liu.seSearch for publications in DiVA
Change search
Refine search result
12 51 - 79 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Konsman, Jan Pieter
    et al.
    Laboratoire de Neurobiologie Intégrative, Centre National de la Recherche Scientifique FRE 2723 / Institut National de la Recherche Agronomique UR 1244, Institut François Magendie, Bordeaux, France.
    Vigues, Stephan
    Division of Endocrinology, National Institute for Biological Standards and Control, Herts, United Kingdom.
    Mackerlova, Ludmila
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Bristow, Adrian
    Division of Endocrinology, National Institute for Biological Standards and Control, Herts, United Kingdom.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Rat Brain Vascular Distribution of Interleukin-1 Type-1 Receptor Immunoreactivity: Relationship to Patterns of Inducible Cyclooxygenase Expression by Peripheral Inflammatory Stimuli2004In: Journal of Comparative Neurology, ISSN 0021-9967, E-ISSN 1096-9861, Vol. 472, no 1, p. 113-129Article in journal (Refereed)
    Abstract [en]

    Interleukin-1ß (IL-1ß) is thought to act on the brain to induce fever, neuroendocrine activation, and behavioral changes during disease through induction of prostaglandins at the blood-brain barrier (BBB). However, despite the fact that IL-1ß induces the prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2) in brain vascular cells, no study has established the presence of IL-1 receptor type 1 (IL-1R1) protein in these cells. Furthermore, although COX inhibitors attenuate expression of the activation marker c-Fos in the preoptic and paraventricular hypothalamus after administration of IL-1ß or bacterial lipopolysaccharide (LPS), they do not alter c-Fos induction in other structures known to express prostaglandin receptors. The present study thus sought to establish whether IL-1R1 protein is present and functional in the rat cerebral vasculature. In addition, the distribution of IL-1R1 protein was compared to IL-1ß- and LPS-induced COX-2 expression. IL-1R1-immunoreactive perivascular cells were mostly found in choroid plexus and meninges. IL-1R1-immunoreactive vessels were seen throughout the brain, but concentrated in the preoptic area, subfornical organ, supraoptic hypothalamus, and to a lesser extent in the paraventricular hypothalamus, cortex, nucleus of the solitary tract, and ventrolateral medulla. Vascular IL-1R1-ir was associated with an endothelial cell marker, not found in arterioles, and corresponded to the induction patterns of phosphorylated c-Jun and inhibitory-factor kappaB mRNA upon IL-1ß stimulation, and colocalized with peripheral IL-1ß- or LPS-induced COX-2 expression. These observations indicate that functional IL-1R1s are expressed in endothelial cells of brain venules and suggest that vascular IL-1R1 distribution is an important factor determining BBB prostaglandin-dependent activation of brain structures during infection. © 2004 Wiley-Liss, Inc.

  • 52. Matsui, S
    et al.
    Oatridge, J
    Blomqvist, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology.
    Workshop 2 (synthesis): water pollution abatement within the industrial sector2003In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 47, no 6, p. 115-117Article in journal (Refereed)
    Abstract [en]

    This workshop aimed at demonstrating and discussing how effective abatement of water pollution can be achieved through introducing cleaner technologies, recycling and reuse of water, and implementing new public policy measures.

  • 53.
    Matsuwaki, Takashi
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Örtegren Kugelberg, Unn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Jönsson, Jan-Ingvar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Interleukin-1 beta induced activation of the hypothalamus-pituitary-adrenal axis is dependent on interleukin-1 receptors on non-hematopoietic cells2014In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 40, p. 166-173Article in journal (Refereed)
    Abstract [en]

    The proinflammatory cytokine interleukin-1 beta (IL-beta) plays a major role in the signal transduction of immune stimuli from the periphery to the central nervous system, and has been shown to be an important mediator of the immune-induced stress hormone release. The signaling pathway by which IL-1 beta exerts this function involves the blood-brain-barrier and induced central prostaglandin synthesis, but the identity of the blood-brain-barrier cells responsible for this signal transduction has been unclear, with both endothelial cells and perivascular macrophages suggested as critical components. Here, using an irradiation and transplantation strategy, we generated mice expressing IL-1 type 1 receptors (IL-1 RI) either in hematopoietic or non-hematopoietic cells and subjected these mice to peripheral immune challenge with IL-beta. Following both intraperitoneal and intravenous administration of IL-beta, mice lacking IL-1R1 in hematopoietic cells showed induced expression of the activity marker c-Fos in the paraventricular hypothalamic nucleus, and increased plasma levels of ACTH and corticosterone. In contrast, these responses were not observed in mice with IL-1R1 expression only in hematopoietic cells. Immunoreactivity for IL-1R1 was detected in brain vascular cells that displayed induced expression of the prostaglandin synthesizing enzyme cyclooxygenase-2 and that were immunoreactive for the endothelial cell marker CD31, but was not seen in cells positive for the brain macrophage marker CD206. These results imply that activation of the HPA-axis by IL-1 beta is dependent on IL-1R1 s on non-hematopoietic cells, such as brain endothelial cells, and that IL-1R1 on perivascular macrophages are not involved.

  • 54.
    Matsuwaki, Takashi
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. University of Tokyo, Japan.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Ihnatko, Robert
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Kakuta, Shigeru
    University of Tokyo, Japan.
    Dufour, Sylvie
    CNRS, France.
    Schwaninger, Markus
    University of Lubeck, Germany.
    Waisman, Ari
    Johannes Gutenberg University of Mainz, Germany.
    Mueller, Werner
    University of Manchester, England.
    Pinteaux, Emmanuel
    University of Manchester, England.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 66, p. 165-176Article in journal (Refereed)
    Abstract [en]

    Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (1(0) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120 mu g/kg; HPA-axis: 120 mu g/kg), but showed attenuated but not extinguished fever (120 g/kg). Brain PGE2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-alpha (TNF alpha) inhibitor etanercept nor the IL -6 receptor antibody tocilizumab abolished the LPS induced fever in IL -1R1 KO mice. Deletion of IL -1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFa, but by some yet unidentified pyrogenic factor. 

  • 55.
    Mirrasekhian, Elahe
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Johan L. Å.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomgren, Anders
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Zygmunt, Peter M.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, S-221 85 Lund, Sweden.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Högestätt, Edward D.
    Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1–mediated hypothermia and is associated with prostaglandin inhibition in the brain2018In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860Article in journal (Refereed)
    Abstract [en]

    The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol?s propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol?s antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.?Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1?mediated hypothermia and is associated with prostaglandin inhibition in the brain.

  • 56.
    Nilsberth, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Elander, Louise
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Hamzic, Namik
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Norell, Maria
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Lönn, Johanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Engström, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    The Role of Interleukin-6 in Lipopolysaccharide-Induced Fever by Mechanisms Independent of Prostaglandin E-22009In: Endocrinology, ISSN 0013-7227, E-ISSN 1945-7170, Vol. 150, no 4, p. 1850-1860Article in journal (Refereed)
    Abstract [en]

    Fever has been shown to be elicited by prostaglandin E-2 (PGE(2)) binding to its receptors on thermoregulatory neurons in the anterior hypothalamus. The signals that trigger PGE(2) production are thought to include proinflammatory cytokines, such as IL-6. However, although the presence of IL-6 is critical for fever, IL- 6 by itself is not or only weakly pyrogenic. Here we examined the relationship between IL-6 and PGE(2) in lipopolysaccharide (LPS)-induced fever. Immune-challenged IL- 6 knockout mice did not produce fever, in contrast to wild-type mice, but the expression of the inducible PGE(2)-synthesizing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase-1, was similarly up-regulated in the hypothalamus of both genotypes, which also displayed similarly elevated PGE(2) levels in the cerebrospinal fluid. Nevertheless, both wild-type and knockout mice displayed a febrile response to graded concentrations of PGE(2) injected into the lateral ventricle. There was no major genotype difference in the expression of IL-1 beta and TNF alpha or their receptors, and pretreatment of IL- 6 knockout mice with soluble TNF alpha receptor ip or intracerebroventricularly or a cyclooxygenase-2 inhibitor ip did not abolish the LPS unresponsiveness. Hence, although IL- 6 knockout mice have both an intact PGE(2) synthesis and an intact fever-generating pathway downstream of PGE(2), endogenously produced PGE(2) is not sufficient to produce fever in the absence of IL-6. The findings suggest that IL- 6 controls some factor(s) in the inflammatory cascade, which render(s) IL- 6 knockout mice refractory to the pyrogenic action of PGE(2), or that it is involved in the mechanisms that govern release of synthesized PGE(2) onto its target neurons.

  • 57.
    Nilsberth, Camilla
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Hamzic, Namik
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Norell, M.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Peripheral Lipopolysaccharide Administration Induces Cytokine mRNA Expression in the Viscera and Brain of Fever-Refractory Mice Lacking Microsomal Prostaglandin E Synthase-12009In: Journal of neuroendocrinology (Print), ISSN 0953-8194, E-ISSN 1365-2826, Vol. 21, no 8, p. 715-721Article in journal (Refereed)
    Abstract [en]

    We examined the expression of interleukin (IL)-1 beta, IL-6 and tumour necrosis factor (TNF) alpha in mice lacking microsomal prostaglandin E synthase-1 (mPGES-1), which neither produce prostaglandin E-2, nor mount a febrile response upon immune challenge. Intraperitoneal lipopolysaccharide (LPS) injection resulted in a strongly induced expression of all three cytokines in the brain and viscera, similar to wild-type animals. Several brain regions additionally showed modest induction of receptors for these cytokines in both genotypes. Telemetric recordings of body temperature showed that the mPGES-1 deficient mice remained afebrile upon LPS challenge, in contrast to the prominent fever displayed by the wild-type mice. These data demonstrate that LPS-induced cytokine expression occurs independently of prostaglandin E-2, and imply that endogenously expressed IL-1 beta, IL-6, and TNF alpha are not pyrogenic per se, supporting the role of prostaglandin E-2 as the final and obligatory mediator of LPS-induced fever.

  • 58.
    Nilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Elander, Louise
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Örtegren (Kugelberg), Unn
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    The involvement of prostaglandin E2 in interleukin-1β evoked anorexia is strain dependent2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 60, p. 27-31Article in journal (Refereed)
    Abstract [en]

    From experiments in mice in which the prostaglandin E2 (PGE2) synthesizing enzyme mPGES-1 was genetically deleted, as well as from experiments in which PGE2 was injected directly into the brain, PGE2 has been implicated as a mediator of inflammatory induced anorexia. Here we aimed at examining which PGE2 receptor (EP1–4) that was critical for the anorexic response to peripherally injected interleukin-1β (IL-1β). However, deletion of neither EP receptor in mice, either globally (for EP1, EP2, and EP3) or selectively in the nervous system (EP4), had any effect on the IL-1β induced anorexia. Because these mice were all on a C57BL/6 background, whereas previous observations demonstrating a role for induced PGE2 in IL-1β evoked anorexia had been carried out on mice on a DBA/1 background, we examined the anorexic response to IL-1β in mice with deletion of mPGES-1 on a C57BL/6 background and a DBA/1 background, respectively. We confirmed previous findings that mPGES-1 knock-out mice on a DBA/1 background displayed attenuated anorexia to IL-1β; however, mice on a C57BL/6 background showed the same profound anorexia as wild type mice when carrying deletion of mPGES-1, while displaying almost normal food intake after pretreatment with a cyclooxygenase-2 inhibitor. We conclude that the involvement of induced PGE2 in IL-1β evoked anorexia is strain dependent and we suggest that different routes that probably involve distinct prostanoids exist by which inflammatory stimuli may evoke an anorexic response and that these routes may be of different importance in different strains of mice.

  • 59.
    Nilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wilhelms, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent.2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 61, p. 236-243, article id S0889-1591(16)30549-9Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.

  • 60.
    Okuda, Darin T
    et al.
    UT Southwestern Medical Center, Department of Neurology & Neurotherapeutics, Clinical Center for Multiple Sclerosis, Dallas, Tx, USA.
    Melmed, Kara
    University of Arizona College of Medicine, Phoenix, 550 E. Van Buren, Phoenix, Az, USA.
    Matsuwaki, Takashi
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Craig, Arthur D Bud
    Atkinson Research Laboratory, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, Az, USA.
    Central neuropathic pain in MS is due to distinct thoracic spinal cord lesions.2014In: Annals of clinical and translational neurology, ISSN 2328-9503, Vol. 1, no 8, p. 554-61Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To determine a neuro-anatomic cause for central neuropathic pain (CNP) observed in multiple sclerosis (MS) patients.

    METHODS: Parallel clinical and neuro-anatomical studies were performed. A clinical investigation of consecutively acquired MS patients with and without CNP (i.e. cold allodynia or deep hyperesthesia) within a single MS center was pursued. A multivariate logistic regression model was used to assess the relationship between an upper central thoracic spinal cord focus to central pain complaints. To identify the hypothesized autonomic interneurons with bilateral descending projections to lumbosacral sensory neurons, retrograde single- and double-labeling experiments with CTb and fluorescent tracers were performed in three animal species (i.e. rat, cat, and monkey).

    RESULTS: Clinical data were available in MS patients with (n = 32; F:23; median age: 34.6 years (interquartile range [IQR]: 27.4-45.5)) and without (n = 30; F:22; median age: 36.6 years [IQR: 31.6-47.1]) CNP. The value of a central focus between T1-T6 in relation to CNP demonstrated a sensitivity of 96.9% (95% confidence interval [CI]: 83.8-99.9) and specificity of 83.3% (95% CI: 65.3-94.4). A significant relationship between CNP and a centrally located focus within the thoracic spine was also observed (odds ratio [OR]: 155.0 [95% CI lower limit: 16.0]; P < 0.0001, two-tailed Fisher exact test). In all animal models, neurons with bilateral descending projections to the lumbosacral superficial dorsal horn were concentrated in the autonomic intermediomedial nucleus surrounding the mid-thoracic central canal.

    INTERPRETATION: Our observations provide the first evidence for the etiology of CNP. These data may assist with the development of refined symptomatic therapies and allow for insights into unique pain syndromes observed in other demyelinating subtypes.

  • 61.
    Paues, Jakob
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Mackerlova, Ludmila
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Ericsson-Dahlstrand, Anders
    Department of Medicine, Unit of Rheumatology, The Karolinska Institute, Stockholm, Sweden.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Feeding-related immune responsive brain stem neurons: association with CGRP2001In: Neuroreport, ISSN 0959-4965, Vol. 12, no 11, p. 2399-2403Article in journal (Refereed)
    Abstract [en]

    Using dual-labeling in situ hybridization histochemistry, the neurotransmitter expression of immune-responsive neurons in the pontine parabrachial nucleus, a major relay for interoceptive information, was investigated. Intravenous injection of bacterial wall lipopolysaccharide resulted in dense c-fos mRNA expression in the external lateral parabrachial nucleus, and a majority of the c-fos expressing cells also expressed calcitonin gene-related peptide (CGRP) mRNA. In contrast CGRP-posi- tive cells in the adjoining external medial subnucleus were c-fos negative. Taken together with previous hodological and behavioral studies, these data suggest that CGRPergic parabrachial neurons may mediate lipopolysaccharide-induced anorexia by means of their projection to central nucleus of the amygdala.

  • 62.
    Paues, Jakob
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Mackerlova, Ludmila
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Expression of melanocortin-4 receptor by rat parabrachial neurons responsive to immune and aversive stimuli2006In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 141, no 1, p. 287-297Article in journal (Refereed)
    Abstract [en]

    The pontine parabrachial nucleus is a major relay area for visceral and other interoceptive information, and has been implicated in mechanisms underlying anorexia and food aversion during disease. Thus, physiological studies have shown that peripheral immune stimuli, as well as the administration of aversive substances such as lithium chloride, evoke a prominent Fos-expression in the lateral parabrachial nucleus and behavioral experiments have demonstrated that this structure is critical for the acquisition of conditioned taste aversion. The present study examined in rats the relationship between parabrachial neurons activated by systemic administration of bacterial cell-wall lipopolysaccharide or lithium chloride and the melanocortin system, a major regulator of feeding and energy homeostasis that also has been implicated in aversive behavior. Dual-labeling in situ hybridization showed melanocortin-4 receptor expression on neurons in the external lateral parabrachial subnucleus that displayed lipopolysaccharide- or lithium chloride-induced expression of c-fos mRNA. Melanocortin-4 receptor mRNA was also co-expressed with mRNA for calcitonin gene-related peptide in this subnucleus. Taken together with previous observations showing that calcitonin gene-related peptide expressing neurons in the external lateral parabrachial subnucleus are activated by peripheral immune challenge, that lipopolysaccharide-activated external lateral parabrachial subnucleus neurons project to the amygdala, and that the amygdala-projecting neurons in the external lateral parabrachial subnucleus are calcitonin gene-related peptide-positive, the present findings suggest the presence of a melanocortin-regulated calcitonin gene-related peptide-positive pathway from the external lateral parabrachial subnucleus to the amygdala that relays information of importance to forebrain responses to certain aspects of sickness behavior. These observations may thus help explain how melanocortins can reduce feeding and influence conditioned taste aversion during inflammation and other disease conditions.

  • 63.
    Richard, Sabine
    et al.
    Station de Recherches Avicoles, Institut National de la Recherche Agronomique, Nouzilly, France.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Paues, Jakob
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Mackerlova, Ludmila
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cellbiology. Linköping University, Faculty of Health Sciences.
    Activation of the parabrachio-amygdaloid pathway by immune challenge or spinal nociceptive input: a quantitative study in the rat using Fos immunohistochemistry and retrograde tract tracing2005In: Journal of Comparative Neurology, ISSN 0021-9967, E-ISSN 1096-9861, Vol. 481, no 2, p. 210-219Article in journal (Refereed)
    Abstract [en]

    Peripheral nociceptive stimulation results in activation of neurons in the pontine parabrachial nucleus (PB) of rats. Electrophysiological studies have suggested that noxiously activated PB neurons project to the amygdala, constituting a potential pathway for emotional aspects of pain. In the present study we examined this hypothesis by combining retrograde tract tracing with Fos immunohistochemistry. Cholera toxin subunit B was injected into the amygdala of rats. After a minimum of 48 hours the rats were given a subcutaneous injection of 100 l of 5% formalin into one hindpaw and killed 60-90 minutes later. A dense aggregation of retrogradely labeled neurons was seen in the external lateral PB. Fos-expressing neurons were present preferentially in the central, dorsal, and superior lateral subnuclei as well as in the lateral crescent area, as described previously. There was little overlap between the retrogradely labeled and Fos-expressing populations and double-labeled neurons were rare. In contrast, systemic immune challenge by intravenous injection of bacterial wall lipopolysaccharide resulted in a Fos expression that overlapped the retrograde labeling in the external lateral PB, and many double-labeled neurons were seen. While these data provide direct functional anatomical evidence that nociceptive information from the hindlimb is relayed to the amygdala via the parabrachial nucleus, the number of parabrachio-amygdaloid neurons involved is small. Considering the widespread activation of parabrachio-amygdaloid neurons by a variety of visceral and humoral stimuli, the parabrachio-amygdaloid pathway thus appears to be more involved in the mediation of information related to viscerally and humorally elicited activity than in transmission of spinal nociceptive inputs.

  • 64.
    Ruud, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Backhed, Fredrik
    University of Gothenburg.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Deletion of the gene encoding MyD88 protects from anorexia in a mouse tumor model2010In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 24, no 4, p. 554-557Article in journal (Refereed)
    Abstract [en]

    The anorexia-cachexia syndrome, characterized by a rise in energy expenditure and loss of body weight that paradoxically are associated with loss of appetite and decreased food intake, contributes significantly to the morbidity and mortality in cancer. While the pathophysiology of cancer anorexia-cachexia is poorly understood, evidence indicates that pro-inflammatory cytokines are key mediators of this response. Although inflammation hence is recognized as an important component of cancer anorexia-cachexia, the molecular pathways involved are largely unknown. We addressed this issue in mice carrying a deletion of the gene encoding MyD88, the key intracellular adaptor molecule in Toll-like and interleukin-1 family receptor signaling. Wild-type and MyD88-deficient mice were transplanted subcutaneously with a syngenic methylcholanthrene-induced tumor (MCG 101) and daily food intake and body weight were recorded. Wild-type mice showed progressively reduced food intake from about 5 days after tumor transplantation and displayed a slight body weight loss after 10 days when the experiment was terminated. In contrast, MyD88-deficient mice did not develop anorexia, and displayed a positive body weight development during the observation period. While the MyD88-deficient mice on average developed somewhat smaller tumors than wild-type mice, this did not explain the absence of anorexia, because anorexia was seen in wild-type mice with similar tumor mass as non-anorexic knock-out mice. These data suggest that MyD88-dependent mechanisms are involved in the metabolic derangement during cancer anorexia-cachexia and that innate immune signaling is important for the development of this syndrome.

  • 65.
    Ruud, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Björk, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Tang, Yan-juan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Stroehle, Peter
    University of Cologne, Germany Max Planck Institute Neurol Research, Germany .
    Caesar, Robert
    University of Gothenburg, Sweden .
    Schwaninger, Markus
    Medical University of Lubeck, Germany .
    Wunderlich, Thomas
    University of Cologne, Germany Max Planck Institute Neurol Research, Germany .
    Backhed, Fredrik
    University of Gothenburg, Sweden .
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells2013In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 27, no 5, p. 1973-1980Article in journal (Refereed)
    Abstract [en]

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  • 66.
    Ruud, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Björk Wilhelms, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Yan-Juan, Tang
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Bäckhed, Fredrik
    Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Lundholm, Kent
    Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    MyD88 in hematopoietic cells, but not in cerebrovascular endothelial cells or neural cells, is critical for inflammation- and cancer-induced loss of appetiteManuscript (preprint) (Other academic)
    Abstract [en]

    Loss of appetite concomitant with reduced food intake is a hallmark of both acute and chronic inflammatory diseases. Yet, despite extensive investigations, the underlying mechanisms remain undefined. Here we addressed this issue using mice lacking MyD88, critical for Tolllike and IL-1 receptor family signaling, generally or in specific cell types. Ubiquitous null deletions conferred complete resistance to bacterial lipopolysaccharide (LPS) induced anorexia, but this resistance was lost when knock-out mice subjected to whole-body irradiation to delete hematopoietic cells were transplanted with wild-type bone-marrow. In line with this observation, mice lacking MyD88 in hematopoietic cells were largely protected against LPS-induced anorexia, whereas mice with abrogated MyD88 signaling in neural cells, being leaner and smaller, developed anorexia of similar magnitude as wild-type littermates. The effect of hematopoietic MyD88-deletion on feeding seemed however partially dissociated from the effect on body weight, since LPS triggered weight loss, although attenuated, in these mutants. Furthermore, MyD88 deficiency in the cerebrovascular endothelium affected neither LPS-induced anorexia nor weight loss. In a model for the cancer anorexia-cachexia syndrome, inactivation of MyD88 in hematopoietic cells strongly impaired the anorexia development and protected against body weight loss. These findings identify hematopoietic cells as a critical nexus for acute inflammatory driven anorexia as well as for chronic anorexia associated with malignant disease.

  • 67.
    Ruud, Johan
    et al.
    Linköping University, Department of Biomedicine and Surgery, Division of cell biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Biomedicine and Surgery, Division of cell biology. Linköping University, Faculty of Health Sciences.
    Identification of rat brainstem neuronal structures activated during cancer-induced anorexia2007In: Journal of Comparative Neurology, ISSN 0021-9967, E-ISSN 1096-9861, Vol. 504, no 3, p. 275-286Article in journal (Refereed)
    Abstract [en]

    In cancer-related anorexia, body weight loss is paradoxically associated with reduced appetite, which is contrary to the situation during starvation, implying that the normal coupling of food intake to energy expenditure is disarranged. Here we examined brainstem mechanisms that may underlie suppression of food intake in a rat model of cancer anorexia. Cultured Morris 7777 hepatoma cells were injected subcutaneously in Buffalo rats, resulting in slowly growing tumor and reduced food intake and body weight loss after about 10 days. The brainstem was examined for induced expression of the transcription factors Fos and FosB as signs of neuronal activation. The results showed that anorexia and retarded body weight growth were associated with Fos protein expression in the area postrema, the general visceral region of the nucleus of the solitary tract, and the external lateral parabrachial nucleus, structures that also display Fos after peripheral administration of satiating or anorexigenic stimuli. The magnitude of the Fos expression was specifically related to the size of induced tumor, and not associated with weight loss per se, because it was not present in pair-fed or food-deprived rats. It also appeared to be independent of proinflammatory cytokines, as determined by the absence of increased cytokine levels in plasma and induced cytokine and cyclooxygenase expression in the brain. The findings thus provide evidence that cancer-associated anorexia and weight loss in this model is associated with activation of brainstem circuits involved in the suppression of food intake, and suggest that this occurs by inflammatory-independent mechanisms. © 2007 Wiley-Liss, Inc.

  • 68.
    Ruud, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Engström, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Wang, Wenhua
    Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Nilsberth, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Iresjö, Britt-Marie
    Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Lundholm, Kent
    Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    A putative role for Cox-1 in the initiation of cancer anorexia independent of mPGES-1, PGE2 and neuronal EP4 receptorsManuscript (preprint) (Other academic)
    Abstract [en]

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the so called anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PG and the cyclooxygenase (Cox) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the reduced food intake in the tumor-bearing animals was due to decreased meal frequency. Treatment with a nonselective Cox inhibitor attenuated the anorexia, and also tumor growth. However, when given at manifest anorexia, the nonselective Cox inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite the pronounced effect of nonselective Cox-inhibitors, a selective Cox-2 inhibitor had no effect on the anorexia, whereas Cox-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE2 levels in plasma - a response blocked by nonselective Cox-inhibition - but not in the cerebrospinal fluid, and there was no rise in body temperature. Neutralization of PGE2 with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1), the inducible terminal isomerase for PGE2 synthesis, affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP4 receptors selectively in the nervous system developed anorexia. These observations suggest that Cox-enzymes, most likely Cox-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE2 and neuronal EP4 signaling.

  • 69.
    Ruud, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Engström Ruud, Linda
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Wang, Wenhua
    Sahlgrens University Hospital, Sweden .
    Nilsberth, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Iresjo, Britt-Marie
    Sahlgrenska University Hospital, Gothenburg, Sweden.
    Lundholm, Kent
    Sahlgrenska University Hospital, Gothenburg, Sweden.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-12013In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 29, p. 124-135Article in journal (Refereed)
    Abstract [en]

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia–cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia–cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE2 levels in plasma – a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE2-levels in the cerebrospinal fluid. Neutralization of plasma PGE2 with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP4 receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE2 and neuronal EP4 signaling.

  • 70. Saha, Sipra
    et al.
    Engström, Linda
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Mackerlova, Ludmila
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Jakobsson, Per-Johan
    Blomqvist, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Impaired febrile responses to immune challenge in mice deficient in microsomal prostaglandin E synthase-12005In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, E-ISSN 1522-1490, Vol. 288, no 5 57-5Article in journal (Refereed)
    Abstract [en]

    Fever is a common, centrally elicited sign of inflammatory and infectious processes and is known to be induced by the action of PGE2 on its specific receptors in the thermogenic region of the hypothalamus. In the present work, using genetically modified mice, we examined the role of the inducible terminal PGE2-synthesizing enzyme microsomal prostaglandin E synthase-1 (mPGES-1) for the generation of immune-elicited fever. Animals with a deletion of the Ptges gene, which encodes mPGES-1, or their wild-type littermates were given either a subcutaneous injection of turpentine-a model for aseptic cytokine-induced pyresis-or an intraperitoneal injection of interleukin-1β. While both procedures resulted in typical febrile responses in wild-type animals, these responses were strongly impaired in the mPGES-1 mutant mice. In contrast, both genotypes showed psychogenic stress-induced hyperthermia and displayed normal diurnal temperature variations. Both wild-type and mPGES-1 mutant mice also showed strongly reduced motor activity following turpentine injection. Taken together with previous observations on mPGES-1 induction in the brain vasculature during various inflammatory conditions and its role in endotoxin-induced pyresis, the present findings indicate that central PGE 2 synthesis by mPGES-1 is a general and critical mechanism for fever during infectious and inflammatory conditions that is distinct from the mechanism(s) underlying the circadian temperature regulation and stress-induced hyperthermia, as well as the inflammation-induced activity depression. Copyright © 2005 the American Physiological Society.

  • 71.
    Stening, Kent
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Berg, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Hammar, Mats
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Voster, Helene
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Eriksson, Olle
    Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
    Amandusson, Åsa
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Influence of estrogen levels on thermal perception, pain thresholds and pain tolerance: Studies on women undergoing in vitro fertilization2012In: Journal of Pain, ISSN 1526-5900, E-ISSN 1528-8447, Vol. 13, no 5, p. 459-466Article in journal (Refereed)
    Abstract [en]

    We examined the relationship between estrogen and pain in women undergoing in vitro fertilization (IVF). Quantitative sensory tests (QST) were performed twice during the IVF-regimen: once during hormonal down-regulation and once during hormonal upregulation. A group of healthy men and a group of women using monophasic contraceptives were also examined, to control for session-to-session effects. Among the women undergoing IVF, serum 17β-estradiol levels differed strongly between treatments as expected, and increased from 65.7 (SD = 26) pmol/l during the downregulation phase, to 5188 (SD = 2524) pmol/l during the up-regulation phase. Significant outcomes in the QST were only seen for temperature perception thresholds (1.7°C vs. 2.2°C; P = 0.003) and cold pain threshold (11.5°C vs. 14.5°C; P = 0.04). A similar change in cold pain threshold was also seen in the two control groups, however, and statistical analysis suggested that this change was due to a session-to-session effect rather than being the result of hormonal modulation. Heat pain thresholds, heat tolerance, pressure pain thresholds, and the cold pressor test showed no significant differences between sessions. These data demonstrate that pain perception and pain thresholds in healthy women show little, if any, changes even with major variations in serum estradiol levels.

  • 72.
    Stening, Kent
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Eriksson, Olle
    Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
    Hammar, Mats
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Berg, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Pain thresholds and pain tolerance during the ovulatory cycle in healthy women: quantitative sensory testingManuscript (preprint) (Other academic)
    Abstract [en]

    Hormonal influence on pain sensitivity at different menstrual phases is a field of contradictory results. One reason is methodological differences between studies and methodological limitations such as lack of confirmation of cycle phase by measurement of actual hormone levels. In the present study, 14 healthy women were followed during three menstrual cycles and were subjected to a battery of quantitative sensory tests 1-4 after start of menses (follicular phase) and 2-11 days before next menses (luteal phase). The material was analyzed in three different ways: cycle phase determined according to the calendar method; cycle phase determined by hormone values, with cycles showing hormone values outside reference values omitted; and cycles subdivided into three subgroups depending on hormone profile (“normal” cycle; high s-estrogen during the assumed luteal phase; and low progesterone during the assumed luteal phase). However, neither analysis showed any significant differences between the measurement done during immediate after onset of menses and those performed in the period before next menses. Consistent with the results of several previous studies, the findings indicate that pain sensitivity does not seem to vary as a function of the menstrual cycle.

  • 73.
    Stening, Kent
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Eriksson, Olle
    Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
    Henriksson, Karl-Gösta
    Linköping University, Department of Clinical and Experimental Medicine, Rehabilitation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Pain and Rehabilitation Centre.
    Brynhildsen, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Lindh-Åstrand, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Berg, Göran
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Hammar, Mats
    Linköping University, Department of Clinical and Experimental Medicine, Obstetrics and gynecology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Amandusson, Åsa
    Uppsala University.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Hormonal replacement therapy does not affect self-estimated pain or experimental pain responses in post-menopausal women suffering from fibromyalgia: a double-blind, randomized, placebo-controlled trial2011In: RHEUMATOLOGY, ISSN 1462-0324, Vol. 50, no 3, p. 544-551Article in journal (Refereed)
    Abstract [en]

    Methods. Twenty-nine post-menopausal women were randomized to either 8 weeks of treatment with transdermal 17 beta-oestradiol (50 mu g/day) or placebo according to a double-blind protocol. A self-estimation of pain, a set of quantitative sensory tests measuring thresholds to temperature, thermal pain, cold pain and pressure pain, and a cold pressor test were performed on three occasions: before treatment, after 8 weeks of treatment and 20 weeks after cessation of treatment. Results. Hormonal replacement treatment significantly increased serum oestradiol levels as expected (P andlt; 0.01). However, no differences in self-estimated pain were seen between treatment and placebo groups, nor were there any differences between the two groups regarding the results of the quantitative sensory tests or the cold pressor test at any of the examined time points. Conclusion. Eight weeks of transdermal oestradiol treatment does not influence perceived pain, pain thresholds or pain tolerance as compared with placebo treatment in post-menopausal women suffering from FM.

  • 74.
    Stening, Kent
    et al.
    Linköping University, Department of Biomedicine and Surgery. Linköping University, Faculty of Health Sciences.
    Eriksson, Olle
    Linköping University, Department of Computer and Information Science, Statistics. Linköping University, Faculty of Arts and Sciences.
    Wahren, Lis Karin
    Linköping University, Department of Social and Welfare Studies. Linköping University, Faculty of Health Sciences.
    Berg, Göran
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Obstetrics and gynecology. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Hammar, Mats
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Molecular and Clinical Medicine, Obstetrics and gynecology. Östergötlands Läns Landsting, Centre of Paediatrics and Gynecology and Obstetrics, Department of Gynecology and Obstetrics in Linköping.
    Blomqvist, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Pain sensations to the cold pressor test in normally menstruating women: Comparison with men and relation to menstrual phase and serum sex steroid levels2007In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, E-ISSN 1522-1490, Vol. 293, no 4Article in journal (Refereed)
    Abstract [en]

    The role of gonadal hormones on pain sensations was investigated in normally menstruating women (n = 16) using the cold pressor test. Tolerance time, pain threshold, and pain intensity were examined once a week during a 4-wk period, and serum concentrations of 17β-estradiol and progesterone were determined at each test session, which were classified into the early follicular phase, late follicular phase, early luteal phase, and late luteal phase, as determined by the first day of menses and the actual hormone levels recorded. A group of men (n = 10) of the same age interval was examined for comparison. The data show that pain threshold was reduced during the late luteal phase compared with the late follicular phase, and hormone analyses showed significant positive correlation between the progesterone concentration and lowered pain threshold and increasing pain intensity. Hormone analysis also showed an interaction between S-estradiol and S-progesterone on pain intensity, demonstrating that the increased perceived pain intensity that was associated with high progesterone concentrations was significantly reduced with increasing levels of estradiol. While no statistically significant sex differences in pain measurements were found, women displayed much more pronounced, and statistically significant, session-to-session effects than men, with increased pain threshold and decreased pain intensity with each test session. Hence, these data suggest that the changes in the serum concentration of gonadal hormones that occur during the menstrual cycle influence pain sensations elicited by noxious tonic cold stimulation and show that adaptation to the cold pressor test may be sex dependent. © 2007 the American Physiological Society.

  • 75.
    Söderström, Mats
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Cell biology.
    Engblom, David
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Cell biology.
    Blomqvist, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Cell biology.
    Hammarström, Sven
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Cell biology.
    Expression of leukotriene C4 synthase mRNA by the choroid plexus in mouse brain suggests novel neurohormone functions of cysteinyl leukotrienes2003In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 307, no 4, p. 987-990Article in journal (Refereed)
    Abstract [en]

    Leukotriene C4 is a potent mediator of allergic and inflammatory reactions, and is formed from arachidonic acid and glutathione through the sequential action of 5-lipoxygenase and leukotriene C4 synthase (LTCS). These enzymes are predominantly expressed in cells of myeloid lineage. In this report, we have investigated LTCS mRNA expression in mouse brain. Expression was demonstrated using RT-PCR and RNase protection assays. In situ hybridization experiments showed exclusive staining of the choroid plexus of all brain ventricles. This expression pattern may provide a mechanism for the generation of LTC4 on the cerebral side of the blood-brain barrier and suggests a possible novel regulator function of LTC4 in the formation of cerebrospinal fluid.

  • 76.
    Vasilache, Ana-Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Qian, Hong
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Center for Hematology and Regenerative Medicine (HERM), Novum, Karolinska Institute, Huddinge, Sweden.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells toward enhanced prostaglandin E2 signaling2015In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 48, p. 31-41Article in journal (Refereed)
    Abstract [en]

    The cells constituting the blood-brain barrier are critical for the transduction of peripheral immune signals to the brain, but hitherto no comprehensive analysis of the signaling events that occur in these cells in response to a peripheral inflammatory stimulus has been performed. Here, we examined the inflammatory transcriptome in blood-brain barrier cells, including endothelial cells, pericytes, and perivascular macrophages, which were isolated by fluorescent-activated cell sorting, from non-immune-challenged mice and from mice stimulated by bacterial wall lipopolysaccharide. We show that endothelial cells and perivascular macrophages display distinct transcription profiles for inflammatory signaling and respond in distinct and often opposing ways to the immune stimulus. Thus, endothelial cells show induced PGE2 synthesis and transport with attenuation of PGE2 catabolism, increased expression of cytokine receptors and down-stream signaling molecules, and downregulation of adhesion molecules. In contrast, perivascular macrophages show downregulation of the synthesis of prostanoids other than PGE2 and of prostaglandin catabolism, but upregulation of interleukin-6 synthesis. Pericytes were largely unresponsive to the immune stimulation, with the exception of downregulation of proteins involved in pericyte-endothelial cell communication. While the endothelial cells account for most of the immune-induced gene expression changes in the blood-brain barrier, the response of the endothelial cells occurs in a concerted manner with that of the perivascular cells to elevate intracerebral levels of PGE2, hence emphasizing the critical role of PGE2 in immune-induced signal transduction across the blood-brain barrier.

  • 77.
    Vasilache, Ana-Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Immunology and Transfusion Medicine.
    Örtegren Kugelberg, Unn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Nilsberth, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Minor Changes in Gene Expression in the Mouse Preoptic Hypothalamic Region by Inflammation-Induced Prostaglandin E22013In: Journal of neuroendocrinology (Print), ISSN 0953-8194, E-ISSN 1365-2826, Vol. 25, no 7, p. 635-643Article in journal (Refereed)
    Abstract [en]

    We investigated to what extent inflammation-induced prostaglandin E2 (PGE2) regulates gene expression in the central nervous system. Wild-type mice and mice with deletion of the gene encoding microsomal prostaglandin E synthase-1 (mPGES-1), which cannot produce inflammation-induced PGE2, were subjected to peripheral injection of bacterial wall lipopolysaccharide (LPS) and killed after 5 h. The median and medial preoptic nuclei, which are rich in prostaglandin E receptors, were isolated by laser capture microdissection (LCM), and subjected to whole genome microarray analysis. Although the immune stimulus induced robust transcriptional changes in the brain, as seen by a quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes, only small PGE2-dependent gene expression changes were observed in the gene array analysis and, for only two genes, a pronounced differential expression between LPS-treated wild-type and mPGES-1 knockout mice could be verified by qRT-PCR. These were Hspa1a and Hspa1b, encoding heat shock proteins, which showed a two- to three-fold higher expression in wild-type mice than in knockout mice after immune challenge. However, the induced expression of these genes was found to be secondary to increased body temperature because they were induced also by cage exchange stress, which did not elicit PGE2 synthesis, and thus were not induced per se by PGE2-elicited transcriptional events. Our findings suggest that inflammation-induced PGE2 has little effect on gene expression in the preoptic region, and that centrally elicited disease symptoms, although PGE2-dependent, occur as a result of regulation of neuronal excitability that is a consequence of intracellular, transcriptional-independent signalling cascades. Our findings also imply that the profound changes in gene expression in the brain that are elicited by peripheral inflammation occur independently of PGE2 via a yet unidentified mechanism.

  • 78.
    Wilhelms, Daniel Björk
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Acute Health Care in Linköping.
    Kirilov, Milen
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Eskilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Örtegren Kugelberg, Unn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Klar, Christine
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Ridder, Dirk A.
    Medical University of Lubeck, Germany.
    Herschman, Harvey R.
    University of Calif Los Angeles, CA 90095 USA.
    Schwaninger, Markus
    Medical University of Lubeck, Germany.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Deletion of Prostaglandin E-2 Synthesizing Enzymes in Brain Endothelial Cells Attenuates Inflammatory Fever2014In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 34, no 35, p. 11684-11690Article in journal (Refereed)
    Abstract [en]

    Fever is a hallmark of inflammatory and infectious diseases. The febrile response is triggered by prostaglandin E-2 synthesis mediated by induced expression of the enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). The cellular source for pyrogenic PGE(2) remains a subject of debate; several hypotheses have been forwarded, including immune cells in the periphery and in the brain, as well as the brain endothelium. Here we generated mice with selective deletion of COX-2 and mPGES1 in brain endothelial cells. These mice displayed strongly attenuated febrile responses to peripheral immune challenge. In contrast, inflammation-induced hypoactivity was unaffected, demonstrating the physiological selectivity of the response to the targeted gene deletions. These findings demonstrate that PGE(2) synthesis in brain endothelial cells is critical for inflammation-induced fever.

  • 79.
    Zajdel, Joanna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Zager, Adriano
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Acute maternal separation potentiates the gene expression and corticosterone response induced by inflammation2019In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 77, p. 141-149Article in journal (Refereed)
    Abstract [en]

    Maternal care is crucial for infants and profoundly affects their responses to different kinds of stressors. Here, we examined how maternal separation affects inflammatory gene expression and the corticosterone response to an acute immune challenge induced by lipopolysaccharide (LPS; 40 µg/kg ip) in mouse pups, 8–9 days old. Maternal separation initially attenuated LPS-induced hypothalamic pro-inflammatory gene expression, but later, at 3 h after immune challenge, robustly augmented such gene expression and increased serum corticosterone levels. Providing the pups with a warm and soft object prevented the separation-induced augmented hypothalamic-pituitary-adrenal (HPA)-axis response. It also prevented the potentiated induction of some, but not all, inflammatory genes to a similar extent as did the dam. Our results show that maternal separation potentiates the inflammatory response and the resulting HPA-axis activation, which may have detrimental effects if separation is prolonged or repeated.

12 51 - 79 of 79
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf