liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 51 - 100 of 400
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Bårman, Håkan
    et al.
    n/a.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    A new approach to curvature estimation and description1989In: 3rd International Conference on Image Processing and its Applications: Warwick, Great Britain, 1989, p. 54-58Conference paper (Refereed)
  • 52.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Hierarchical Curvature Estimation and Description1990Report (Other academic)
  • 53.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Tensor Field Filtering and Curvature Estimation1990In: Proceedings of the SSAB Symposium on Image Analysis: Linköping, Sweden, 1990, p. 175-178Conference paper (Refereed)
  • 54.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Näppä, L.
    n/a.
    Context Dependent Hierarchical Image Processing for Remote Sensing Data.1986Report (Other academic)
  • 55.
    Bårman, Håkan
    et al.
    n/a.
    Haglund, Leif
    n/a.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    Estimation of Velocity, Acceleration and Disparity in Time Sequences1991In: Proceedings of IEEE Workshop on Visual Motion: Princeton, NJ, USA, IEEE Computer Society Press , 1991, p. 44-51Conference paper (Refereed)
  • 56.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    A Filtering Strategy for Orientation and Curvature Description1989In: The 6th Scandinavian Conference on Image Analysis: Oulu, Finland, 1989, p. 886-889Conference paper (Refereed)
  • 57.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    A Note on Estimation of Optical Flow and Acceleration1992Report (Other academic)
  • 58.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Mechanisms for Striate Cortex Organization1989Report (Other academic)
  • 59.
    Bårman, Håkan
    et al.
    n/a.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    Using Principal Direction Estimates for Shape and Acceleration Description1991In: Proceedings of the SSAB Symposium on Image Analysis: Stockholm, 1991Conference paper (Refereed)
  • 60.
    Bårman, Håkan
    et al.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Granlund, Gösta H.
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Using Principal Direction Estimates for Shape and Acceleration Description1991Report (Other academic)
  • 61.
    Calway, Andrew
    et al.
    n/a.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision . Linköping University, The Institute of Technology.
    Wilson, Roland
    n/a.
    Multiresolution Estimation of 2-d Disparity Using a Frequency Domain Approach1992In: Proc. British Machine Vision Conf.: Leeds, UK, 1992Conference paper (Refereed)
  • 62.
    Calway, Andrew
    et al.
    n/a.
    Knutsson, Hans
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Wilson, Roland
    n/a.
    Multiresolution Frequency Domain Algorithm for Fast Image Registration1992In: Proc. 3rd Int. Conf. on Visual Search: Nottingham, UK, 1992Conference paper (Refereed)
  • 63.
    Cammoun, L.
    et al.
    Signal Processing Institute Ecole Polytechnigue Fédérale de Lausanne Switserland.
    Castano-Moraga, C.A.
    University of Las Palmas de Gran Canaria.
    Munoz-Moreno, E.
    Univ. de Valladolid, Spain.
    Sosa-Cabrera, D.
    University of Las Palmas de Gran Canaria.
    Acar, B.
    University Istanbul.
    Rodriguez-Florido, M.A.
    University of Las Palmas de Gran Canaria.
    Brun, Anders
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Thiran, J.P.
    Signal Processing Institute Ecole Polytechnigue Fédérale de Lausanne Switserland.
    A Review of Tensors and Tensor Signal Processing2009In: Tensors in Image Processing and Computer Vision / [ed] S. Aja-Fernandez, R. de Luis Garcia, D. Tao, and X. Li, Springer London, 2009, p. 1-32Chapter in book (Refereed)
    Abstract [en]

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  • 64.
    Cros, Olivier
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Aalborg Unversity Hospital, Denmark.
    Eklund, Anders
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Arts and Sciences.
    Gaihede, Michael
    Department of Otolaryngology, Head & Neck Surgery, Aalborg University Hospital, Denmark.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Enhancement of micro-channels within the human mastoid bone based on local structure tensor analysis2016In: Image Proceessing Theory, Tools and Apllications, IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    Numerous micro-channels have recently been discovered in the human temporal bone by x-ray micro-CT-scanning. After a preliminary study suggesting that these micro-channels form a separate blood supply for the mucosa of the mastoid air cells, a structural analysis of the micro-channels using a local structure tensor was carried out. Despite the high-resolution of the micro-CT scan, presence of noise within the air cells along with missing information in some micro-channels suggested the need of image enhancement. This paper proposes an adaptive enhancement of the micro-channels based on a local structure analysis while minimizing the impact of noise on the overall data. Comparison with an anisotropic diffusion PDE based scheme was also performed.

  • 65.
    Cros, Olivier
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Denmark.
    Gaihede, Michael
    Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Denmark / Department of Clinical Medicine, Aalborg University, Denmark.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Structural Analysis of Micro-channels in Human Temporal Bone2015In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on, Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 9-12Conference paper (Refereed)
    Abstract [en]

    Recently, numerous micro-channels have been discovered in the human temporal bone by micro-CT-scanning. Preliminary structure of these channels has suggested they contain a new separate blood supply for the mucosa of the mastoid air cells, which may have important functional implications. This paper proposes a structural analysis of the microchannels to corroborate this role. A local structure tensor is first estimated. The eigenvalues obtained from the estimated local structure tensor were then used to build probability maps representing planar, tubular, and isotropic tensor types. Each tensor type was assigned a respective RGB color and the full structure tensor was rendered along with the original data. Such structural analysis provides new and relevant information about the micro-channels but also their connections to mastoid air cells. Before carrying a future statistical analysis, a more accurate representation of the micro-channels in terms of local structure tensor analysis using adaptive filtering is needed.

  • 66.
    Cros, Olivier
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Department of Otolaryngology, Head & Neck Surgery, Aalborg University Hospital, Denmark.
    Gaihede, Michael
    Department of Otolaryngology, Head & Neck Surgery, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark.
    Eklund, Anders
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Arts and Sciences.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Surface and curve skeleton from a structure tensor analysis applied on mastoid air cells in human temporal bones2017In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 270-274Conference paper (Refereed)
    Abstract [en]

    The mastoid of human temporal bone contains numerous air cells connected to each others. In order to gain further knowledge about these air cells, a more compact representation is needed to obtain an estimate of the size distribution of these cells. Already existing skeletonization methods often fail in producing a faithful skeleton mostly due to noise hampering the binary representation of the data. This paper proposes a different approach by extracting geometrical information embedded in the Euclidean distance transform of a volume via a structure tensor analysis based on quadrature filters, from which a secondary structure tensor allows the extraction of surface skeleton along with a curve skeleton from its eigenvalues. Preliminary results obtained on a X-ray micro-CT scans of a human temporal bone show very promising results.

  • 67.
    Cros, Olivier
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV). Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Denmark.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Pawels, Elin
    Centre for X-ray Tomography, Department of Physics and Astronomy, University of Ghent, Belgium.
    Borga, Magnus
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gaihede, Michael
    Department of Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Denmark / Department of Clinical Medicine, Aalborg University, Denmark.
    Determination of the mastoid surface area and volume based on micro-CT scanning of human temporal bone: Geometrical parameters dependence on scanning resolutions2016In: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 340, p. 127-134Article in journal (Other academic)
    Abstract [en]

    The mastoid air cell system (MACS) with its large complex of interconnected air cells reflects an enhanced surface area (SA) relative to its volume (V), which may indicate that the MACS is adapted to gas exchange and has a potential role in middle ear pressure regulation. Thus, these geometric parameters of the MACS have been studied by high resolution clinical CT scanning. However, the resolution of these scans is limited to a voxel size of around 0.6 mm in all dimensions, and so, the geometrical parameters are also limited. Small air cells may appear below the resolution and cannot be detected. Such air cells may contribute to a much higher SA than the V, and thus, also the SA/V ratio. More accurate parameters are important for analysis of the function of the MACS including physiological modeling.

    Our aim was to determine the SA, V, and SA/V ratio in MACS in human temporal bones at highest resolution by using micro-CT-scanning. Further, the influence of the resolution on these parameters was investigated by downsampling the data. Eight normally aerated temporal bones were scanned at the highest possible resolution (30-60 μm). The SA was determined using a triangular mesh fitted onto the segmented MACS. The V was determined by summing all the voxels containing air. Downsampling of the original data was applied four times by a factor of 2.

    The mean SA was 194 cm2, the mean V was 9 cm3, and the mean SA/V amounted to 22 cm-1. Decreasing the resolution resulted in a non-linear decrement of SA and SA/V, whereas V was mainly independent of the resolution.

    The current study found significantly higher SA and SA/V compared with previous studies using clinical CT scanning at lower resolutions. These findings indicate a separate role of the MACS compared with the tympanum, and the results are important for a more accurate modeling of the middle ear physiology.

  • 68.
    Dyverfeldt, Petter
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Sigfridsson, Andreas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    A Novel MRI Framework for the Quantification of Any Moment of Arbitrary Velocity Distributions.2010In: Proc. Intl. Soc. Mag. Reson. Med. 18 (2010), ISMRM , 2010, p. 1359-1359Conference paper (Other academic)
    Abstract [en]

    Under the assumption that the intravoxel velocity distribution is symmetric about its mean, the well-known MRI phase-difference method permits an estimation of the mean velocity of a voxel. The mean velocity corresponds to the first moment of the velocity distribution. Here, a novel framework for the quantification of any moment of arbitrary spin velocity distributions is presented. Simulations on realistic velocity distributions demonstrate its application. The presented moment framework may assist in improving the understanding of existing MRI methods for the quantification of flow and motion and serve as a basis for the development of new methods.

  • 69.
    Dyverfeldt, Petter
    et al.
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Sigfridsson, Andreas
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ebbers, Tino
    Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology. Linköping University, Department of Medical and Health Sciences, Physiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics.
    A novel MRI framework for the quantification of any moment of arbitrary velocity distributions2011In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 65, no 3, p. 725-731Article in journal (Refereed)
    Abstract [en]

    MRI can measure several important hemodynamic parameters but might not yet have reached its full potential. The most common MRI method for the assessment of flow is phase-contrast MRI velocity mapping that estimates the mean velocity of a voxel. This estimation is precise only when the intravoxel velocity distribution is symmetric. The mean velocity corresponds to the first raw moment of the intravoxel velocity distribution. Here, a generalized MRI framework for the quantification of any moment of arbitrary velocity distributions is described. This framework is based on the fact that moments in the function domain (velocity space) correspond to differentials in the Fourier transform domain (kv-space). For proof-of-concept, moments of realistic velocity distributions were estimated using finite difference approximations of the derivatives of the MRI signal. In addition, the framework was applied to investigate the symmetry assumption underlying phase-contrast MRI velocity mapping; we found that this assumption can substantially affect phase-contrast MRI velocity estimates and that its significance can be reduced by increasing the velocity encoding range.

  • 70.
    Dyverfeldt, Petter
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Sigfridsson, Andreas
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ebbers, Tino
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    MR flow imaging beyond the mean velocity: Estimation of the skew  and kurtosis of intravoxel velocity distributions2011In: ISMRM 2011, International Society for Magnetic Resonance in Medicine ( ISMRM ) , 2011Conference paper (Other academic)
  • 71.
    Edholm, Paul
    et al.
    n/a.
    Granlund, Gösta
    Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Petersson, C.
    n/a.
    Ectomography: A New Radiographic Method for Reproducing a Selected Slice of Varying Thickness1980In: Acta Radiologica, ISSN 0284-1851, E-ISSN 1600-0455, Vol. 21, no 4, p. 433-442Article in journal (Refereed)
    Abstract [en]

    The mathematical basis is described of a new radiographic method by which an arbitrarily thick layer of the patient may be reconstructed. The reconstruction is performed from at least 60 images of the volume under examination. Each of these images, which have to be in digital form, is subjected to a special filtration process of its spatial frequencies. The combination of all the images will form the resulting image of the layer--the ectomogram. The method has been analysed and tested in experiments simulated with a computer.

  • 72.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Josephson, Camilla
    Linköping University, Department of Management and Engineering, Economics. Linköping University, Faculty of Arts and Sciences.
    Johannesson, Magnus
    Stockholm School of Economics.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Does Parametric fMRI Analysis with SPM Yield Valid Results? - An Empirical Study of 1484 Rest Datasets2012In: NeuroImage, ISSN 1053-8119, E-ISSN 1095-9572, Vol. 61, no 3, p. 565-578Article in journal (Refereed)
    Abstract [en]

    The validity of parametric functional magnetic resonance imaging (fMRI) analysis has only been reported for simulated data.Recent advances in computer science and data sharing make it possible to analyze large amounts of real fMRI data. In this study,1484 rest datasets have been analyzed in SPM8, to estimate true familywise error rates. For a familywise significance threshold of5%, significant activity was found in 1% - 70% of the 1484 rest datasets, depending on repetition time, paradigm and parametersettings. This means that parametric significance thresholds in SPM both can be conservative or very liberal. The main reason forthe high familywise error rates seems to be that the global AR(1) auto correlation correction in SPM fails to model the spectra ofthe residuals, especially for short repetition times. The findings that are reported in this study cannot be generalized to parametricfMRI analysis in general, other software packages may give different results. By using the computational power of the graphicsprocessing unit (GPU), the 1484 rest datasets were also analyzed with a random permutation test. Significant activity was thenfound in 1% - 19% of the datasets. These findings speak to the need for a better model of temporal correlations in fMRI timeseries.

  • 73.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    4D Medical Image Processing with CUDA2012Conference paper (Other academic)
    Abstract [en]

    Learn how to do 4D image processing with CUDA, especially for medical imaging applications. In this session we will give a couple of examples of how 4D image processing can take advantage of the computational power of the GPU. We will present how to use the GPU for functional magnetic resonance imaging (fMRI) analysis and true 4D image denoising. Most of our examples use the GPU both to speedup the analysis and to visualize the results.

  • 74.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    A Functional Connectivity Inspired Approach to Non-Local fMRI Analysis2012In: Proceedings of the 19th IEEE International Conference on Image Processing (ICIP), 2012, IEEE conference proceedings, 2012, p. 1245-1248Conference paper (Other academic)
    Abstract [en]

    We propose non-local analysis of functional magnetic resonanceimaging (fMRI) data in order to detect more brain activity.Our non-local approach combines the ideas of regularfMRI analysis with those of functional connectivity analysis,and was inspired by the non-local means algorithm thatcommonly is used for image denoising. We extend canonicalcorrelation analysis (CCA) based fMRI analysis to handlemore than one activity area, such that information fromdifferent parts of the brain can be combined. Our non-localapproach is compared to fMRI analysis by the general linearmodel (GLM) and local CCA, by using simulated as well asreal data.

  • 75.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Fast Random Permutation Tests Enable Objective Evaluation of Methods for Single Subject fMRI Analysis2011In: International Journal of Biomedical Imaging, ISSN 1687-4188, E-ISSN 1687-4196Article in journal (Refereed)
    Abstract [en]

    Parametric statistical methods, such as Z-, t-, and F-values are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it is assumed that the observed data are Gaussian distributed and independent; assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only for very simple linear detection statistics. With non-parametric statistical methods, the two limitations described above can be overcome. The major drawback of non-parametric methods is the computational burden with processing times ranging from hours to days, which so far have made them impractical for routine use in single subject fMRI analysis. In this work, it is shown how the computational power of cost-efficient Graphics Processing Units (GPUs) can be used to speed up random permutation tests. A test with 10 000 permutations takes less than a minute, making statistical analysis of advanced detection methods in fMRI practically feasible. To exemplify the permutation based approach, brain activity maps generated by the General Linear Model (GLM) and Canonical Correlation Analysis (CCA) are compared at the same significance level. During the development of the routines and writing of the paper, 3-4 years of processing time has been saved by using the GPU.

  • 76.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    fMRI Analysis on the GPU - Possibilities and Challenges2012In: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 105, no 2, p. 145-161Article in journal (Refereed)
    Abstract [en]

    Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial resolution.There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needsto be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motioncompensation, are normally applied. The high computational power of modern graphic cards has already successfully been used forMRI and fMRI. Going beyond the first published demonstration of GPU-based analysis of fMRI data, all the preprocessing stepsand two statistical approaches, the general linear model (GLM) and canonical correlation analysis (CCA), have been implementedon a GPU. For an fMRI dataset of typical size (80 volumes with 64 x 64 x 22 voxels), all the preprocessing takes about 0.5 s on theGPU, compared to 5 s with an optimized CPU implementation and 120 s with the commonly used statistical parametric mapping(SPM) software. A random permutation test with 10 000 permutations, with smoothing in each permutation, takes about 50 s ifthree GPUs are used, compared to 0.5 - 2.5 h with an optimized CPU implementation. The presented work will save time forresearchers and clinicians in their daily work and enables the use of more advanced analysis, such as non-parametric statistics, bothfor conventional fMRI and for real-time fMRI.

  • 77.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Improving CCA based fMRI Analysis by Covariance Pooling - Using the GPU for Statistical Inference2011Conference paper (Other academic)
    Abstract [en]

    Canonical correlation analysis (CCA) is a statistical methodthat can be preferable to the general linear model (GLM) for analysisof functional magnetic resonance imaging (fMRI) data. There are,however, two problems with CCA based fMRI analysis. First, it is notfeasible to use a parametric approach to calculate an activity thresholdfor a certain signi cance level. Second, two covariance matrices need tobe estimated in each voxel, from a rather small number of time samples.We recently solved the rst problem by doing random permutation testson the graphics processing unit (GPU), such that the null distribution ofany maximum test statistics can be estimated in the order of minutes. Inthis paper we consider the second problem. We extend the idea of variancepooling, that previously has been used for the GLM, to covariancepooling to improve the estimates of the covariance matrices. Our GPUimplementation of random permutation tests is used to calculate signicance thresholds, which are needed to compare the di erent activitymaps in an objective way. The covariance pooling results in more robustestimates of the covariance matrices. The number of signi cantly activevoxels that are detected (thresholded at p = 0.05, corrected for multiplecomparisons) is increased with 40 - 120% (if 8 mm smoothing is appliedto the covariance estimates). Too much covariance pooling can howeverresult in a loss of small activity clusters, 7-10 mm of smoothing givesthe best results. The calculations that were made in order to generatethe results in this paper would have taken a total of about 65 days witha Matlab implementation and about 10 days with a multithreaded Cimplementation, with our multi-GPU implementation they took about 2hours. By using fast random permutation tests, suggested improvementsof existing methods for fMRI analysis can be evaluated in an objective way.

  • 78.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    On Structural Based Certainty for Robust fMRI AnalysisManuscript (preprint) (Other academic)
    Abstract [en]

    We present a method for obtaining and using a structural based certainty for robust functional magnetic resonance imaging (fMRI) analysis. In the area of fMRI it is common to see brain activity maps with activity at the edge of the brain. It is however a known fact that activity close to the edge of the brain can be due to head movement, since the voxels close to the edge will have a higher variance if they switch between being outside and inside the brain. To some extent this can be remedied by aligning each volume to a reference volume, by the means of volume registration. However, the problem with fMRI volumes is that the slices in the volume normally are taken at different timepoints, and motion between the slices can occur. We calculate a structural based certainty for each voxel, from a high resolution T1-weighted volume, and incorporate this certainty into the statistical analysis of the fMRI data. We show that our certainty approach removes a lot of false activity, both on simulated data and on real data.

  • 79.
    Eklund, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Phase Based Volume Registration Using CUDA2010In: Acoustics Speech and Signal Processing (ICASSP), 2010, IEEE , 2010, p. 658-661Conference paper (Refereed)
    Abstract [en]

    We present a method for fast phase based registration of volume data for medical applications. As the number of different modalities within medical imaging increases, it becomes more and more important with registration that works for a mixture of modalities. For these applications the phase based registration approach has proven to be superior. Today there seem to be two kinds of groups that work with medical image registration, one that works with refining of the registration algorithms and one that works with implementation of more simple algorithms on graphic cards for speeding up the algorithms. We put the work from these groups together and get the best from both worlds. We achieve a speedup of 10-30 compared to our CPU implementation, which makes fast phase based registration possible for large medical volumes.

  • 80.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    True 4D Image Denoising on the GPU2011In: International Journal of Biomedical Imaging, ISSN 1687-4188, E-ISSN 1687-4196, Vol. 2011Article in journal (Refereed)
    Abstract [en]

    The use of image denoising techniques is an important part of many medical imaging applications. One common application isto improve the image quality of low-dose, i.e. noisy, computed tomography (CT) data. The medical imaging domain has seen atremendous development during the last decades. It is now possible to collect time resolved volumes, i.e. 4D data, with a number ofmodalities (e.g. ultrasound (US), CT, magnetic resonance imaging (MRI)). While 3D image denoising previously has been appliedto several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm considersseveral volumes at the same time (and not a single volume at a time). By using all the dimensions, it is for example possibleto remove some of the time varying reconstruction artefacts that exist in CT volumes. The problem with 4D image denoising,compared to 2D and 3D denoising, is that the computational complexity increases exponentially.In this paper we describe a novel algorithm for true 4D image denoising, based on local adaptive filtering, and how to implementit on the graphics processing unit (GPU). The algorithm was applied to a 4D CT heart dataset of the resolution 512 x 512 x 445 x 20.The result is that the GPU can complete the denoising in about 25 minutes if spatial filtering is used and in about 8 minutes if FFTbased filtering is used. The CPU implementation requires several days of processing time for spatial filtering and about 50 minutesfor FFT based filtering. Fast spatial filtering makes it possible to apply the denoising algorithm to larger datasets (compared to ifFFT based filtering is used). The short processing time increases the clinical value of true 4D image denoising significantly.

  • 81.
    Eklund, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ohlsson, Henrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    A Brain Computer Interface for Communication Using Real-Time fMRI2010In: Proceedings of the 20th International Conference on Pattern Recognition, Los Alamitos, CA, USA: IEEE Computer Society, 2010, p. 3665-3669Conference paper (Refereed)
    Abstract [en]

    We present the first step towards a brain computer interface (BCI) for communication using real-time functional magnetic resonance imaging (fMRI). The subject in the MR scanner sees a virtual keyboard and steers a cursor to select different letters that can be combined to create words. The cursor is moved to the left by activating the left hand, to the right by activating the right hand, down by activating the left toes and up by activating the right toes. To select a letter, the subject simply rests for a number of seconds. We can thus communicate with the subject in the scanner by for example showing questions that the subject can answer. Similar BCI for communication have been made with electroencephalography (EEG). The subject then focuses on a letter while different rows and columns of the virtual keyboard are flashing and the system tries to detect if the correct letter is flashing or not. In our setup we instead classify the brain activity. Our system is neither limited to a communication interface, but can be used for any interface where five degrees of freedom is necessary.

  • 82.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Warntjes, Marcel
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Phase Based Volume Registration on the GPU with Application to Quantitative MRI2010Conference paper (Other academic)
    Abstract [en]

    We present a method for fast phase based registration of volume data for medical applications. As the number of different modalities within medical imaging increases, it becomes more and more important with registration that works for a mixture of modalities. For these applications the phase based registration approach has proven to be superior. Today there seem to be two kinds of groups that work with medical image registration, one that works with refining of the registration algorithms and one that works with implementation of more simple algorithms on graphic cards for speeding up the algorithms. We put the work from these groups together and get the best from both worlds. We achieve a speedup of 10-30 compared to our CPU implementation, which makes fast phase based registration possible for large medical volumes.

  • 83.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Forsberg, Daniel
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Using the Local Phase of the Magnitude of the Local Structure Tensor for Image Registration2011In: Image Analysis: 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings / [ed] Anders Heyden, Fredrik Kahl, Springer Berlin/Heidelberg, 2011, Vol. 6688, p. 414-423Conference paper (Refereed)
    Abstract [en]

    The need of image registration is increasing, especially in the medical image domain. The simplest kind of image registration is to match two images that have similar intensity. More advanced cases include the problem of registering images of different intensity, for which phase based algorithms have proven to be superior. In some cases the phase based registration will fail as well, for instance when the images to be registered do not only differ in intensity but also in local phase. This is the case if a dark circle in the reference image is a bright circle in the source image. While rigid registration algorithms can use other parts of the image to calculate the global transformation, this problem is harder to solve for non-rigid registration. The solution that we propose in this work is to use the local phase of the magnitude of the local structure tensor, instead of the local phase of the image intensity. By doing this, we achieve invariance both to the image intensity and to the local phase and thereby only use the structural information, i.e. the shapes of the objects, for registration.

  • 84.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Friman, Ola
    Fraunhofer Mevis, Bremen, Germany.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    A GPU accelerated interactive interface for exploratory functional connectivity analysis of FMRI data2011In: Image Processing (ICIP), 2011, IEEE , 2011, p. 1589-1592Conference paper (Refereed)
    Abstract [en]

    Functional connectivity analysis is a way to investigate how different parts of the brain are connected and interact. A common measure of connectivity is the temporal correlation between a reference voxel time series and all the other time series in a functional MRI data set. An fMRI data set generally contains more than 20,000 within-brain voxels, making a complete correlation analysis between all possible combinations of voxels heavy to compute, store, visualize and explore. In this paper, a GPU-accelerated interactive tool for investigating functional connectivity in fMRI data is presented. A reference voxel can be moved by the user and the correlations to all other voxels are calculated in real-time using the graphics processing unit (GPU). The resulting correlation map is updated in real-time and visualized as a 3D volume rendering together with a high resolution anatomical volume. This tool greatly facilitates the search for interesting connectivity patterns in the brain.

  • 85.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Friman, Ola
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Comparing fMRI Activity Maps from GLM and CCA at the Same Significance Level by Fast Random Permutation Tests on the GPU2011Conference paper (Other academic)
    Abstract [en]

    Parametric statistical methods are traditionally employed in functional magnetic resonance imaging (fMRI) for identifying areas in the brain that are active with a certain degree of statistical significance. These parametric methods, however, have two major drawbacks. First, it isassumed that the observed data are Gaussian distributed and independent; assumptions that generally are not valid for fMRI data. Second, the statistical test distribution can be derived theoretically only for very simple linear detection statistics. In this work it is shown how the computational power of the Graphics Processing Unit (GPU) can be used to speedup non-parametric tests, such as random permutation tests. With random permutation tests it is possible to calculate significance thresholds for any test statistics. As an example, fMRI activity maps from the General Linear Model (GLM) and Canonical Correlation Analysis (CCA) are compared at the same significance level.

  • 86.
    Eklund, Anders
    et al.
    Virginia Tech, Carilion Research Institute, USA.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Multivariate fMRI Analysis using Canonical Correlation Analysis instead of Classifiers, Comment on Todd et al2013In: figshare.comArticle in journal (Other academic)
    Abstract [en]

    Multivariate pattern analysis (MVPA) is a popular method for making inference about functional magnetic resonance imaging (fMRI) data. One approach is to train a classifier with voxels within a certain radius from the center voxel, to classify between different brain states. This approach is commonly known as the searchlight algorithm. As recently pointed out by Todd and colleagues, inference at the group level can however be confounded by the fact that the direction of the effect is lost if the per subject classification performance is used to generate group results. Here we show that canonical correlation analysis (CCA) can in some aspects be a better approach to multivariate fMRI analysis, than classification based analysis (CBA).

  • 87.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Reply to Chen et al.: Parametric methods for cluster inference perform worse for two‐sided t‐tests2019In: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 40, no 5, p. 1689-1691Article in journal (Other (popular science, discussion, etc.))
    Abstract [en]

    One‐sided t‐tests are commonly used in the neuroimaging field, but two‐sided tests should be the default unless a researcher has a strong reason for using a one‐sided test. Here we extend our previous work on cluster false positive rates, which used one‐sided tests, to two‐sided tests. Briefly, we found that parametric methods perform worse for two‐sided t‐tests, and that nonparametric methods perform equally well for one‐sided and two‐sided tests.

  • 88.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Nichols, Thomas E
    Big Data Institute, University of Oxford, Oxford, United Kingdom, Department of Statistics, University of Warwick, Coventry, United KingdomWellcome Trust Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, United Kingdom, .
    Cluster failure revisited: Impact of first level design and physiological noise on cluster false positive rates2019In: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 40, no 7, p. 2017-2032Article in journal (Refereed)
    Abstract [en]

    Methodological research rarely generates a broad interest, yet our work on the validity of cluster inference methods for functional magnetic resonance imaging (fMRI) created intense discussion on both the minutia of our approach and its implications for the discipline. In the present work, we take on various critiques of our work and further explore the limitations of our original work. We address issues about the particular event‐related designs we used, considering multiple event types and randomization of events between subjects. We consider the lack of validity found with one‐sample permutation (sign flipping) tests, investigating a number of approaches to improve the false positive control of this widely used procedure. We found that the combination of a two‐sided test and cleaning the data using ICA FIX resulted in nominal false positive rates for all data sets, meaning that data cleaning is not only important for resting state fMRI, but also for task fMRI. Finally, we discuss the implications of our work on the fMRI literature as a whole, estimating that at least 10% of the fMRI studies have used the most problematic cluster inference method (p = .01 cluster defining threshold), and how individual studies can be interpreted in light of our findings. These additional results underscore our original conclusions, on the importance of data sharing and thorough evaluation of statistical methods on realistic null data.

  • 89.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology. Linköping University, Department of Computer and Information Science, Statistics.
    Nichols, Thomas
    Department of Statistics, University of Warwick, England.
    Andersson, Mats
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering.
    Empirically Investigating the Statistical Validity of SPM, FSL and AFNI for Single Subject fMRI Analysis2015In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), IEEE conference proceedings, 2015, p. 1376-1380Conference paper (Refereed)
    Abstract [en]

    The software packages SPM, FSL and AFNI are the most widely used packages for the analysis of functional magnetic resonance imaging (fMRI) data. Despite this fact, the validity of the statistical methods has only been tested using simulated data. By analyzing resting state fMRI data (which should not contain specific forms of brain activity) from 396 healthy con- trols, we here show that all three software packages give in- flated false positive rates (4%-96% compared to the expected 5%). We isolate the sources of these problems and find that SPM mainly suffers from a too simple noise model, while FSL underestimates the spatial smoothness. These results highlight the need of validating the statistical methods being used for fMRI. 

  • 90.
    Eklund, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Science & Engineering.
    Nichols, Thomas
    University of Warwick, England.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Faculty of Science & Engineering.
    Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 28, p. 7900-7905Article in journal (Refereed)
    Abstract [en]

    The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

  • 91.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Nichols, Thomas
    Department of Statistics, University of Warwick, UK; WMG, University of Warwick, UK.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Reply to BROWN AND BEHRMANN, COX ET AL., AND KESSLER ET AL.: Data and code sharing is the way forward for fMRI2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, p. 1-2Article in journal (Other academic)
    Abstract [en]

    We are glad that our paper (1) has generated intense discussions in the fMRI field (2⇓–4), on how to analyze fMRI data, and how to correct for multiple comparisons. The goal of the paper was not to disparage any specific fMRI software, but to point out that parametric statistical methods are based on a number of assumptions that are not always valid for fMRI data, and that nonparametric statistical methods (5) are a good alternative. Through AFNI’s introduction of nonparametric statistics in the function 3dttest++ (3, 6), the three most common fMRI softwares now all support nonparametric group inference [SPM through the toolbox SnPM (www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm), and FSL through the function randomise].

    Cox et al. (3) correctly point out that the bug in the AFNI function 3dClustSim only had a minor impact on the false-positive rate (FPR). This was also covered in our original paper (1): “We note that FWE [familywise error] rates are lower with the bug-fixed 3dClustSim function. As an example, the updated function reduces the degree of false …

  • 92.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Ohlsson, Henrik
    Linköping University, Department of Electrical Engineering, Electronics System. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Rydell, Joakim
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Balancing an Inverted Pendulum by Thinking A Real-Time fMRI Approach2009Conference paper (Other academic)
    Abstract [en]

    We present a method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverse pendulum by activating the left or right hand or resting. The brain activity is classified each second by a neural network and the classification is sent to a pendulum simulator to change the force applied to the pendulum. The state of the inverse pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverse pendulum both with real activity and imagined activity. The developments here have a potential to aid people with communication disabilities e.g., locked in people. It might also be a tool for stroke patients to be ableto train the damaged brain area and get real-time feedback of when they do it right.

  • 93.
    Eklund, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ohlsson, Henrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Rydell, Joakim
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Using Real-Time fMRI to Control a Dynamical System2009In: ISMRM 17th Scientific Meeting & Exhibition, 2009Conference paper (Refereed)
    Abstract [en]

    We present e method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverse pendulum by activating the left or right hand or resting. The brain activity is clasified each second by a neural network and the classification is sent to a pendulum simulator to change the state of the pendulum. The state of the inverse pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverse pendulum during a 7 minute test run.

  • 94.
    Eklund, Anders
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ohlsson, Henrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Rydell, Joakim
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Ynnerman, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Using Real-Time fMRI to Control a Dynamical System2009Report (Other academic)
    Abstract [en]

    We present e method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverse pendulum by activating the left or right hand or resting. The brain activity is clasified each second by a neural network and the classification is sent to a pendulum simulator to change the state of the pendulum. The state of the inverse pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverse pendulum during a 7 minute test run.

  • 95.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ohlsson, Henrik
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Rydell, Joakim
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ynnerman, Anders
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification2009In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009: 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part I / [ed] Gerhard Goos, Juris Hartmanis and Jan van Leeuwen, Springer Berlin/Heidelberg, 2009, 1, p. 1000-1008Conference paper (Refereed)
    Abstract [en]

    We present a method for controlling a dynamical system using real-time fMRI. The objective for the subject in the MR scanner is to balance an inverted pendulum by activating the left or right hand or resting. The brain activity is classified each second by a neural network and the classification is sent to a pendulum simulator to change the force applied to the pendulum. The state of the inverted pendulum is shown to the subject in a pair of VR goggles. The subject was able to balance the inverted pendulum during several minutes, both with real activity and imagined activity. In each classification 9000 brain voxels were used and the response time for the system to detect a change of activity was on average 2-4 seconds. The developments here have a potential to aid people with communication disabilities, such as locked in people. Another future potential application can be to serve as a tool for stroke and Parkinson patients to be able to train the damaged brain area and get real-time feedback for more efficient training.

  • 96.
    Eklund, Anders
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Warntjes, Marcel
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart Centre, Department of Clinical Physiology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, The Institute of Technology.
    Fast Phase Based Registration for Robust Quantitative MRI2010In: Proceedings of the annual meeting of the International Society for Magnetic Resonance in Medicine (ISMRM 2010), 2010Conference paper (Other academic)
    Abstract [en]

    Quantitative magnetic resonance imaging has the major advantage that it handles absolute measurements of physical parameters. Quantitative MRI can for example be used to estimate the amount of different tissue types in the brain, but other applications are possible. Parameters such as relaxation rates R1 and R2 and proton density (PD) are independent of MR scanner settings and imperfections and hence are directly representative of the underlying tissue characteristics. Brain tissue quantification is an important aid for diagnosis of neurological diseases, such as multiple sclerosis (MS) and dementia. It is applied to estimate the volume of each tissue type, such as white tissue, grey tissue, myelin and cerebrospinal fluid (CSF). Tissue that deviates from normal values can be found automatically using computer aided diagnosis. In order for the quantification to have a clinical value, both the time in the MR scanner and the time for the data analysis have to be minimized. A challenge in MR quantification is to keep the scan time within clinically acceptable limits. The quantification method that we have used is based on the work by Warntjes et al.

  • 97.
    Eriksson Bylund, Nina
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Ressner, Marcus
    Linköping University, Department of Biomedical Engineering, Physiological Measurements. Linköping University, The Institute of Technology.
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    3D Wiener filtering to reduce reverberations in ultrasound image sequences2003In: Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June 29 – July 2, 2003 Proceedings / [ed] Josef Bigun and Tomas Gustavsson, Springer, 2003, Vol. 2749, p. 579-586Chapter in book (Refereed)
    Abstract [en]

    One of the most frequently occuring artifacts in ultrasound imaging is reverberations. These are multiple reflection echoes that result in ghost echoes in the ultrasound image. A method for reducing these unwanted artifacts using a three-dimensional (3D) Wiener filter is presented. The Wiener filter is a global filter and produces an estimate of the uncorrupted signal by minimizing the mean square error between the estimate and the uncorrupted signal in a statistical sense. The procedure works as follows: In a graphic interface the operator is displayed an image sequence. The operator marks two areas in one of the images, one area which contains a typical reverberation artifact, and one area free from artifact. Using these areas to produce noise and signal estimates, a Wiener filter is created and applied to the sequence. The 3D Wiener filters display excellent selection capabilities, and the developed method significantly reduces the magnitude of the reverberation artifact in the tested sequences.

  • 98.
    Eriksson-Bylund, Nina
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Detecting and reducing reverberation artifacts2004In: Proceedings of the Swedish Symposium on Image Analysis (2004), 2004, p. 54-57Conference paper (Other academic)
  • 99.
    Eriksson-Bylund, Nina
    et al.
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
    Andersson, Mats
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Knutsson, Hans
    Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Interactive 3D filter design for ultrasound artifact reduction2005In: Image Processing, 2005. ICIP 2005. IEEE International Conference on  (Volume:3 ), 2005, p. 728-731Conference paper (Refereed)
    Abstract [en]

    A method for detecting and reducing reverberation artifacts in ultrasound image sequences is described. A reverberation artifact localization map is produced using local Rf-bandwidth estimation. To reduce the artifacts an ideal 3D (2D + time) Wiener filter function is computed by using the reverberation map to interactively produce an estimate of the noise and signal spectra. The Wiener filter kernel is optimized to obtain good locality properties. The optimized filter is then applied to the ultrasound image sequence. The test sequence used is from an open chest pig heart, corrupted by strong reverberation artifacts. The selective power of a 3D filter is far superior to that of ID and 2D filters and the reverberation artifacts are almost completely removed by the developed method.

  • 100.
    Eriksson-Bylund, Nina
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Andersson, Mats
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Knutsson, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Medical Informatics.
    Wide range frequensy estimation in ultrasound images2001In: SSAB Symposium on Image Analysis,2001, 2001Conference paper (Other academic)
1234567 51 - 100 of 400
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf