liu.seSearch for publications in DiVA
Change search
Refine search result
3456 251 - 276 of 276
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zainelabdin, Ahmed
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Jamil Rana, Sadaf
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Israr Qadir, Muhammad
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Bano, Nargis
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Hussain, I
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Alvi, Naveed ul Hassan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Intrinsic White Light Emission from Zinc Oxide Nanorods Heterojunctions on Large Area Substrates2011In: Proceedings of SPIE Volume 7940 / [ed] Ferechteh Hosseini Teherani, David C. Look, David J. Rogers, Bellingham, Washington, USA: SPIE - International Society for Optical Engineering, 2011Conference paper (Other academic)
    Abstract [en]

    Zinc oxide (ZnO) and especially in the nanostructure form is currently being intensively investigated world wide for the possibility of developing different new photonic devices. We will here present our recent findings on the controlled low temperature chemical growth of ZnO nanorods (NRs) on different large area substrates. Many different heterojunctions of ZnO NRs and p-substrates including those of crystalline e. g. p-GaN, p-SiC or amorphous nature e. g. p-polymer coated plastic and p-polymer coated paper will be shown. Moreover, the effect of the p-electrode of these heterojunctions on tuning the emitted wavelength and changing the light quality will be discussed. An example using ZnO NR/p-GaN will be shown and the electrical and electro-optical characteristics will be analyzed. For these heterojunctions the effect of post growth annealing and its effect on the electroluminescence (EL) spectrum will be shown. Finally, intrinsic white light emitting diodes based on ZnO NRs on foldable and disposable amorphous substrates (plastic and paper) will also be presented.

  • 252.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Qadir, Muhammad Israr
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Rana, Sadaf Jamil
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Progress on one-dimensional zinc oxide nanomaterials based photonic devices2012In: Nanophotonics, ISSN 2192-8606, Vol. 1, no 1, p. 99-115Article in journal (Refereed)
    Abstract [en]

    One-dimensional nanostructures hold the most attractive and excellent physiochemical characteristics which exhibit the paramount influence on the fundamental and technological nanoelectronic as well as nanophotonic applications. In this review article, we present a detailed introduction to the diverse synthetic procedures which can be utilized for the fabrication of single-, planar- and three-dimensional ZnO nanostructures. More specifically, a thorough discussion regarding luminescence characteristics of the one-dimensional ZnO nanostructures is presented for ultraviolet and visible regions. We summarize the room temperature spontaneous emission and stimulated emission along with the interaction of the incident beam with material cavity to produce resonant optical modes and low-temperature time resolved photoluminescence studies. The most recent published results on the white light emitting diodes fabricated with the combination of ZnO nanotubes with p-GaN and ZnO nanorods with p-organic polymers on glass and disposable paper are discussed. Additionally, the significant results on optically and electrically pumped lasers are discussed; along with an overview on the future of ZnO nanostructures based photonic devices.

  • 253.
    Willander, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Risveden, K.
    Danielsson, B.
    Nour, Omer
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Science and Technology.
    Trapping and detection of single molecules in water2009In: Methods in molecular biology: Micro and Nan Technolgies in Bio-analysis, USA: Springer Verlag , 2009, p. 163-186Chapter in book (Other academic)
    Abstract [en]

    An innovative nanoprobe-based device that can measure and adjust the pH, can mimic biochemistry, can create microscale vortices in water, and can be used to trap single molecules is presented. Because the analytes in question to trap and detect are small in dimensions, we start by presenting scaling issues and challenging limitations for miniaturized chemical nanosensors. Advantages of using nanoprobes e.g., isolated nanowires, as the components in chemical sensing are discussed. How the observation of the physical property can beneficially change with isomorphic scaling is highlighted. Some of the technology-related constrains are presented for specific sensors. Solutions to overcome such problems are also given. Different aspects, e.g., sample size and sensitivity, for chemical sensing at the nanoscale are highlighted.

  • 254.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sadollah Khani, Azar
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Echresh, Ahmad
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Metal oxide nanostructures synthesized on flexible and solid substrates and used for catalysts, UV detectors and chemical sensors2015In: OXIDE-BASED MATERIALS AND DEVICES VI, Society of Photo-optical Instrumentation Engineers (SPIE) , 2015, Vol. 9364, no 936414, p. 936414-Conference paper (Refereed)
    Abstract [en]

    In this paper we demonstrate the visibility of the low temperature chemical synthesis for developing device quality material grown on flexible and solid substrates. Both colorimetric sensors and UV photodetectors will be presented. The colorimetric sensors developed on paper were demonstrated for heavy metal detection, in particular for detecting copper ions in aqueous solutions. The demonstrated colorimetric copper ion sensors developed here are based on ZnO@ ZnS core-shell nanoparticles (CSNPs). These sensors demonstrated an excellent low detection limit of less than 1 ppm of copper ions. Further the colorimetric sensors operate efficiently in a wide pH range between 4 and 11, and even in turbulent water. The CSNPs were additionally used as efficient photocatalytic degradation element and were found to be more efficient than pure ZnO nanoparticles (NPs). Also p-NiO/n-ZnO thin film/nanorods pn junctions were synthesized by a two-step synthesis process and were found to act as efficient UV photodetectors. Additionally we show the effect of the morphology of different CuO nanostructures on the efficiency of photo catalytic degradation of Congo red organic dye.

    Download full text (pdf)
    fulltext
  • 255.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Ul Hasan, Kamran
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zainelabdin, Ahmed
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zaman, Saima
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Recent progress on growth and device development of ZnO and CuO nanostructures and graphene nanosheets2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 6, p. 2337-2350Article in journal (Refereed)
    Abstract [en]

    Recent progress on the growth of zinc oxide (ZnO), copper oxide (CuO) and graphene nanosheets is presented and discussed. We here restrict the discussion to the hydrothermal low temperature growth regime. In view of this the most critical and important parameters for obtaining nanostructures with desired morphology are discussed and presented. Among all parameters, the temperature and the pH during growth were chosen due to their strong role in affecting the produced nanostructures. The application of this method to non-conventional substrates e. g. paper, is demonstrated. Different devices are fabricated using the grown material and their performance is discussed.

  • 256.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Wadeasa, Amal
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Klason, Peter
    Gothenburg University, Sweden.
    Yang, Lili
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Beegum, Lubuna
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Raja, Shaffeq
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zhao, Qiangxiang
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Light-emitting diodes based on n-ZnO nano-wires and p-type organic semiconductors2008In: Proc. SPIE 6895: Zinc Oxide Materials and Devices III, SPIE - International Society for Optical Engineering, 2008, p. 68950O-1-68950O-10Conference paper (Other academic)
    Abstract [en]

    After our recent successful demonstration of high brightness white light emitting diodes (HB-LEDs) based on high temperature grown n-ZnO nanowires on different p-type semiconductors, we present here LEDs fabricated on n-ZnO nano-wires and p-type organic semiconductors. By employing a low temperature chemical growth (≤ 90 °C) approach for ZnO synthesis combined together with organic p-type semiconductors, we demonstrate high quality LEDs fabricated on a variety of different substrates. The substrates include transparent glass, plastic, and conventional Si. Different multi-layers of p-type organic semiconductors with or without electron blocking layers have been demonstrated and characterized. The investigated p-type organic semiconductors include PEDOT:PSS, which was used as a anode in combination with other p-type polymers. Some of the heterojunction diodes also contain an electron blocking polymer sandwiched between the p-type polymer and the n-ZnO nano-wire. The insertion of electron blocking layer is necessary to engineer the device for the desired emission. Structural and electrical results will be presented. The preliminary I-V characteristics of the organic-inorganic hybrid heterojunction diodes show good rectifying properties. Finally we also present our findings on the origin of the green luminescence band which is responsible of the white light emission in ZnO is discussed.

  • 257.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Wadeasa, Amal
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Yang, Lili
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zhao,, Qingxiang
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Photonic devices in some low dimensional sysems2009In: ECS Transactions, ISSN 1938-5862, E-ISSN 1938-6737, Vol. 16, no 41, p. 17-30Article in journal (Refereed)
    Abstract [en]

    Results of using low temperature growth approach (lower than 100 oC) to control the growth of ZnO nanowires are presented. The effect of different parameters on the growth is highlighted. Time resolved low temperature photoluminescence (PL) was used to investigate surface recombination and its relation to the nanowires diameters. Finally hybrid light emitting diodes (LEDs) based on p-type polymers and n-ZnO nanowires grown on amorphous substrates is fabricated and characterized. This hybrid organic-inorganic technology can provide a suitable replacement of conventional lighting tubes.

  • 258.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Yang, Lili
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Wadeasa, A.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Ali, S.U.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Asif, M.H.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zhao, Q.X.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zinc oxide nanowires: controlled low temperature growth and electrochemical and optical devices2009In: Journal of Materials Chemsitry, Vol. 19, no 7, p. 1006-1018Article in journal (Refereed)
    Abstract [en]

    In this paper we present our new findings on the growth, characterization and nano-devices based on ZnO nanowires. We will limit the scope of this article to low temperature grown ZnO nanowires, due to the fact that low temperature growth is suitable for many applications. On growth and size control we will present our methodology for the growth of ZnO nanowires on Si substrates using low temperature techniques. The effect of the annealing on these low temperature grown ZnO nanowires is investigated and discussed. We then present our results on the surface recombination velocity of ZnO nanowires. This will be followed by the demonstration of new prototype nano-devices. These nano-devices include the demonstration of two new electrochemical nano-sensors. These are the extended gate glucose sensor and the calcium ion selective sensor using ionophore membrane coating on ZnO nanowires. Finally we will present results from light emitting diodes (LEDs) based on our ZnO nanowires grown on p-type organic semiconductors. The effect of the interlayer design of this hybrid organic–inorganic LED on the emission properties is highlighted.

  • 259.
    Willander, Magnus
    et al.
    University of Gothenburg.
    Zhao, Qing Xiang
    University of Gothenburg.
    Nour, Omer
    University of Gothenburg.
    Hu, Q-H
    University of Gothenburg.
    Some silicon-based heterostructures for optical applications2005In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 34, no 5, p. 515-521Article in journal (Refereed)
    Abstract [en]

    In this paper, we will present our recent research on the growth and characterization of some Si-based heterostructures for optical and photonic devices. The heterostructures to be discussed are ZnO nanorods on Si, SiO2, and other substrates such as SiN and sapphire. We will also consider strained Si1-xGex/Si heterostructures for Si optoelectronics. The performance and functionality extension of Si technology for photonic applications due to the development of such heterostructures will be presented. We will focus on the results of structural and optical characterization in relation to device properties. The structural characterization includes x-ray diffraction for assessment of the crystallinity and stress in the films and secondary ion mass spectrometry for chemical analysis. The optical properties and electronic structure were investigated by using photoluminescence. The device application of these thin film structures includes detectors, lasers, and light emitting devices. Some of the Si-based heterostructures to be presented include devices emitting and detecting up to the blue-green and violet wave lengths.

  • 260.
    Willander, Magnus
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zhao, Qingxiang
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zinc oxide nanostructures at the forefront of new white light- emitting technology2007Other (Other (popular science, discussion, etc.))
  • 261.
    Willander, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Zhao, Q.X.
    Hu, Q.-H.
    Klason, P.
    Al Hilli, Safaa
    Nour, Omer
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Science and Technology.
    Lozovik, Y. E.
    Fundamentals and Properties of Zinc Oxide Nanostructures: Optical and Sensing Applications2008In: Superlattices and Microstructures, ISSN 0749-6036, E-ISSN 1096-3677, Superlattices and Microstrucutres, Vol. 34, no 4, p. 352-361Article in journal (Refereed)
  • 262.
    Willander, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Zhao, Q.X.
    Nour, Omer
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Science and Technology.
    ZnO nanostrucutres at the forefront of new white light emitting technology2008Other (Other (popular science, discussion, etc.))
  • 263.
    Yann, Rem
    et al.
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. Royal Univ Phnom Penh, Cambodia.
    Ngok, Sreymean
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering. Royal Univ Phnom Penh, Cambodia.
    Mustafa, Elfatih Mohammed
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Chey, Chan Oeurn
    Royal Univ Phnom Penh, Cambodia.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
    Growth of Ag2S-sensitizer on MoS2/ZnO nanocable arrays for improved solar driven photoelectrochemical water splitting2024In: Solid State Sciences, ISSN 1293-2558, E-ISSN 1873-3085, Vol. 147, article id 107379Article in journal (Refereed)
    Abstract [en]

    The demonstration of an efficient nanostructure that provides acceptable photoelectrochemical water splitting properties using the sun visible radiation is an appealing issue. In this connection, a new ternary nanocomposite of Ag2S/MoS2/ZnO photoanode is subsequently fabricated via hydrothermal, solvothermal and SILAR methods. Different properties of the nanocomposite are characterized by XRD, SEM, EDX, XPS, UV-Vis-IR spectroscopy and electrochemical techniques. The post-grown annealed 8-Ag2S/MoS2/ZnO photoanode exhibits a good performance with a photocurrent density of 2 mA/cm2 at a bias potential 1.23 V vs. RHE. The photocurrent of the post-grown annealed 8-Ag2S/MoS2/ZnO photoanode is 71.42 times, 40 times and 2 times higher compares to the pure ZnO, post-grown annealed MoS2/ZnO, and post-grown annealed 8-Ag2S/ZnO photoanodes, respectively. The enhanced PEC performance may originate from the combination of different effects such as the expansion of light absorption and energy band alignment (type II heterostructures), [SO4] acted as a charge -transfer medium, and electrode-electrolyte interface kinetic reactions.

  • 264.
    Ye, L L
    et al.
    Chalmers University of Technology.
    Thölén, A
    Chalmers University of Technology.
    Jacob, A P
    Chalmers University of Technology.
    Myrberg, T
    Chalmers University of Technology.
    Nour, Omer
    Chalmers University of Technology.
    Willander, Magnus
    Chalmers University of Technology.
    Structural roughness and interface strain properties in Si/SiO2/poly-Si1-xGex tri-layer system with ultrathin oxide2003In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482X, Vol. 14, no 4, p. 247-254Article in journal (Refereed)
    Abstract [en]

    We have explored the microstructure and local interface strain in the poly-Si1-xGex/SiO2/Si tri-layer system with ultrathin oxides. High-resolution transmission electron microscopy (HRTEM) and high-resolution X-ray diffraction rocking curves (HR-RC) and two-dimensional reciprocal space mapping (2D-RSM) were the main characterization tools. The poly-Si1-xGex/SiO2/Si structures have x=0, 0.2, and 0.35 for ultrathin oxides (2.0-3.0 nm). The result shows that for the adopted growth process, the poly grain size depends very strongly on the Ge concentration, and it increases with increasing Ge mole fraction. In turn, this increase of the grain size in the poly-Si1-xGex/SiO2/Si reduces the strain in the film, which then affects the interface strain at the lower SiO2/Si interface. In addition, the presence of defects at the SiO2/Si interface was found to be greater for samples with no local interface strain.

  • 265.
    Yousuf Soomro, Muhammad
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Hussain, I
    Ecospark AB, Sweden .
    Bano, Nargis
    Thinfilm AB, Linköping, Sweden.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Annealing effect on the electrical and optical properties of Au/n-ZnO NWs Schottky diodes white LEDs2013In: Superlattices and Microstructures, ISSN 0749-6036, E-ISSN 1096-3677, Vol. 62, p. 200-206Article in journal (Refereed)
    Abstract [en]

    We report the post-growth heat treatment effect on the electrical and the optical properties of hydrothermally grown zinc oxide (ZnO) nanowires (NWs) Schottky white light emitting diodes (LEDs). It was found that there is a changed in the electroluminescence (EL) spectrum when post growth annealing process was performed at 600 degrees C under nitrogen, oxygen and argon ambients. The EL spectrum for LEDs based on the as grown NWs show three bands red, green and blue centered at 724, 518 and 450 nm respectively. All devices based on ZnO NWs annealed in oxygen (O-2), nitrogen (N-2) and argon (Ar) ambient show blue shift in the violet and the red emissions whereas a red shift is observed in the green emission compared to the as grown NWs based device. The color rendering index (CRI) and the correlated color temperature (CCT) of all LEDs were calculated to be in the range 78-91 and 2753-5122 K, respectively. These results indicate that light from the LEDs can be tuned from cold white light to warm white light by post growth annealing.

  • 266.
    Yousuf Soomro, Muhammad
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, Sajad
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Bano, Nargis
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, Ijaz
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Hybrid organic zinc oxide white-light-emitting diodes on disposable paper substrate2013In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 210, no 8, p. 1600-1605Article in journal (Refereed)
    Abstract [en]

    ZnO-organic hybrid white-light-emitting diodes (WLEDs) were demonstrated on a paper substrate. The configuration used for ZnO-organic hybrid WLEDs consists a layer of poly (9,9)-(dioctylfluorene) (PFO) on poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) on n-type ZnO nanorods grown by a low-temperature chemical aqueous method on paper substrate. Room temperature photoluminescence, electroluminescence, and cathodoluminescence (CL) spectra reveal a broad visible region covering the range from 420 to 800nm. By using room temperature-CL, we got luminescence information, especially to verify the origin of specific emissions, the internal absorption of the ultraviolet and the spatial distribution of radiative defects. It was observed that the visible wavelength range depends on the penetration depth of the excitation. This suggests that the concentration of deep levels responsible for the visible luminescence is at the sample surface to a depth of 1-2 mu m when using an accelerating voltage up to 20-30kV. The results indicate that demonstration of WLEDs on paper substrate with reasonable electrical performance greatly influences the reduction of substrate cost, furthermore, this may open way to fabricate optoelectronics devices on disposable substrates for large-area applications.

  • 267.
    Zainelabdin, A.
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Deposition of Well-Aligned ZnO Nanorods at 50 degrees C on Metal, Semiconducting Polymer, and Copper Oxides Substrates and Their Structural and Optical Properties2010In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 10, no 7, p. 3250-3256Article in journal (Refereed)
    Abstract [en]

    A two-step chemical bath deposition was utilized to synthesize ZnO nanorod arrays (ZNRAs) on metals, poly(3,4-ethylenedioxythiophene)/poly(strenesulfonate) (PEDOT/PSS) coated flexible plastic foils, and copper oxides coated glass substrates. The whole synthesis procedure was carried out at a low temperature of 50 degrees C, without any other substrate treatments. The low growth temperature showed improved influence on both the ZNRAs structural and optical properties. Scanning electron microscopy (SEM) images revealed well-aligned ZNRAs with large aspect ratios, and X-ray diffraction (X RI)) analysis indicated that single crystalline ZNRAs were achieved with high c-axial orientation tendency. Room temperature photoluminescence (PL) measurements demonstrated excellent optical properties of the as-grown ZNRAs with very low defect concentration contrary to what was believed to be achieved when lowering the growth temperature. The impact of the low deposition temperature on the ZNRAs structure is discussed in connection to the thermodynamics constraints, while the temperature effect on the defects formation and density in the as-deposited ZNRAs is elaborated and compared with recent theoretical calculations that appeared in the literature.

  • 268.
    Zainelabdin, A
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Stable White Light Electroluminescence from Highly Flexible Polymer/ZnO Nanorods Hybrid Heterojunction Grown at 50 degrees C2010In: Nanoscale research letters, ISSN 1556-276X, Vol. 5, no 9, p. 1442-1448Article in journal (Refereed)
    Abstract [en]

    Stable intrinsic white light-emitting diodes were fabricated from c-axially oriented ZnO nanorods (NRs) grown at 50 degrees C via the chemical bath deposition on top of a multi-layered poly(9,9-dioctylfluorene-co-N-(4-butylpheneylamine)diphenylamine)/poly(9,9dioctyl-fluorene) deposited on PEDOT:PSS on highly flexible plastic substrate. The low growth temperature enables the use of a variety of flexible plastic substrates. The fabricated flexible white light-emitting diode (FWLED) demonstrated good electrical properties and a single broad white emission peak extending from 420 nm and up to 800 nm combining the blue light emission of the polyflourene (PFO) polymer layer with the deep level emission (DLEs) of ZnO NRs. The influence of the temperature variations on the FWLED white emissions characteristics was studied and the devices exhibited high operation stability. Our results are promising for the development of white lighting sources using existing lighting glass bulbs, tubes, and armature technologies.

    Download full text (pdf)
    fulltext
  • 269.
    Zainelabdin, A
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Optical and current transport properties of CuO/ZnO nanocoral p-n heterostructure hydrothermally synthesized at low temperature2012In: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 108, no 4, p. 921-928Article in journal (Refereed)
    Abstract [en]

    We demonstrate the synthesis and investigate the electrical and optical characteristics of nanocorals (NCs) composed of CuO/ZnO grown at low temperature through the hydrothermal approach. High-density CuO nanostructures (NSs) were selectively grown on ZnO nanorods (NRs). The synthesized NCs were used to fabricate p-n heterojunctions that were investigated by the current density-voltage (J-V) and the capacitance-voltage (C-V) techniques. It was found that the NC heterojunctions exhibit a well-defined diode behavior with a threshold voltage of about 1.52 V and relatively high rectification factor of similar to 760. The detailed forward J-V characteristics revealed that the current transport is controlled by an ohmic behavior for V andlt;= 0.15 V, whereas at moderate voltages 1.46 andlt;= V andlt; 1.5 the current follows a J alpha exp(beta V) relationship. At higher voltages (andgt;= 1.5 V) the current follows the relation J alpha V-2, indicating that the space-charge-limited current mechanism is the dominant current transport. The C-V measurement indicated that the NC diode has an abrupt junction. The grown CuO/ZnO NCs exhibited a broad light absorption range that is covering the UV and the entire visible parts of the spectrum.

    Download full text (pdf)
    fulltext
  • 270.
    Zainelabdin, Ahmed
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
    CuO/ZnO Nanocorals synthesis via hydrothermal technique: growth mechanism and their application as Humidity Sensor2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 23, p. 11583-11590Article in journal (Refereed)
    Abstract [en]

    We demonstrate hydrothermal synthesis of coral-like CuO nanostructures by selective growth on ZnO nanorods (NR) at low temperatures. During the hydrothermal processing the resultant hydroxylated and eroded surface of ZnO NR becomes favorable for the CuO nanostructures growth via oriented attachments. Heterojunction p-n diodes fabricated from the CuO/ZnO nanocorals (NC) reveal stable and high rectification diode properties with a turn-on voltage ~1.52 V and negligible reverse current. The humidity sensing characteristics of the CuO/ZnO NC diodes exhibit a remarkable linear (in a semilogarithmic scale) decrease in the DC resistance by more than three orders when the relative humidity is changed from 30 – 90 %. The NC humidity sensor is also found to reveal the highest sensitivity factor ~6045 among available data for the constituent material’s and a response and recovery time of 6 s and 7 s, respectively.

    Download full text (pdf)
    fulltext
  • 271.
    Zainelabdin, Ahmed
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zaman, Siama
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Hussain, S.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Synthesis and Characterization of CuO/ZnO Composite Nanostructures: Precursor’s Effects, and their Optical Properties2012Manuscript (preprint) (Other academic)
    Abstract [en]

    A two steps hydrothermal method was developed to synthesize CuO/ZnO composite nanostructures (NSs) on glass substrate. The CuO NSs were selectively assembled on the lateral surface of ZnO nanorods (NRs) upon short growth duration. While the CuO NSs were entirely covered the surface of ZnO NRs at extended growth durations. The growth kinetics of CuO NSs is strongly dependent on the nature and the pH value of the precursor solution. When a single precursor solution of copper nitrate was applied in the synthesis process, a coral-like CuO/ZnO NSs were obtained. However, by adding a pH controlling agent to the precursor solution significant increase in the size of the grown CuO NSs was observed. The results revealed that the grown CuO NSs were robustly adhered to ZnO NRs, however, no explicit epitaxial relationship was found. The ZnO NRs band to band and defects emissions ratio was decreased compared to that of pure ZnO NRs, suggesting that oxygen vacancies are the probable growth sites of CuO NSs. The CuO/ZnO composite NSs exhibited a broad light absorption covering the whole visible range compared to the constituent materials. The low growth temperatures along with the optical properties of CuO/ZnO suggest these composite NSs may carry great potentials in light harvesting, sensing and emitting applications.

  • 272.
    Zaman, Siama
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Asif, Muhammad
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zainelabdin, A.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    CuO nanoflowers as an electrochemical pH sensor and the effect of pH on the growth2011In: JOURNAL OF ELECTROANALYTICAL CHEMISTRY, ISSN 1572-6657, Vol. 662, no 2, p. 421-425Article in journal (Refereed)
    Abstract [en]

    Well-crystallized flower-shaped cupric oxide (CuO) nanostructures composed of thin leaves have been synthesized by simple low-temperature chemical bath method and used to fabricate pH sensor. We examined the effect of the pH on the growth of the CuO nanostructures, by changing the pH of the precursor solutions different morphologies of the CuO nanostructures were obtained. CuO nanoflowers have recently become important as a material that provides an effective surface for electrochemical activities with enhanced sensing characteristics. The proposed sensor exhibited a linear electrochemical response within a wide pH range of (2-11). The experimental results (time response, electrochemical activity, reproducibility, absorption spectra, and XRD) indicate that the CuO nanoflowers can be used in pH sensor applications with enhanced properties.

    Download full text (pdf)
    fulltext
  • 273.
    Zaman, Siama
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zainelabdin, A
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nur, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode2011In: Applied Physics A: Materials Science & Processing, ISSN 0947-8396, E-ISSN 1432-0630, Vol. 104, no 4, p. 1203-1209Article in journal (Refereed)
    Abstract [en]

    Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) were fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50A degrees C. Three different LEDs, with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods, were fabricated and studied. The current-voltage characteristics show good diode behavior with an ideality factor in the range of 2.1 to 2.27 for all three devices. The electroluminescence spectrum (EL) of the blended device has an emission range from 450 nm to 750 nm, due to the intermixing of the blue emission generated by poly(9,9-dioctylfluorene) denoted as PFO with orange-red emission produced by poly(2-methoxy-5(20-ethyl-hexyloxy)-1,4-phenylenevinylene) 1,4-phenylenevinylene) symbolized as MEH PPV combined with the deep-band emission (DBE) of the ZnO nanorods, i.e. it covers the whole visible region and is manifested as white light. The CIE color coordinates showed bluish, orange-red and white emission from the PFO, MEH PPV and blended LEDs with ZnO nanorods, respectively. These results indicate that the choice of the polymer with proper concentration is critical to the emitted color in ZnO nanorods/p-organic polymer LEDs and careful design should be considered to obtain intrinsic white light sources.

    Download full text (pdf)
    fulltext
  • 274.
    Zaman, Siama
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zainelabdin, A
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Low-Temperature Chemical Growth of ZnO Nanorods with Enhanced UV Emission on Plastic Substrates2010In: JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, ISSN 1555-130X, Vol. 5, no 1, p. 50-54Article in journal (Refereed)
    Abstract [en]

    In this paper we report ZnO nanorods (NRs) grown by a two step chemical bath deposition method at temperature down to 50 degrees C. The structural and optical properties of the as deposited ZnO NRs grown at 50 degrees C, 75 degrees C, and 95 degrees C, were all investigated and compared using X-ray diffraction and photoluminescence. X-ray diffraction verified that all grown ZnO NRs have a preferential growth orientation along the c-axis and that all samples show the same peaks with the same intensity indicating the same structural quality despite the different growth temperatures. By comparing the PL of the different samples grown at different temperatures, surprisingly the sample grown at the lowest temperature (50 degrees C) exhibit an enhancement in the near band emission intensities by more than three orders of magnitude and a suppressed deep level emission by the same amount. This is explained by the fact that the lower growth temperature did not provide enough energy for native point defects to nucleate.

  • 275.
    Zaman, Siama
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zainelabdin, Ahmed
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes2012In: Journal of Physics and Chemistry of Solids, ISSN 0022-3697, E-ISSN 1879-2553, Vol. 73, no 11, p. 1320-1325Article in journal (Refereed)
    Abstract [en]

    An efficient catalytic effect of petals and flowers like CuO nanostructures (NSs) on the degradation of two organic dyes, methylene blue (MB) and rhodamine B (RB) were investigated. The highest degradation of 95% in CuO petals and 72% in flowers for MB is observed in 24 h. For RB, the degradation was 85% and 80% in petals and flowers, respectively for 5 h. It was observed that CuO petals appeared to be more active than flowers for degradation of both dyes associated to high specific surface area. The petals and flower like CuO NSs were synthesized using the chemical bath method at 90 °C. The grown CuO NSs were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD).

    Download full text (pdf)
    fulltext
  • 276.
    Zaman, Siama
    et al.
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Zainelabdin, Ahmed
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Amin, Gul
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Nour, Omer
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Willander, Magnus
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Influence of the polymer concentration on the electroluminescence of ZnO nanorod/polymer hybrid light emitting diodes2012In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 112, no 6, p. 064324-Article in journal (Refereed)
    Abstract [en]

    The effects of the polymer concentration on the performance of hybrid light emitting diodes (LEDs) based on zinc oxide nanorods (ZnO NRs) and poly(9,9-dioctylfluorene) (PFO) was investigated. Various characterization techniques were applied to study the performance of the PFO/ZnO NR hybrid LEDs fabricated with various PFO concentrations. The fabricated hybrid LEDs demonstrated stable rectifying diode behavior, and it was observed that the turn-on voltage of the LEDs is concentration dependent. The measured room temperature electroluminescence (EL) showed that the PFO concentration plays a critical role in the emission spectra of the hybrid LEDs. At lower PFO concentrations of 2-6 mg/ml, the EL spectra are dominated by blue emission. However, by increasing the concentration to more than 8 mg/ml, the blue emission was completely suppressed while the green emission was dominant. This EL behavior was explained by a double trap system of excitons that were trapped in the β-phase and/or in the fluorenone defects in the PFO side. The effects of current injection on the hybrid LEDs and on the EL emission were also investigated. Under a high injection current, a new blue peak was observed in the EL spectrum, which was correlated to the creation of a new chemical species on the PFO chain. The green emission peak was also enhanced with increasing injection current because of the fluorenone defects. These results indicate that the emission spectra of the hybrid LEDs can be tuned by using different polymer concentrations and by varying the current injected into the device.

    Download full text (pdf)
    fulltext
3456 251 - 276 of 276
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf