liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
34567 251 - 300 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 251.
    Sinno, Hiam
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Nguyen, Ha Tran
    University of Mons-UMONS, Belgium.
    Hägerström, Anders
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Lindell, Linda
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Coulembier, Olivier
    University of Mons-UMONS, Belgium.
    Dubois, Philippe
    University of Mons-UMONS, Belgium.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Amphiphilic semiconducting copolymer as compatibility layer for printing polyelectrolyte-gated OFETs2013Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 14, nr 3, s. 790-796Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a method for inkjet-printing an organic semiconductor layer on top of the electrolyte insulator layer in polyelectrolyte-gated OFETs by using a surface modification treatment to overcome the underlying wettability problem at this interface. The method includes depositing an amphiphilic diblock copolymer (P3HT-b-PDMAEMA). This material is designed to have one set of blocks that mimics the hydrophobic properties of the semiconductor (poly(3-hexylthiophene) or P3HT), while the other set of blocks include polar components that improve adhesion to the polyelectrolyte insulator. Contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy confirm formation of the desired surface modification film. Successful inkjet printing of a smooth semiconductor layer allows us to manufacture complete transistor structures that exhibit low-voltage operation in the range of 1 V.

  • 252.
    Spyropoulos, George D.
    et al.
    Columbia Univ, NY 10027 USA.
    Savarin, Jeremy
    Columbia Univ, NY 10027 USA.
    Gomez, Eliot
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gelinas, Jennifer N.
    Columbia Univ, NY 10032 USA.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khodagholy, Dion
    Columbia Univ, NY 10027 USA.
    Transcranial Electrical Stimulation and Recording of Brain Activity using Freestanding Plant-Based Conducting Polymer Hydrogel Composites2019Ingår i: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, artikel-id 1900652Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transcranial electrical stimulation is a noninvasive neurostimulation technique with a wide range of therapeutic applications. However, current electrode materials are typically not optimized for this abiotic/biotic interface which requires high charge capacity, operational stability, and conformability. Here, a plant-based composite electrode material based on the combination of aloe vera (AV) hydrogel and a conducting polymer (CP; poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, PEDOT:PSS) is reported. This material system is fabricated into films and provides biocompatibility, conformability, and stability, while offering desirable electrical properties of the PEDOT:PSS. AVCP films are also molded onto the rough surface of the skull leading to a mechanically stable and robust interface. The in vivo efficacy of the AVCP films is verified to function as stimulating and recording electrodes by placing them on the skull of a rat and concomitantly inducing focal seizures and acquiring the evoked neural activity. AVCP films pave the way for high-quality biological interfaces that are broadly applicable and can facilitate advances in closed-loop responsive stimulation devices.

  • 253.
    Stavrinidou, Eleni
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gomez, Eliot
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Ove
    Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden..
    Simon, Daniel T.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Electronic plants2015Ingår i: Science Advances, ISSN 2375-2548, Vol. 1, nr 10, s. 1-8, artikel-id e1501136Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directlymerged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization.

  • 254.
    Stavrinidou, Eleni
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, K. Peter R.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Franco- Gonzalez, Juan Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Volkov, Anton V.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus P.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Grimoldi, Andrea
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Elgland, Mathias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor V.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    In vivo polymerization and manufacturing of wires and supercapacitors in plants2017Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 11, s. 2807-2812Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization

  • 255.
    Sun, Hengda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gerasimov, Jennifer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    n-Type organic electrochemical transistors: materials and challenges2018Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, nr 44, s. 11778-11784Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have emerged as an enabling technology for the development of a variety of applications ranging from digital logic circuits to biosensors and artificial synapses for neuromorphic computing. To date, most of the reported OECTs rely on the use of p-type (hole transporting) conducting and semiconducting polymers as the channel material, while electron transporting (n-type) OECTs are yet immature, thus precluding the realization of advanced complementary circuitry. In this highlight, we review and discuss recent achievements in the area of n-type OECTs, in particular targeting recently reported n-type channel materials and how these have enabled a considerable advancement of OECT circuit capabilities. Further, the critical challenges currently limiting the performance of n-channel OECTs are summarized and discussed, setting material design guidelines for the next generation n-type and complementary OECTs.

  • 256.
    Sun, Hengda
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Wang, Suhao
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 9, artikel-id 1704916Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-electron affinity conjugated polymers, has made the development of n-type OECTs troublesome. Here, it is shown that ladder-type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n-channel material for OECTs. These devices can be easily fabricated by means of facile spray-coating techniques. BBL-based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL-based n-type OECTs can be successfully integrated with p-type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst-case noise margin at a supply voltage below 0.6 V.

  • 257.
    Sung, Sang Hyun
    et al.
    Korea Adv Inst Sci and Technol, South Korea.
    Kim, Young Soo
    Korea Adv Inst Sci and Technol, South Korea.
    Joe, Daniel J.
    Korea Adv Inst Sci and Technol, South Korea.
    Mun, Beom Ho
    Korea Adv Inst Sci and Technol, South Korea.
    You, Byoung Kuk
    Korea Adv Inst Sci and Technol, South Korea.
    Keum, Do Hee
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Hahn, Sei Kwang
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kim, Daesoo
    Korea Adv Inst Sci and Technol, South Korea.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Flexible wireless powered drug delivery system for targeted administration on cerebral cortex2018Ingår i: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 51, s. 102-112Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The controlled drug delivery devices helps timely drug administrations and maintenance of effective dose to maximize curing effects with minimal side effects. Application of this technology to various body parts has been limited, especially in organs with curved surface, such as the brain and the eye. Herein, we report a flexible drug delivery microdevice (f-DDM) for controlled administration on the curved organ surface. The unique structure of the f-DDM consists of freestanding gold membranes over the multireservoir array was implemented by reversing the typical fabrication order of the reservoir and sealing membrane. We optimized the design of the f-DDM by a finite element analysis to prevent thermal damage during the laser transfer and the applying current density for reliable drug release through an electrochemical analysis. The wireless power transfer system was applied to f-DDM, which shows stable wirelessly powered operation. The f-DDM was flexible enough to be implantable on the curved cerebral cortex and successfully adopted for delivery of two different chemicals or prevention of seizure activity using an anti-epileptic drug. Our study opens a new avenue for the controlled, region-specific, and combinatorial application of drugs, the key factors for precision medicine.

  • 258.
    Suspéne, Clément
    et al.
    Univ. Paris Diderot, Paris, France.
    Piro, Benoit
    Univ. Paris Diderot, Paris, France.
    Reisberg, Steeve
    Univ. Paris Diderot, Paris, France.
    Pham, Minh-Chau
    Univ. Paris Diderot, Paris, France.
    Toss, Henrik
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Yassar, Abderrahim
    LPICM, France.
    Horrowitz, Gilles
    LPICM, France.
    Copolythiophene-based water-gated organic field-effect transistors for biosensing2013Ingår i: Journal of Materials Chemistry B, ISSN 2050-750X, Vol. 1, nr 15, s. 2090-2097Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper reports on the sensing of proteins using water-gated organic field-effect transistors. As a proof-of-concept, streptavidin and avidin were used, with a biotinylated polymer as the active sensing material. The latter is a copolythiophene modified to graft biotin by peptidic coupling. After characterization of its structure, it was integrated as the channel material into transistors and its interactions with several proteins were investigated. Non-specific interactions were reduced when the polymer surface was pretreated with 1-octanol. In this case, human serum albumin had no effect on the transistor characteristics whereas avidin and streptavidin led to a decrease of the drain current.

  • 259.
    Svennersten, Karl
    et al.
    Karolinska Institutet, Swedish Medical Nanoscience Center, Department of Neuroscience, Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Institutet, Swedish Medical Nanoscience Center, Department of Neuroscience, Stockholm, Sweden.
    Jager, Edwin W H
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Mechanical stimulation of epithelial cells using polypyrrole microactuators.2011Ingår i: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 11, nr 19, s. 3287-3293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The importance of mechanotransduction for physiological systems is becoming increasingly recognized. The effect of mechanical stimulation is well studied in organs and tissues, for instance by using flexible tissue culture substrates that can be stretched by external means. However, on the cellular and subcellular level, dedicated technology to apply appropriate mechanical stimuli is limited. Here we report an organic electronic microactuator chip for mechanical stimulation of single cells. These chips are manufactured on silicon wafers using traditional microfabrication and photolithography techniques. The active unit of the chip consists of the electroactive polymer polypyrrole that expands upon the application of a low potential. The fact that polypyrrole can be activated in physiological electrolytes makes it well suited as the active material in a microactuator chip for biomedical applications. Renal epithelial cells, which are responsive to mechanical stimuli and relevant from a physiological perspective, are cultured on top of the microactuator chip. The cells exhibit good adhesion and spread along the surface of the chip. After culturing, individual cells are mechanically stimulated by electrical addressing of the microactuator chip and the response to this stimulation is monitored as an increase in intracellular Ca(2+). This Ca(2+) response is caused by an autocrine ATP signalling pathway associated with mechanical stimulation of the cells. In conclusion, the present work demonstrates a microactuator chip based on an organic conjugated polymer, for mechanical stimulation of biological systems at the cellular and sub-cellular level.

  • 260.
    Svennersten, Karl
    et al.
    Karolinska Institutet.
    Bolin, Maria H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Jager, Edwin W.H.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Institutet.
    Electrochemical modulation of epithelia formation using conducting polymers2009Ingår i: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 30, nr 31, s. 6257-6264Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers are soft, flexible materials, exhibiting material properties that can be reversibly changed by electrochemically altering the redox state. Surface chemistry is an important determinant for the molecular events of cell adhesion. Therefore, we analyzed whether the redox state of the conducting polymer PEDOT:Tosylate can be used to control epithelial cell adhesion and proliferation. A functionalized cell culture dish comprising two adjacent electrode surfaces was developed. Upon electronic addressing, reduced and oxidized surfaces are created within the same device. Simultaneous analysis of how a homogenous epithelial MDCK cell population responded to the electrodes revealed distinct surface-specific differences. Presentation of functional fibronectin on the reduced electrode promoted focal adhesion formation, involving αvβ3 integrin, cell proliferation, and ensuing formation of polarized monolayers. In contrast, the oxidized surface harbored only few cells with deranged morphology showing no indication of proliferation. This stems from the altered fibronectin conformation, induced by the different surface chemistry of the PEDOT:Tosylate electrode in the oxidized state. Our results demonstrate a novel use of PEDOT:Tosylate as a cell-hosting material in multiple-electrode systems, where cell adhesion and proliferation can be controlled by electrochemical modulation of surface properties.

  • 261.
    Svennersten, Karl
    et al.
    Karolinska Institute.
    Larsson, Karin C
    Karolinska Institute.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Institute.
    Organic bioelectronics in nanomedicine2011Ingår i: BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, ISSN 0304-4165, Vol. 1810, nr 3, s. 276-285Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Background: Nanomedicine is a research area with potential to shape, direct, and change future medical treatments in a revolutionary manner over the next decades. While the common goal with other fields of biomedicine is to solve medical problems, this area embraces an increasing number of technology platforms as they become miniaturized. Organic electronics has over the past two decades developed into an exciting and thriving area of research. Scope of review: Today, the organic electronics field stands at the interface with biology. As the area of organic bioelectronics advances, it holds promise to make major contributions to nanomedicine. The progress made in this direction is the topic of this review. Major conclusions: We describe the inherent features of conducting polymers, and explain the usefulness of these materials as active scaffolds in cell biology and tissue engineering. We also explain how the combined ionic and electronic conductive nature of the polymers is used to precisely control the delivery of signal substances. This unique feature is key in novel devices for chemical communication with cells and tissues. General significance: This review highlights the results from the creative melting pot of interdisciplinary research in organic bioelectronics. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.

  • 262.
    Svensson, Per-Olof
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Acreo AB.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik. Linköpings universitet, Tekniska högskolan.
    Berggren , Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    A sensor circuit using reference-based conductance switching in organic electrochemical transistors2008Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, nr 20, s. 203301-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using organic electrochemical transistors as sensors, the sample-receptor reaction often induces moderate changes only in the drain current dynamics as the gate voltage level is switched. Here, we report an electrochemical sensor circuit including electrochemical transistors based on poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate that puts out a static sensor response signal. The circuit includes a sample and a reference transistor that are both driven in the resistive mode at 0.1 V. Measurements were performed on aqueous salt electrolytes ranging from 100 to 500 mM concentrations. The signal-ON sensor circuit provides a tenfold increase in the sensitivity as compared to single transistor sensors.

  • 263.
    Svensson, Per-Olof
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Nilsson, David
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Robinson, Nathaniel D
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Häll, Jessica
    ITN Fysik och elektroteknik.
    Electrical characterisation of an organic electrochemical transistor2003Ingår i: Polytronic,2003, 2003Konferensbidrag (Refereegranskat)
  • 264.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Acreo AB, Bredgatan 34, SE-601 21 Norrköping, Sweden.
    Robertsson, Mats
    Acreo AB, Bredgatan 34, SE-601 21 Norrköping, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Printable organic temperature logger based on overoxidation front propagation in PEDOT:PSSManuskript (Övrigt vetenskapligt)
    Abstract [en]

    An electrochemical temperature logger has been realized by using the propagation of overoxidation fronts in stripes of poly(3,4-ethylenedioxythiopehene) blended with poly(styrenesulfonate) (PEDOT:PSS). The over-oxidation front propagation has been characterized and related to the ionic conductivity of polyethylene glycol (PEG) electrolytes. The electrolytes were chosen to have a phase transition in the temperature interval to be monitored, resulting in large conductivity variations and thereby an easily interpreted output. A logger demonstrator has been fabricated and shown to detect a temperature increase and a following temperature decrease. This very simple device is cheap to produce and could be used to monitor the temperature of packages.

  • 265.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Nilsson, David
    Acreo AB.
    Robertsson, Mats
    Acreo AB.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Printable organic electrochemical circuit to record time-temperature history2010Ingår i: ELECTROCHIMICA ACTA, ISSN 0013-4686, Vol. 55, nr 23, s. 7061-7066Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An electrochemical circuit to record time-temperature history has been realized by using the propagation of over-oxidation fronts in stripes of poly(3,4-ethylenedioxythiopehene) blended with poly(styrenesulfonate) (PEDOT:PSS). The over-oxidation front propagation has been characterized and related to the phase change of polyethylene glycol (PEG) electrolytes. The electrolytes were chosen to have a phase transition in the temperature interval to be monitored, resulting in large conductivity variations and thereby an easily interpreted output. A demonstrator has been fabricated and shown to detect a temperature increase and a following temperature decrease. This very simple device is cheap to produce and could be used to monitor the temperature of packages.

  • 266.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Hennerdal, Lars-Olov
    Acreo AB.
    Dyer, Aubrey L
    University of Florida.
    Reynolds, John R
    University of Florida.
    Berggren , Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Improving the contrast of all-printed electrochromic polymer on paper displays2009Ingår i: JOURNAL OF MATERIALS CHEMISTRY, ISSN 0959-9428 , Vol. 19, nr 13, s. 1799-1802Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PEDOT:PSS-based electrochromic displays have been explored for manufacture on flexible paper substrates in roll-to-roll printing presses at high volumes and low costs. Here, we report the improvement of the optical contrast of such devices by adding an extra layer of a dihexyl-substituted poly(3,4-propylenedioxythiophene) (PProDOT-Hx2) to complement the optical absorption spectrum of PEDOT: PSS. The oxidized state of PProDOT-Hx2 is highly transparent and is an intense magenta color while in the reduced state. By adding a layer of PProDOT-Hx2 directly on top of PEDOT: PSS, we were able to improve the optical contrast by nearly a factor of two. In this report, we present optical and electrochemical data of PProDOT-Hx2/PEDOT: PSS-based electrochromic paper displays and compare their performance with PEDOT: PSS-only equivalents.

  • 267.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Isaksson, Joakim
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Mammo, W.
    Department of Materials and Surface Chemistry/Polymer Technology Chalmers University of Technology.
    Andersson, M.R.
    Department of Materials and Surface Chemistry/Polymer Technology Chalmers University of Technology.
    Robinson, Nathaniel D
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Evaluation of active materials designed for use in printable electrochromic polymer displays2006Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, nr 4, s. 2485-2492Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In a step towards roll-to-roll production of polymer-based electrochromic displays on flexible substrates, nine thiophene-based polymers and copolymers designed to increase the contrast of displays based on poly(3,4-ethylenedioxythiophene)/poly(styrene-sulfonic acid) have been synthesized and evaluated with respect to their absorbance (contrast), switch speed, and ability to switch reversibly in a water-based electrolyte. The results of the evaluation, including cyclic voltammetry and optically visible absorption, provide a basis for understanding what an aqueous electrolyte electrochromic display requires in terms of oxidation potential and material stability, and the effect of chemical structure on the reversibility and speed of switching. © 2006 Elsevier B.V. All rights reserved.

  • 268.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kanciurzewska, Anna
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    The effect of pH on the elechtrochemical over-oxidation of PEDOT:PSS films2007Ingår i: Solid State Ionics, ISSN 0167-2738, E-ISSN 1872-7689, Vol. 177, nr 39-40, s. 3521-3527Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chemical degradation of conjugated polymers is one cause of material failures in polymer-based (opto)electronic devices, but can also be used as a technique for subtractive patterning of polymer films. When a large anodic potential is applied to the conducting polymer blend poly(3,4-ethylenedioxythiophene)-poly(4styrenesulfonate), PEDOT:PSS, an over-oxidation reaction occurs, altering its electrical conductivity. Here, we have studied the effect of pH on the electrochemical over-oxidation process of PEDOT in PEDOT:PSS. High pH is associated with a decrease of over-oxidation potential and an increase of resistivity in the resulting film. Vibrational spectroscopy and photoelectron spectroscopy measurements on over-oxidized PEDOT:PSS films indicate that the decrease in conductivity results from cleavage of the conjugation pathway accompanied by the formation of sulfone, carbonyl and carboxylic groups in the polymer chain.

  • 269.
    Tehrani, Payman
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Remonen, Tommie
    Acreo AB, Norrköping.
    Hennerdal, Lars-Olov
    Acreo AB, Norrköping.
    Malmström, Anna
    Acreo AB, Norrköping.
    Häll, Jessica
    ITN Fysik och elektroteknik.
    Nilsson, David
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Leenders, Luc
    Agfa-Gevaert NV, Mortsel, Belgium.
    Kugler, Thomas
    Acreo AB, Norrköping.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Electrochemical Patterning of Conducting Polymer Layers: A Novel Technology for "Printing" Polymer Electronic Devices2002Ingår i: Material Research Society Spring Meeting,2002, 2002Konferensbidrag (Refereegranskat)
  • 270.
    Tehrani, Payman
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Robinson, Nathaniel D.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kugler, Thomas
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Remonen, Tommi
    Acreo AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
    Hennerdal, Lars-Olov
    Acreo AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
    Häll, Jessica
    Acreo AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
    Malmström, Anna
    Acreo AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
    Leenders, Luc
    AGFA-Gevaert NV, Septestraat 27, B-2640 Mortsel, Belgium.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Patterning polythiophene films using electrochemical over-oxidation2005Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 14, s. N21-N25Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Over-oxidative degradation of polythiophenes, which breaks the conjugation and destroys the electronic conductivity of the polymer, is well documented as a liability in these materials. We use this 'weakness', via controlled electrochemical over-oxidation, in a novel subtractive patterning technique compatible with high-speed reel-to-reel printing technology. We demonstrate the use of electrochemical over-oxidation to pattern PEDOT:PSS films via an x–y plotter, silk-screen and high-resolution photolithographic techniques, resulting in patterning down to a resolution of 2 µm and a conduction contrast between unpatterned and patterned areas of up to 108.

  • 271.
    Toss, Henrik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sani, Negar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Polarization of ferroelectric films through electrolyte2016Ingår i: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 28, nr 10, artikel-id 105901Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A simplified model is developed to understand the field and potential distribution through devices based on a ferroelectric film in direct contact with an electrolyte. Devices based on the ferroelectric polymer polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) were produced – in metalferroelectric-metal, metal-ferroelectric-dielectric-metal, and metal-ferroelectric-electrolyte-metal architectures – and used to test the model, and simulations based on the model and these fabricated devices were performed. From these simulations we find indication of progressive polarization of the films. Furthermore, the model implies that there is a relation between the separation of charge within the devices and the observed open circuit voltage. This relation is confirmed experimentally. The ability to polarize ferroelectric polymer films through aqueous electrolytes, combined with the strong correlation between the properties of the electrolyte double layer and the device potential, opens the door to a variety of new applications for ferroelectric technologies, e.g., regulation of cell culture growth and release, steering molecular self-assembly, or other large area applications requiring aqueous environments.

  • 272.
    Toss, Henrik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Suspene, Clement
    University of Paris Diderot, France .
    Piro, Benoit
    University of Paris Diderot, France .
    Yassar, Abderrahim
    Ecole Polytechnique, Palaiseau, France.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Pham, Minh-Chau
    University of Paris Diderot, France .
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    On the mode of operation in electrolyte-gated thin film transistors based on different substituted polythiophenes2014Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 15, nr 10, s. 2420-2427Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Organic Thin Film Transistors (OTFT), gated through an aqueous electrolyte, have extensively been studied as sensors in various applications. These water-gated devices are known to work both as electrochemical (Organic ElectroChemical Transistor - OECT) and field-effect (Organic Field-Effect Transistor - OFET) devices. To properly model and predict the response of water-gated OTFT sensors it is important to distinguish between the mechanism, field-effect or electrochemical, by which the transistor is modulated and thus how the gate signal can be affected by the analyte. In this present study we explore three organic polymer semiconductors, poly-(3-hexyl-thiophene) (P3HT), poly-(3-carboxypentyl-thiphene) (P3CPT) and a co-polymer P3HT-co-poly-(3-ethoxypentanoic acid-thiophene) (monomer ratio 1:6, P3HT-COOH15) in water-gated OTFT structures. We report a set of transistor characteristics, including standard output parameters, impedance spectroscopy and current transients, to investigate the origin of the mode of operation in these water-gated OTFTs. Impedance characteristics, including both frequency and voltage dependence, were recorded for capacitor stacks corresponding to the gate/electrolyte/semiconductor/source structure. It is shown that P3HT as well as P3HT-COOH15 both can function as semiconductors in water gated OTFT devices operating in field-effect mode. P3CPT on the other hand shows typical signs of electrochemical mode of operation. The -COOH side group has been suggested as a possible anchoring site for biorecognition elements in EGOFET sensors, rendering P3HT-COOH15 a possible candidate for such applications.

  • 273.
    Toss, Henrik
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Lönnqvist, Susanna
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för kliniska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Nilsson, David
    Acreo Swedish ICT AB, Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT AB, Norrköping, Sweden.
    Nissa, Josefin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kratz, Gunnar
    Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för Kirurgi, Ortopedi och Onkologi. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Sinnescentrum, Hand- och plastikkirurgiska kliniken US.
    Simon, Daniel T
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ferroelectric Surfaces for Cell Release2017Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 228, s. 99-104Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Adherent cells cultured in vitro must usually, at some point, be detached from the culture substrate. Presently, the most common method of achieving detachment is through enzymatic treatment which breaks the adhesion points of the cells to the surface. This comes with the drawback of deteriorating the function and viability of the cells. Other methods that have previously been proposed include detachment of the cell substrate itself, which risks contaminating the cell sample, and changing the surface energy of the substrate through thermal changes, which yields low spatial resolution and risks damaging the cells if they are sensitive to temperature changes. Here cell culture substrates, based on thin films of the ferroelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) co-polymer, are developed for electroactive control of cell adhesion and enzyme-free detachment of cells. Fibroblasts cultured on the substrates are detached through changing the direction of polarization of the ferroelectric substrate. The method does not affect subsequent adhesion and viability of reseeded cells.

  • 274.
    Tu, Deyu
    et al.
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Herlogsson, Lars
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Parameter extraction for electrolyte-gated organic field effect transistor modeling2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a methodology to extract parameters for an electrolyte-gated organic field effect transistor DC model. The model is based on charge drift/diffusion transport under electric field and covers all regimes. Voltage dependent capacitance, mobility, contact resistance and threshold voltage shift are taken into account in this model. The feature parameters in the model are simply extracted from the transfer or output characteristics of electrolyte-gated organic field effect transistors. The extracted parameters are verified by good agreements between experimental and simulated results.

  • 275.
    Tu, Deyu
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för systemteknik, Informationskodning.
    Herlogsson, Lars
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kergoat, Loig
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    A Static Model for Electrolyte-Gated Organic Field-Effect Transistors2011Ingår i: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 58, nr 10, s. 3574-3582Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a dc model to simulate the static performance of electrolyte-gated organic field-effect transistors. The channel current is expressed as charge drift transport under electric field. The charges accumulated in the channel are considered being contributed fromvoltage-dependent electric-doublelayer capacitance. The voltage-dependent contact effect and short-channel effect are also taken into account in this model. A straightforward and efficient methodology is presented to extract the model parameters. The versatility of this model is discussed as well. The model is verified by the good agreement between simulation and experimental data.

  • 276.
    Tu, Deyu
    et al.
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Kergoat, Loïg
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Norrköping Sweden.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Norrköping Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Norrköping Sweden.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska fakulteten.
    Transient analysis of electrolyte-gated organic field effect transistors2012Ingår i: SPIE Proceedings Vol. 8478: Organic Field-Effect Transistors XI / [ed] Zhenan Bao; Iain McCulloch, 2012, Vol. 8478, s. 84780L-1-84780L-8Konferensbidrag (Refereegranskat)
    Abstract [en]

    A terminal charge and capacitance model is developed for transient behavior simulation of electrolyte-gated organic field effect transistors (EGOFETs). Based on the Ward-Dutton partition scheme, the charge and capacitance model is derived from our drain current model reported previously. The transient drain current is expressed as the sum of the initial drain current and the charging current, which is written as the product of the partial differential of the terminal charges with respect to the terminal voltages and the differential of the terminal voltages upon time. The validity for this model is verified by experimental measurements.

  • 277.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Babu Kollipara, Suresh
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry2014Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 195, s. 651-656Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast scan cyclic voltammetry (FSCV) is an electrochemical method commonly used in neuroscience for spatiotemporal measurement of the concentration of dopamine and other electroactive species. Since FSCV involves wide bandwidth measurements of low currents, the technique is normally very sensitive to electrical noise and is typically performed inside a Faraday cage. In order to reduce the electrical noise and to enable measurements in an unshielded environment, we take use of an organic electrochemical transistor (OECT) to amplify the FSCV signals. OECTs based on the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were microfabricated and characterized. A patterned 10 mu m gold microelectrode was used as the sensing electrode and the FSCV signal was amplified by the OECT. With this approach, successful measurements of dopamine concentrations in the 10 mu m range were performed in a completely unshielded measurement setup. Our results demonstrate how OECTs can successfully be used in an on-site amplification application to characterize biochemical signals, thus open up new trails for flexible multifunctional organic bioelectronics systems.

  • 278.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Forchheimer, Robert
    Linköpings universitet, Institutionen för systemteknik, Informationskodning. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Logic gates based on ion transistors2012Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 3, nr 871Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits.

  • 279.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Gabrielsson, Erik
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Toward Complementary Ionic Circuits: The npn Ion Bipolar Junction Transistor2011Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 133, nr 26, s. 10141-10145Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Many biomolecules are charged and may therefore be transported with ionic currents. As a step toward addressable ionic delivery circuits, we report on the development of a npn ion bipolar junction transistor (npn-IBJT) as an active control element of anionic currents in general, and specifically, demonstrate actively modulated delivery of the neurotransmitter glutamic acid. The functional materials of this transistor are ion exchange layers and conjugated polymers. The npn-IBJT shows stable transistor characteristics over extensive time of operation and ion current switch times below 10 s. Our results promise complementary chemical circuits similar to the electronic equivalence, which has proven invaluable in conventional electronic applications.

  • 280.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Karin C
    Karolinska Inst, Dept Neurosci, SE-17177 Stockholm, Sweden.
    Kurup, Sindhulakshmi
    Karolinska Inst, Dept Neurosci, SE-17177 Stockholm, Sweden.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Kjall, Peter
    Karolinska Inst, Dept Neurosci, SE-17177 Stockholm, Sweden.
    Isaksson, Joakim
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Sandberg, Mats
    Acreo AB, SE-60221 Norrkoping, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Richter-Dahlfors, Agneta
    Karolinska Inst, Dept Neurosci, SE-17177 Stockholm, Sweden.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Translating Electronic Currents to Precise Acetylcholine-Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device2009Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 21, nr 44, s. 4442-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A miniaturized organic electronic ion pump (OEIP) based on conjugated polymers is developed for delivery of positively charged biomolecules. Characterization shows that applied voltage can precisely modulate the delivery rate of the neurotransmitter acetylcholine. The capability of the device is demonstrated by convection-free, spatiotemporally resolved delivery of acetylcholine via a 10 mu m channel for dynamic stimulation of single neuronal cells.

  • 281.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Larsson, Karin C
    Karolinska Institute.
    Richter-Dahlfors, Agneta
    Karolinska Institute.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Ion bipolar junction transistors2010Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, ISSN 0027-8424, Vol. 107, nr 22, s. 9929-9932Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  • 282.
    Tybrandt, Klas
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends2017Ingår i: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 3, nr 12, artikel-id eaao3659Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conjugated polymer-polyelectrolyte blends combine and couple electronic semiconductor functionality with selective ionic transport, making them attractive as the active material in organic biosensors and bioelectronics, electrochromic displays, neuromorphic computing, and energy conversion and storage. Although extensively studied and explored, fundamental knowledge and accurate quantitative models of the coupled ion-electron functionality and transport are still lacking to predict the characteristics of electrodes and devices based on these blends. We report on a two-phase model, which couples the chemical potential of the holes, in the conjugated polymer, with the electric double layer residing at the conjugated polymer-polyelectrolyte interface. The model reproduces a wide range of experimental charging and transport data and provides a coherent theoretical framework for the system as well as local electrostatic potentials, energy levels, and charge carrier concentrations. This knowledge is crucial for future developments and optimizations of bioelectronic and energy devices based on the electronic-ionic interaction within these materials.

  • 283.
    Tzamalis, Georgios
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik.
    Andersson, Mats
    Chalmers.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Electrochemical control of amplified spontaneous emission in conjugated polymers2012Ingår i: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 13, nr 6, s. 954-958Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a method of electrochemically tuning the threshold intensity of the amplified spontaneous emission (ASE) of a semiconducting polymer thin film. This can be achieved in close contact with a conducting polymer electrode (PEDOT:PSS), if the latter is electrochemically tuned to an optically transparent redox state for the emitted wavelength of interest. This electrical switch between ASE and fluorescence hints that a new route to achieve electrically pumped laser is by combining an electrochemical device with a lasing conjugated polymer.

  • 284.
    Tzamalis, Georgios
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Lemaur, Vincent
    University Mons Hainaut.
    Karlsson, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Holtz, Per-Olof
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Andersson, Mats
    Chalmers.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Cornil, Jerome
    University Mons Hainaut.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fluorescence light emission at 1 eV from a conjugated polymer2010Ingår i: CHEMICAL PHYSICS LETTERS, ISSN 0009-2614, Vol. 489, nr 1-3, s. 92-95Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    While polymer light-emitting diodes are currently finding commercial applications in displays and lighting, the development of low bandgap polymers emitting in the infrared has received much less attention in spite of potential applications for instance in the field of communication technologies. We report here a light emission at 1 eV from a low bandgap polymer made of an alternation of dialkoxy-phenylene units and a low bandgap monomer composed of an electron accepting 2-thia-1,3,5,8-tetraaza-cyclopenta[b]naphthalene group fenced with electron donating thiophene units. The electronic structure of the polymer chains has been characterized at a quantum-chemical level to shed light into the experimental results.

  • 285.
    Ullah Khan, Zia
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Edberg, Jesper
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Max Hamedi, Mahiar
    KTH Royal Institute Technology, Sweden.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Wågberg, Lars
    KTH Royal Institute Technology, Sweden.
    Engquist, Isak
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoelectric Polymers and their Elastic Aerogels2016Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 22, s. 4556-4562Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

  • 286.
    Valiollahi Bisheh, Roudabeh
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Gueskine, Viktor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Singh, Amritpal
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten. Shoolini Univ, India.
    Grigoriev, Sergey A.
    Natl Res Ctr Kurchatov Inst, Russia.
    Pushkarev, Artem S.
    Natl Res Ctr Kurchatov Inst, Russia; Natl Res Univ Moscow Power Engn Inst, Russia.
    Pushkareva, Irina V.
    Natl Res Ctr Kurchatov Inst, Russia; Natl Res Univ Moscow Power Engn Inst, Russia.
    Fahlman, Mats
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Khan, Ziyauddin
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical hydrogen production on a metal-free polymer2019Ingår i: SUSTAINABLE ENERGY and FUELS, ISSN 2398-4902, Vol. 3, nr 12, s. 3387-3398Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The exploration for true electrocatalytic reactions at organic conducting polymer electrodes, including chemisorption of a reactant and desorption of a product, is receiving renewed interest due to the profound implications it could have on low-cost large area electrochemical energy technology. Here, we finalize the debate about the ability of an organic electrode, more specifically poly(3,4-ethylenedioxythiophene) (PEDOT), to be an electrocatalyst for hydrogen production. This paper proves and covers fundamental studies of the hydrogen evolution reaction (HER) on PEDOT films. Both theory based on DFT (Density Functional Theory) and experimental studies using electrochemical techniques and operando mass spectrometry suggest a Volmer-Heyrovsky mechanism for the actual HER on PEDOT. It is shown that PEDOT reaches an exchange current density comparable to that of metals (i.e. Cu, Ni, and Au) and in addition does not form passivating oxide layers or suffer from chemical corrosion in acidic media. Finally, an electrolyzer stack using the organic polymer electrode demonstrates HER performance in real applications.

    Publikationen är tillgänglig i fulltext från 2020-10-21 08:47
  • 287.
    Volkov, Anton
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Singh, Sandeep Kumar
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Stavrinidou, Eleni
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Franco Gonzalez, Felipe
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Cruce, Alex
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Simon, Daniel
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Spectroelectrochemistry and Nature of Charge Carriers in Self-Doped Conducting Polymer2017Ingår i: Advanced Electronic Materials, ISSN 2199-160X, Vol. 3, nr 8, artikel-id 1700096Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A recently developed water-soluble self-doped sodium salt of bis[3,4-ethylenedioxythiophene] 3thiophene butyric acid (ETE-S) is electropolymerized and characterized by means of spectroelectrochemistry, electron paramagnetic resonance spectroscopy, and cyclic voltammetry, combined with the density functional theory (DFT) and time-dependent DFT calculations. The focus of the studies is to underline the nature of the charge carriers when the electrochemically polymerized ETE-S films undergo a reversible transition from reduced to electrically conductive oxidized states. Spectroelectrochemistry shows clear distinctions between absorption features from reduced and charged species. In the reduced state, the absorption spectrum of ETE-S electropolymerized film shows a peak that is attributed to HOMO. LUMO transition. As the oxidation level increases, this peak diminishes and the absorption of the film is dominated by spinless bipolaronic states with some admixture of polaronic states possessing a magnetic momentum. For fully oxidized samples, the bipolaronic states fully dominate, and the features in the absorption spectra are related to the drastic changes of the band structure, exhibiting a strong decrease of the band gap when a polymeric film undergoes oxidation.

  • 288.
    Volkov, Anton
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Modeling of Charge Transport in Ion Bipolar Junction Transistors2014Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 30, nr 23, s. 6999-7005Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Spatiotemporal control of the complex chemical microenvironment is of great importance to many fields within life science. One way to facilitate such control is to construct delivery circuits, comprising arrays of dispensing outlets, for ions and charged biomolecules based on ionic transistors. This allows for addressability of ionic signals, which opens up for spatiotemporally controlled delivery in a highly complex manner. One class of ionic transistors, the ion bipolar junction transistors (IBJTs), is especially attractive for these applications because these transistors are functional at physiological conditions and have been employed to modulate the delivery of neurotransmitters to regulate signaling in neuronal cells. Further, the first integrated complementary ionic circuits were recently developed on the basis of these ionic transistors. However, a detailed understanding of the device physics of these transistors is still lacking and hampers further development of components and circuits. Here, we report on the modeling of IBJTs using Poissons and Nernst-Planck equations and the finite element method. A two-dimensional model of the device is employed that successfully reproduces the main characteristics of the measurement data. On the basis of the detailed concentration and potential profiles provided by the model, the different modes of operation of the transistor are analyzed as well as the transitions between the different modes. The model correctly predicts the measured threshold voltage, which is explained in terms of membrane potentials. All in all, the results provide the basis for a detailed understanding of IBJT operation. This new knowledge is employed to discuss potential improvements of ion bipolar junction transistors in terms of miniaturization and device parameters.

  • 289.
    Volkov, Anton
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wijeratne, Kosala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Mitraka, Evangelia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Tybrandt, Klas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Wenzel Andreasen, Jens
    Technical University of Denmark, Denmark.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Stellenbosch University, South Africa.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Understanding the Capacitance of PEDOT:PSS2017Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, nr 28, artikel-id 1700329Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion-electron conducting polymer system. PEDOT: PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy-converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT: PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two-phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two-phase PEDOT: PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT-rich and PSS-rich interconnected grains that comprises two phases of the bulk of PEDOT: PSS. This new insight paves a way for designing materials and devices, based on mixed ion-electron conductors, with improved performance.

  • 290.
    Wadeasa, Amal
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Tzamalis, G
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Sehati, Parisa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Nour, Omer
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Fahlman, Mats
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Willander, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Solution processed ZnO nanowires/polyfluorene heterojunctions for large area lightening2010Ingår i: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 490, nr 4-6, s. 200-204Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hybrid inorganic-organic semiconductor heterojunctions are nowadays scrutinized for optoelectronic devices, such as solar cells and light emitting diodes. Here, ZnO nanowires/polyfluorene heterojunctions have been entirely fabricated from solution by wet chemistry and low temperature processes. The transparent plastic electrode PEDOT injects holes in the polyfluorene, while the electrons are injected via the ZnO-Au contact, thus avoiding the use of air sensitive low work function metals. The hybrid inorganic-organic light emitting diode emits almost white light. Because of its solution processability, stable cathode, low cost and low temperature process, the ZnO/polymer heterojunction devices are promising for large area lightening applications.

  • 291.
    Wadnerkar, Nitin Shriram
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zozoulenko, Igor
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Exploring Hydrogen Storage in PEDOT: A Computational Study2019Ingår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, nr 4, s. 2066-2074Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A reliable hydrogen-based energy technology requires promising materials for safe storage and transport of hydrogen. Here, the storage of hydrogen in the organic polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is explored using density functional theory calculations. It is demonstrated that hydrogen chemisorption on PEDOT is feasible with the maximum gravimetric uptake of similar to 2.8 wt % in ambient condition, whereas physisorption is possible only at very low temperatures or at high pressure. The Gibbs absorption energies, electronic structure, and absorption spectra are calculated for the cases of chemisorption of a single hydrogen atom, a hydrogen pair, and hydrogen saturated chain for both neutral and oxidized PEDOT. Various experimental routes for PEDOT hydrogenations are discussed.

  • 292.
    Wang, Hui
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Seebeck Effect in Conducting Polymers2015Ingår i: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 5, nr 11, artikel-id 1500044Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymers display an ionic thermoelectric effect in addition to the known electronic thermoelectric effect. Their Seebeck coefficient is as large as ≈200 μV K−1. This finding discloses a new possible approach to improve the thermoelectric properties of conducting polymers by combining various types of charge carriers of the same sign.

  • 293.
    Wang, Hui
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Khan, Zia Ullah
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric effect in Polyelectrolytes2015Manuskript (preprint) (Övrigt vetenskapligt)
  • 294.
    Wang, Hui
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
    Zhao, Dan
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ullah Khan, Zia
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors2017Ingår i: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 3, nr 4, artikel-id 1700013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thermoelectric materials enable conversion of heat to electrical energy. The performance of electronic thermoelectric materials is typically evaluated using a figure of merit ZT = sigma alpha 2T/lambda, where sigma is the conductivity, alpha is the so-called Seebeck coefficient, and lambda is the thermal conductivity. However, it has been unclear how to best evaluate the performance of ionic thermoelectric materials, like ionic solids and electrolytes. These systems cannot be directly used in a traditional thermoelectric generator, because they are based on ions that cannot pass the interface between the thermoelectric material and external metal electrodes. Instead, energy can be harvested from the ionic thermoelectric effect by charging a supercapacitor. In this study, the authors investigate the ionic thermoelectric properties at varied relative humidity for the polyelectrolyte polystyrene sulfonate sodium and correlate these properties with the charging efficiency when used in an ionic thermoelectric supercapacitor (ITESC). In analogy with electronic thermoelectric generators, the results show that the charging efficiency of the ITESC can be quantitatively related to the figure of merit ZT(i) = sigma i alpha i2T/lambda. This means that the performance of ionic thermoelectric materials can also be compared and predicted based on the ZT, which will be highly valuable in the design of high-performance ITESCs.

  • 295.
    Wang, Suhao
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Himmelberger, Scott
    Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
    Puzinas, Skomantas
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Salleo, Alberto
    Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers2015Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, nr 34, s. 10599-10604Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the p-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains.

  • 296.
    Wang, Suhao
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Ail, Ujwala
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Andreasen, Jens W.
    Technical University of Denmark, Department of Energy Conversion and Storage, Roskilde, Denmark.
    Thiel, Walter
    Max‐Planck‐Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Fazzi, Daniele
    Max‐Planck‐Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Thermoelectric Properties of Solution-Processed n-Doped Ladder-Type Conducting Polymers2016Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 48, s. 10764-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ladder-type “torsion-free” conducting polymers (e.g., polybenzimidazobenzophenanthroline (BBL)) can outperform “structurally distorted” donor–acceptor polymers (e.g., P(NDI2OD-T2)), in terms of conductivity and thermoelectric power factor. The polaron delocalization length is larger in BBL than in P(NDI2OD-T2), resulting in a higher measured polaron mobility. Structure–function relationships are drawn, setting material-design guidelines for the next generation of conducting thermoelectric polymers.

  • 297.
    Wang, Suhao
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Sun, Hengda
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Erdmann, Tim
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany; Flexterra Corp, IL 60077 USA; IBM Almaden Res Ctr, CA 95120 USA.
    Wang, Gang
    Northwestern Univ, IL 60208 USA.
    Fazzi, Daniele
    Max Planck Inst Kohlenforsch, Germany; Univ Cologne, Germany.
    Lappan, Uwe
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Chen, Zhihua
    Flexterra Corp, IL 60077 USA.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Kiriy, Anton
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Voit, Brigitte
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Facchetti, Antonio
    Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 31, artikel-id 1801898Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing p-p chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character. When n-doped with amines, P(NDI2OD-Tz2) achieves electrical conductivity (approximate to 0.1 S cm(-1)) and a power factor (1.5 mu W m(-1) K-2) far greater than those of P(NDI2OD-T2) (0.003 S cm(-1) and 0.012 mu W m(-1) K-2, respectively). These results demonstrate that planarized NDI-based polymers with reduced donor-acceptor character can achieve substantial electrical conductivity and thermoelectric response.

  • 298.
    Wang, Xiangjun
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Berggren, Magnus
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för teknik och naturvetenskap.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Dynamic Control of Surface Energy and Topography of Microstructured Conducting Polymer Films2008Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 24, s. 5942-5948Artikel i tidskrift (Refereegranskat)
    Abstract [en]

     Microstructured polymer surfaces, including conducting and insulating polymers, have been prepared to achieve electrochemical control of the surface energy and topography. The reported surface switches include pillar- and mesh-like surface patterns of polypyrrole (PPy), poly(3,4-ethylene-dioxythiophene) (PEDOT), and photoresists. The structures have been evaluated by contact angle measurements and optical and scanning electron microscopy to determine the surfaces characteristics. These microstructured polymer surface switches can be electrochemically modified from dewetting to wetting conditions, with a maximum associated change of the water contact angle from 129° to 44°. This contact angle switching was observed for samples in which dynamic control of the surface topography and surface tension was coupled. Control of topography was achieved with a dynamic height-switching range of more than 3 ìm. In addition, dynamic control of anisotropic wetting is reported. Our experiments were carried out under conditions that are suitable for a biointerface, implying potential application in biotechnology and cell science. In particular, switching of the energy, chemistry, and topography of the surface, along with their associated orientation, are interesting features for dynamic (electronic) control of the seeding and proliferation for living cells. The technology reported promises for electronically controlled cell-growth within Petri dishes, well plates, and other cell-hosting tools. 

  • 299.
    Wang, Xiaodong
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Improving the stability of water-gated organic transistors for sensing applicationsManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The instability of water-gated organic transistors is a major obstacle for their sensing applications in aqueous media. In the present work, we demonstrate that adding a fluorinated ion exchange membrane, Nafion, on a water-gated organic transistor can increase significantly the stability of the device to air exposure. In addition, choosing a suitable operating voltage range, e.g. Vg=0 ↔ -0.7 V, is shown to be crucial for achieving stable (repeatable) measurements in aqueous media. It is also feasible to exploit this kind of transistor as a chemical sensor to discriminate different chemicals which are dissolved in water.

  • 300.
    Wang, Xiaodong
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Laiho, Ari
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Crispin, Xavier
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Remanent polarization in a cryptand-polyanion bilayer implemented in an organic field effect transistor2012Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 2, s. 023305-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the possibility to maintain an electric polarization in an organic bilayer via ion trapping, i.e., without any external bias. In the cryptand-polyanion bilayer, ions of specific size can be strongly coordinated with organic macrocyclic molecules. Cations move from the polyanion layer to the cryptand layer upon applying a bias and are trapped in this layer. As a result, the voltage dependence of the polarization displays a hysteresis. The bilayer is then advantageously used as an electronic insulating layer in an organic field effect transistor. The ions trapping and de-trapping can be followed by the amplitude of the threshold voltage (V(th)) shift as well as its temporal evolution.

34567 251 - 300 av 313
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf