regions with its onset extended to 1 μm. The best data gives a photocurrent density of 3.4 mA/cm2, open circuit voltage of 0.58 V and power conversion efficiency of 0.7% under illumination of AM1.5 (1000 W/m2) from a solar simulator.

  • 300.
    Björk, Per
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Holmström, Sven
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
    Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer2006In: Small, ISSN 1613-6810, Vol. 2, no 8-9, p. 1068-1074Article in journal (Refereed)
    Abstract [en]

    Aligned and stretched λ DNA is directed to specific locations on solid substrates. Surface-energy modification of glass substrates by using patterned polydimethylsiloxane (PDMS) stamps is used to direct DNA onto the surface-energy-modified micrometer-scale pattern through molecular combing. As an alternative, patterned and nonpatterned PDMS stamps modified with polymethylmethacrylate (PMMA) are utilized to direct the stretched DNA to the desired location and the results are compared. The DNA is elongated through molecular combing on the stamp and transfer printed onto the surfaces. PMMA-modified stamps show a more defined length of the stretched DNA, as compared to bare PDMS stamps. A combination of these two methods is also demonstrated. As an application example, transfer printing of DNA decorated with a semiconducting conjugated polyelectrolyte is shown. The resulting patterned localization of stretched DNA can be utilized for functional nanodevice structures, as well as for biological applications.

3456789 251 - 300 of 456
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf