liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234567 51 - 100 av 431
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Huang, Yuqing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Spin injection loss in self-assembled InAs/GaAs quantum dot structures from disordered barrier layers2016Ingår i: 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), IEEE , 2016, s. 627-629Konferensbidrag (Refereegranskat)
    Abstract [en]

    Semiconductor quantum dot (QD) structures are considered as promising building block for spintronic applications with the advantage of prolonged spin relaxation time owing to 0D character of confined carriers or excitons. However, feasible application is haunted by severe spin injection loss from its adjacent barrier layers and its mechanism is still not fully understood. Here, we show that exciton spin injection in self-assembled InAs/GaAs QD molecular structures (QMSs) is dominated by localized excitons confined within the QD-like regions of the wetting layer (WL) and GaAs barrier layer surrounding QD structures. The origin of spin injection loss is attribute to finite anisotropic exchange interaction (AEI) of the localized excitons subjected to asymmetric confinement potential in the injection layers. As a result, the AEI of the injected excitons and, thus, the spin injection efficiency is determined to be correlated with the overall geometric symmetry of QMSs, which hold strong influence on the confinement potential of the localized excitons in the surrounding barrier layers. Our results shed light on the microscopic origin of the spin injection loss in QD structures. More importantly, they offer a useful guideline to significantly improve spin injection efficiency by optimizing the lateral arrangement of QMSs and overcome a major challenge in the QD based spintronic device applications.

  • 52.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Jansson, Mattias
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Stehr, Jan Eric
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ishikawa, Fumitaro
    Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.
    Chen, Weimin M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires2016Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, nr 35, s. 15939-15947Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent developments in fabrication techniques and extensive investigations of the physical properties of III-V semiconductor nanowires (NWs), such as GaAs NWs, have demonstrated their potential for a multitude of advanced electronic and photonics applications. Alloying of GaAs with nitrogen can further enhance the performance and extend the device functionality via intentional defects and heterostructure engineering in GaNAs and GaAs/GaNAs coaxial NWs. In this work, it is shown that incorporation of nitrogen in GaAs NWs leads to formation of three-dimensional confining potentials caused by short-range fluctuations in the nitrogen composition, which are superimposed on long-range alloy disorder. The resulting localized states exhibit a quantum-dot like electronic structure, forming optically active states in the GaNAs shell. By directly correlating the structural and optical properties of individual NWs, it is also shown that formation of the localized states is efficient in pure zinc-blende wires and is further facilitated by structural polymorphism. The light emission from these localized states is found to be spectrally narrow (similar to 50-130 mu eV) and is highly polarized (up to 100%) with the preferable polarization direction orthogonal to the NW axis, suggesting a preferential orientation of the localization potential. These properties of self-assembled nano-emitters embedded in the GaNAs-based nanowire structures may be attractive for potential optoelectronic applications.

  • 53.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Ishikawa, F.
    Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.
    Chen, Weimin M
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Structural properties of GaNAs nanowires probed by micro-Raman spectroscopy2016Ingår i: Semiconductor Science and Technology, ISSN 0268-1242, E-ISSN 1361-6641, Vol. 31, nr 2, artikel-id 025002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    GaNAs-based nanowires (NWs) form a novel material system of potential importance for applications in advanced optoelectronic and photonic devices, thanks to the advantages provided by band-structure engineering, one-dimensional architecture and the possibility to combine them with mainstream silicon technology. In this work we utilize the micro-Raman scattering technique to systematically study the structural properties of such GaAs/GaNAs core/shell NW structures grown by molecular beam epitaxy on a Si substrate. It is shown that the employed one-dimensional architecture allows the fabrication of a GaNAs shell with a low degree of alloy disorder and weak residual strain, at least within the studied range of nitrogen (N) compositions [N] < 0.6%. Raman scattering by the GaAs-like and GaN-like phonons is found to be enhanced when the excitation energy approaches the E + transition energy. Since this effect is found to be more pronounced for the GaN-like phonons, the involved intermediate states are concluded to be localized in proximity to N impurities, i.e. they likely represent N-related cluster states located in proximity to E + .

  • 54.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Svensson, Bengt
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    The zinc vacancy – donor complex: A relevant compensating center in n-type ZnO (invited talk)2016Konferensbidrag (Refereegranskat)
  • 55.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Svensson, B. G.
    University of Oslo, Norway.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Thermal stability of the prominent compensating (Al-Zn-V-Zn) center in ZnO2016Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 119, nr 10, s. 105702-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron paramagnetic resonance spectroscopy is used to investigate the thermal stability of the Aluminum-Zinc vacancy (Al-Zn-V-Zn) complex created in bulk single crystalline ZnO by room temperature electron irradiation with an energy of 1.2 MeV. Two different stages in the annealing process at 160 and 250 degrees C with apparent activation energies of E-A1 = 1.5 +/- 0.2 eV and E-A2 = 1.9 +/- 0.2 eV, respectively, are observed. The second stage leads to the complete annealing out of the (Al-Zn-V-Zn) complex and is accompanied by restoration of the concentration of the AlZn shallow donor centers to its initial value in as-grown (i.e., not irradiated) material. The obtained results prove that the (Al-Zn-V-Zn) complex is the dominant acceptor responsible for compensation of n-type-dopants in the studied Al-containing ZnO samples. (C) 2016 AIP Publishing LLC.

  • 56.
    Huang, Yuqing Q.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Understanding and optimizing spin injection in self-assembled InAs/GaAs quantum-dot molecular structures2016Ingår i: Nano Reseach, ISSN 1998-0124, E-ISSN 1998-0000, Vol. 9, nr 3, s. 602-611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconductor quantum-dot (QD) structures are promising for spintronic applications owing to strong quenching of spin relaxation processes promoted by carrier and excitons motions. Unfortunately, spin injection efficiency in such nanostructures remains very low and the exact physical mechanism for the spin loss is still not fully understood. Here, we show that exciton spin injection in self-assembled InAs/GaAs QDs and quantum-dot molecular structures (QMSs) is dominated by localized excitons confined within the QD-like regions of the wetting layer (WL) and GaAs barrier layer immediately surrounding QDs and QMSs that in fact lack the commonly believed 2D and 3D character with an extended wavefunction. We identify the microscopic origin of the observed severe spin loss during spin injection as being due to a sizable anisotropic exchange interaction (AEI) of the localized excitons in the WL and GaAs barrier layer, which has so far been overlooked. We find that the AEI of the injected excitons and thus the efficiency of the spin injection processes are correlated with the overall geometric symmetry of the QMSs, as the latter largely defines the anisotropy of the confinement potential of the localized excitons in the surrounding WL and GaAs barrier. These results pave the way for a better understanding of spin injection processes and the microscopic origin of spin loss in QD structures, which in turn provides a useful guideline to significantly improve spin injection efficiency by optimizing the lateral arrangement of the QMSs thereby overcoming a major bottleneck in spintronic device applications utilizing semiconductor QDs.

  • 57.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Reddy, N. K.
    Humboldt University, Institute of Chemistry, Berlin, Germany .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, CA, USA .
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Unintentional nitrogen incorporation in ZnO nanowires detected by electron paramagnetic resonance spectroscopy2016Ingår i: Physica Status Solidi. C, Current topics in solid state physics, ISSN 1610-1634, E-ISSN 1610-1642, Vol. 13, nr 7-9, s. 572-575Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Unintentional incorporation of nitrogen in ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition is unambiguously proven by electron paramagnetic resonance spectroscopy. The nitrogen dopants are suggested to be provided from contaminations in the source gases. The majority of incorporated nitrogen atoms are concluded to reside at oxygen sites, i.e. in the atomic configuration of nitrogen substituting for oxygen (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in a bulk material. This implies that the defect formation energy at the NW surface could be lower than its bulk value, consistent with previous theoretical predictions. The obtained results underline that nitrogen can be easily incorporated in ZnO nanostructures which may be of advantage for realizing p-type conducting ZnO via N doping. On the other hand, the awareness of this process can help to prevent such unintentional doping in structures with desired n-type conductivity.

  • 58.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Ishikawa, Fumitaro
    Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Characterization of GaAs/GaNAs core/shell nanowires by means of Raman scattering spectroscopy2015Ingår i: Abstract Book, 2015, s. IP2.27-Konferensbidrag (Refereegranskat)
  • 59.
    Dagnelund, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Huang, Yuqing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Yonezu, H.
    Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Japan .
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps in Ga(In)NP2015Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 117, s. 015701-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    By employing photoluminescence(PL) spectroscopy under dual-wavelength optical excitation, we uncover the presence of deep-level hole traps in Ga(In)NP alloys grown by molecular beam epitaxy(MBE). The energy level positions of the traps are determined to be at 0.56 eV and 0.78 eV above the top of the valance band. We show that photo-excitation of the holes from the traps, by a secondary light source with a photonenergy below the bandgapenergy, can lead to a strong enhancement (up to 25%) of the PL emissions from the alloys under a primary optical excitation above the bandgapenergy. We further demonstrate that the same hole traps can be found in various MBE-grown Ga(In)NP alloys, regardless of their growth temperatures, chemical compositions, and strain. The extent of the PL enhancement induced by the hole de-trapping is shown to vary between different alloys, however, likely reflecting their different trap concentrations. The absence of theses traps in the GaNP alloy grown by vapor phase epitaxy suggests that their incorporation could be associated with a contaminant accompanied by the N plasma source employed in the MBEgrowth, possibly a Cu impurity.

  • 60.
    Dobrovolskiy, Alexander
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Persson, Per O. Å
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, Supanee
    Graduate Program of Materials Science and Engineering, University of California, La Jolla, California 92093, United States.
    Kuang, Yanjin
    Department of Physics, University of California, La Jolla, California 92093, United States.
    Tu, CHarles W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California 92093, United States.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Effects of Polytypism on Optical Properties and Band Structure ofIndividual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies2015Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, nr 6, s. 4052-4058Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    III-V semiconductor nanowires (NWs) have gained significant interest as building blocks in novel nanoscale devices. The one-dimensional (1D) nanostructure architecture allows one to extend band structure engineering beyond quantum confinement effects by utilizing formation of different crystal phases that are thermodynamically unfavorable in bulk materials. It is therefore of crucial importance to understand the influence of variations in the NWs crystal structure on their fundamental physical properties. In this work we investigate effects of structural polytypism on the optical properties of gallium phosphide and GaP/GaNP core/shell NW structures by a correlative investigation on the structural and optical properties of individual NWs. The former is monitored by transmission electron microscopy, whereas the latter is studied via cathodoluminescence (CL) mapping. It is found that structural defects, such as rotational twins in zinc blende (ZB) GaNP, have detrimental effects on light emission intensity at low temperatures by promoting nonradiative recombination processes. On the other hand, formation of the wurtzite (WZ) phase does not notably affect the CL intensity neither in GaP nor in the GaNP alloy. This suggests that zone folding in WZ GaP does not enhance its radiative efficiency, consistent with theoretical predictions. We also show that the change in the lattice structure have negligible effects on the bandgap energies of the GaNP alloys, at least within the range of the investigated nitrogen compositions of <2%. Both WZ and ZB GaNP are found to have a significantly higher efficiency of radiative recombination as compared with that in parental GaP, promising for potential applications of GaNP NWs as efficient nanoscale light emitters within the desirable amber-red spectral range.

  • 61.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Koteeswawa Reddy, Nandanapalli
    Humboldt University, Institute of Chemistry, Berlin, Germany.
    Tu, Charles W.
    University of California, Department of Electrical and Computer Engineering, La Jolla, CA, USA.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Efficient nitrogen incorporation in ZnO nanowires2015Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, artikel-id 13406Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity.

  • 62.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Reddy, Nandanapalli Koteeswara
    Tu, C.W.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Efficient Nitrogen Incorporation in ZnO Nanowires by Unintentional Doping2015Konferensbidrag (Refereegranskat)
  • 63.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Reddy, Nandanapalli Koteeswara
    Humboldt University, Institute of Chemistry, Berlin, 12489, Germany.
    Tu, Charles W
    University of California, Department of Electrical and Computer Engineering, La Jolla, CA 92093, USA.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Efficient Nitrogen Incorporation in ZnO Nanowires by Unintentional Doping2015Konferensbidrag (Refereegranskat)
    Abstract [en]

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity.

  • 64.
    Rudko, Galyna
    et al.
    National Academic Science Ukraine, Ukraine.
    Kovalchuk, Andrii
    National Academic Science Ukraine, Ukraine.
    Fediv, Volodymyr
    Bukovinian State Medical University, Ukraine.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Enhancement of polymer endurance to UV light by incorporation of semiconductor nanoparticles2015Ingår i: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 10, nr 81, s. 1-6Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Improvement of polyvinyl alcohol stability against ultraviolet (UV) illumination is achieved by introducing cadmium sulfide (CdS) nanoparticles into the polymeric matrix. Enhancement of stability is analyzed by optical characterization methods. UV protection is achieved by diminishing the probability of photo-activated formation of defects in polymer. The sources of polymer protection are the lowering of the efficiency of polymer excitation via partial absorption of incident light by the embedded nanoparticles as well as the de-excitation of the macromolecules that have already absorbed UV quanta via energy drain to nanoparticles. Within the nanoparticles, the energy is either dissipated by conversion to the thermal energy or reemitted as visible-range photoluminescence quanta.

  • 65.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Huang, Yuqing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Suraprapapich, Suwaree
    Department of Electrical and Computer Engineering, University of California, La Jolla, California, United States.
    Tu, Charles. W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, California 92093, United States.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures2015Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 9, nr 6, s. 5741-5749Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fine-structure splitting (FSS) of excitons in semiconductor nanostructures is a key parameter that has significant implications in photon entanglement and polarization conversion between electron spins and photons, relevant to quantum information technology and spintronics. Here, we investigate exciton FSS in self-organized lateral InAs/GaAs quantum-dot molecular structures (QMSs) including laterally aligned double quantum dots (DQDs), quantum-dot clusters (QCs), and quantum rings (QRs), by employing polarization-resolved microphotoluminescence (μPL) spectroscopy. We find a clear trend in FSS between the studied QMSs depending on their geometric arrangements, from a large FSS in the DQDs to a smaller FSS in the QCs and QRs. This trend is accompanied by a corresponding difference in the optical polarization directions of the excitons between these QMSs, namely, the bright-exciton lines are linearly polarized preferably along or perpendicular to the [11̅0] crystallographic axis in the DQDs that also defines the alignment direction of the two constituting QDs, whereas in the QCs and QRs, the polarization directions are randomly oriented. We attribute the observed trend in the FSS to a significant reduction of the asymmetry in the lateral confinement potential of the excitons in the QRs and QCs as compared with the DQDs, as a result of a compensation between the effects of lateral shape anisotropy and piezoelectric field. Our work demonstrates that FSS strongly depends on the geometric arrangements of the QMSs, which effectively tune the degree of the compensation effects and are capable of reducing FSS even in a strained QD system to a limit similar to strain-free QDs. This approach provides a pathway in obtaining high-symmetry quantum emitters desirable for realizing photon entanglement and spintronic devices based on such nanostructures, utilizing an uninterrupted epitaxial growth procedure without special requirements for lattice-matched materials combinations, specific substrate orientations, and nanolithography.

  • 66.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Dobrovolsky, Alexander
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    Kuang, Y.
    Tu, C.W.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.2015Konferensbidrag (Refereegranskat)
  • 67.
    Dobrovolsky, Alexander
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Stehr, Jan Eric
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, CA, USA.
    Kuang, Y.
    Department of Physics, University of California, La Jolla, CA, USA.
    Tu, C.W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, CA, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires2015Ingår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 11, nr 47, s. 6331-6337Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (μ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry.

  • 68.
    Gray, Ciaran
    et al.
    Dublin City University, Ireland.
    Cullen, Joseph
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Byrne, Conor
    Dublin City University, Ireland.
    Hughes, Greg
    Dublin City University, Ireland.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Henry, Martin O.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Dublin City University, Ireland.
    McGlynn, Enda
    Dublin City University, Ireland.
    Growth of isotopically enriched ZnO nanorods of excellent optical quality2015Ingår i: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 429Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have produced isotopically enriched ZnO nanorods using Zn-enriched ZnO source powder by vapour phase transport on silicon substrates buffer coated with unenriched ZnO seed layers. SEM and XRD data confirm successful growth of high quality, dense, c-axis aligned nanorods over a substantial surface area. Raman. data show a shift of greater than 1 cm(-1) in the peak position of the Raman scattered peaks due to the E-2(low) and E-2(high) phonon modes when the Zn isotope is changed from Zn-64 to Zn-68, consistent with previous work, thus confirming successful isotopic enrichment. SIMS data provides additional confirmation of enrichmenr. The optical qualiry (as dererrninecl by phoLoluminescence feature inrensiLy and line width) is excellenr. Samples with Zn isoLopic enrichmenr ranging from (ZnO)-Zn-64 to (ZnO)-Zn-68 display a shift in recombinarion energy of the bound excirons al. the band edge (3.34-3.37 eV) of similar to 0.6 meV. This blue-shift is also consisren d. with previously published data, further confirming both the excellen d. oprical qualiry and successful isoLopic subsfiLurion of ZnO nanorods using this relarively simple growth method. (c) 2015 Elsevier B.V. All rights reserved.

  • 69.
    Chen, Weimin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Wang, X. J.
    Tu, C. W.
    University of California, La Jolla, California, United States.
    Ptak, Aaron J.
    National Renewable Energy Lab, Golden, Colorado, United States.
    Geelhaar, L.
    Paul-Drude-Institut für Festkörpelektronik, Berlin, Germany.
    Riechert, H.
    Paul-Drude-Institut für Festkörpelektronik, Berlin, Germany.
    How to Deactivate Harmful Defects and Active them for New Spin Functionalities in a Semiconductor?2015Ingår i: Abstract Book, 2015, s. FF3.02-Konferensbidrag (Refereegranskat)
    Abstract [en]

    We demonstrate a general approach via spin engineering that is capable of not only deactivating defect-mediated efficient non-radiative carrier recombination channels in a semiconductor that are harmful to photonic and photovoltaic device performance, but also adding new room-temperature (RT) spin functionalities that are desirable for future spintronics and spin-photonics but so far unachievable otherwise. This approach exploits the Pauli Exclusion Principle that prohibits occupation of a non-degenerate defect level by two spin-parallel electrons, thereby providing spin blockade of carrier recombination via the defect level. The success of the approach is demonstrated in the dilute nitride of Ga(In)NAs, which holds promises for low-cost, highly efficient lasers for fiber-optic communications as well as for multi-band and multi-junction solar cell applications. First we identify that Gai self-interstitials and their complexes are the most common grown-in defects found in Ga(In)NAs grown by both molecular beam epitaxy (MBE) and metalorganic chemical vapour deposition (MOCVD). They provide a dominant non-radiative shunt path for non-equilibrium carriers, leading to low efficiencies of light-emitting and photon-charge carrier conversion. Spin blockade is shown to lead to a giant enhancement by up to 800% in light emission intensity at RT.Furthermore we show that via spin engineering these seemingly harmful defects can be turned into advantages by adding unconventional defect-enabled spin functionalities that are highly effective at RT, including some of the fundamental building blocks essential for future spintronics. We demonstrate efficient defect-engineered spin filtering in Ga(In)NAs, which is capable of generating a record-high degree (> 40%) of electron spin polarization at RT [Nature Materials 8, 198 (2009), Phys. Rev. B 89, 195412 (2014)]. We also provide the first experimental demonstration of an efficient RT spin amplifier based on defect engineered Ga(In)NAs with a spin gain up to 2700% [Adv. Materials 25, 738 (2013)]. Such a spin amplifier is shown to be capable of amplifying a fast-modulating input spin signal while truthfully maintaining its time variation of the spin-encoded information [7]. By taking advantage of the spin amplification effect, we show that Ga(In)NAs can be employed as efficient RT spin detectors, with spin detection efficiency well exceeding 100% [8,9]. By combining the spin-filtering effect and hyperfine coupling, we further achieve the first realization of RT nuclear spin hyperpolarization in semiconductors via conduction electrons [Nature Communications. 4, 1751 (2013)], relevant to nuclear spin qubits. We believe that such defect-enabled spin functionalities could potentially provide an attractive, alternative solution to the current and important issues on RT spin injection, spin amplification and spin detection in semiconductors for future spintronics.

  • 70.
    Rudko, Galyna Yu
    et al.
    V. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, Pr. Nauky, Kiev 03028, Ukraine..
    Koval'chuk, Andrii O
    Nauky, Kiev 03028, Ukraine.
    Fediv, Volodymyr I
    Department of Biophysics and Medical Informatics, Bukovinian State Medical University, 42 Kobylyanska st., 58000 Chernivtsi, Ukraine..
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Interfacial bonding in a CdS/PVA nanocomposite: A Raman scattering study2015Ingår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 452, s. 33-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Raman spectroscopy is employed to characterize the bonding between CdS nanoparticles (NPs) and a polyvinyl alcohol (PVA) as well as structural changes in the polymeric matrix caused by incorporation of NPs. It is shown that after the formation of CdS NPs the vibrations of carbonyl groups in acetate residuals of PVA and of CO groups at the macromolecules ends disappear. Formation of NPs also leads to an increased degree of hydrogen bonding and crystallinity of the hybrid material as compared with the unloaded polymer. The observed changes are ascribed to the formation of coordinative bonds and hydrogen between the CdS nanoparticles and polymeric macromolecules. The scheme of this interfacial bonding is also proposed.

  • 71.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Dobrovolskiy, Alexander
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, San Diego, California, 92093, USA.
    Sukrittanon, S.
    Graduate Program of Material Science and Engineering, University of California, La Jolla, San Diego, California, 92093, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, California, 92093, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Bouyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Novel GaP/GaNP Core/Shell Nanowires for Optoelectronics and Photonics2015Ingår i: Abstract Book, 2015, s. S8.03-Konferensbidrag (Refereegranskat)
  • 72.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Dobrovolsky, Alexander
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA .
    Kuang, Yanjin
    Department of Physics, University of California—San Diego, La Jolla, California 92093, United States.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Optimizing GaNP Coaxial Nanowires for Efficient Light Emission by Controlling Formation of Surface and Interfacial Defects2015Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 15, nr 1, s. 242-247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on identification and control of important nonradiative recombination centers in GaNP coaxial nanowires (NWs) grown on Si substrates in an effort to significantly increase light emitting efficiency of these novel nanostructures promising for a wide variety of optoelectronic and photonic applications. A point defect complex, labeled as DD1 and consisting of a P atom with a neighboring partner aligned along a crystallographic ⟨111⟩ axis, is identified by optically detected magnetic resonance as a dominant nonradiative recombination center that resides mainly on the surface of the NWs and partly at the heterointerfaces. The formation of DD1 is found to be promoted by the presence of nitrogen and can be suppressed by reducing the strain between the core and shell layers, as well as by protecting the optically active shell by an outer passivating shell. Growth modes employed during the NW growth are shown to play a role. On the basis of these results, we identify the GaP/GaNyP1–y/GaNxP1–x (x < y) core/shell/shell NW structure, where the GaNyP1–y inner shell with the highest nitrogen content serves as an active light-emitting layer, as the optimized and promising design for efficient light emitters based on GaNP NWs.

  • 73.
    Huang, Yuqing
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Puttisong, Yuttapoom
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Yang, X. J.
    Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
    Subagyo, A.
    Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
    Sueoka, K.
    Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
    Murayama, A.
    Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Size dependence of electron spin dephasing in InGaAs quantum dots2015Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, nr 9, s. 093109-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate ensemble electron spin dephasing in self-assembled InGaAs/GaAs quantum dots (QDs) of different lateral sizes by employing optical Hanle measurements. Using low excitation power, we are able to obtain a spin dephasing time T-2* (in the order of ns) of the resident electron after recombination of negative trions in the QDs. We show that T-2* is determined by the hyperfine field arising from the frozen fluctuation of nuclear spins, which scales with the size of QDs following the Merkulov-Efros-Rosen model. This scaling no longer holds in large QDs, most likely due to a breakdown in the lateral electron confinement. (C) 2015 AIP Publishing LLC.

  • 74.
    Chen, Shula L.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Ishikawa, Fumitaro
    Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan.
    Buyanova, Irina A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Suppression of non-radiative surface recombination by N incorporation in GaAs/GaNAs core/shell nanowires2015Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, artikel-id 11653Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    III-V semiconductor nanowires (NWs) such as GaAs NWs form an interesting artificial materials system promising for applications in advanced optoelectronic and photonic devices, thanks to the advantages offered by the 1D architecture and the possibility to combine it with the main-stream silicon technology. Alloying of GaAs with nitrogen can further enhance performance and extend device functionality via band-structure and lattice engineering. However, due to a large surface-to-volume ratio, III-V NWs suffer from severe non-radiative carrier recombination at/near NWs surfaces that significantly degrades optical quality. Here we show that increasing nitrogen composition in novel GaAs/GaNAs core/shell NWs can strongly suppress the detrimental surface recombination. This conclusion is based on our experimental finding that lifetimes of photo-generated free excitons and free carriers increase with increasing N composition, as revealed from our time-resolved photoluminescence (PL) studies. This is accompanied by a sizable enhancement in the PL intensity of the GaAs/GaNAs core/shell NWs at room temperature. The observed N-induced suppression of the surface recombination is concluded to be a result of an N-induced modification of the surface states that are responsible for the nonradiative recombination. Our results, therefore, demonstrate the great potential of incorporating GaNAs in III-V NWs to achieve efficient nano-scale light emitters.

  • 75.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Dobrovolsky, Alexandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Sukrittanon, S.
    Tu, C. W.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Bouyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Surface and interfacial defects in coaxial GaNP nanowires2015Konferensbidrag (Refereegranskat)
  • 76.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Johansen, K. M.
    Borheim, T. S.
    Vines, L.
    Svensson, B. G.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Bouianova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    The Aluminum - zinc vacancy complex in ZnO: An EPR study2015Konferensbidrag (Refereegranskat)
  • 77.
    Puttisong, Yuttapoom
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Huang, Yuqing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Yang, X. J.
    Hokkaido University, Japan.
    Subagyo, A.
    Hokkaido University, Japan.
    Sueoka, K.
    Hokkaido University, Japan.
    Murayama, A.
    Hokkaido University, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Anomalous spectral dependence of optical polarization and its impact on spin detection in InGaAs/GaAs quantum dots2014Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, nr 13, s. 132106-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We show that circularly polarized emission light from InGaAs/GaAs quantum dot (QD) ensembles under optical spin injection from an adjacent GaAs layer can switch its helicity depending on emission wavelengths and optical excitation density. We attribute this anomalous behavior to simultaneous contributions from both positive and negative trions and a lower number of photo-excited holes than electrons being injected into the QDs due to trapping of holes at ionized acceptors and a lower hole mobility. Our results call for caution in reading out electron spin polarization by optical polarization of the QD ensembles and also provide a guideline in improving efficiency of spin light emitting devices that utilize QDs.

  • 78.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, S. L.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Filippov, S.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Devika, M.
    Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea .
    Koteeswara Reddy, N.
    Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500712, Republic of Korea.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Defect properties of ZnO nanowires2014Ingår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1583, s. 272-276Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work we examined optical and defect properties of as-grown and Ni-coated ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition by means of optically detected magnetic resonance (ODMR). Several grown-in defects are revealed by monitoring visible photoluminescence (PL) emissions and are attributed to Zn vacancies, O vacancies, a shallow (but not effective mass) donor and exchange-coupled pairs of a Zn vacancy and a Zn interstitial. It is also found that the same ODMR signals are detected in the as-grown and Ni-coated NWs, indicating that metal coatings does not significantly affect formation of the aforementioned defects and that the observed defects are located in the bulk of the NWs.

  • 79.
    Chen, Weimin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Defect-enabled spin functionality: a new approach for room-temperature semiconductor spintronics2014Ingår i: Abstract Book of the 6th IEEE International Nanoelectronics Conference, 2014, s. 214-Konferensbidrag (Övrigt vetenskapligt)
  • 80.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Dobrovolsky, Alexandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, California, USA.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Defects in GaNP Nanowires2014Ingår i: Abstract Book of the 56th Electronic Materials Conference, 2014, s. 114-Konferensbidrag (Refereegranskat)
  • 81.
    Dobrovolsky, Alexandr
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    University of California, San Diego, La Jolla, CA, USA.
    Kuang, Y. J.
    University of California, San Diego, La Jolla, CA, USA.
    Tu, C. W.
    University of California, San Diego, La Jolla, CA, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Energy Upconversion in GaP/GaNP Core/Shell Nanowires for Enhanced Near-Infrared Light Harvesting2014Ingår i: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 10, nr 21, s. 4403-4408Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Semiconductor nanowires (NWs) have recently gained increasing interest due to their great potential for photovoltaics. A novel material system based on GaNP NWs is considered to be highly suitable for applications in efficient multi-junction and intermediate band solar cells. This work shows that though the bandgap energies of GaNx P1-x alloys lie within the visible spectral range (i.e., within 540-650 nm for the currently achievable x < 3%), coaxial GaNP NWs grown on Si substrates can also harvest infrared light utilizing energy upconversion. This energy upconversion can be monitored via anti-Stokes near-band-edge photoluminescence (PL) from GaNP, visible even from a single NW. The dominant process responsible for this effect is identified as being due to two-step two-photon absorption (TS-TPA) via a deep level lying at about 1.28 eV above the valence band, based on the measured dependences of the anti-Stokes PL on excitation power and wavelength. The formation of the defect participating in the TS-TPA process is concluded to be promoted by nitrogen incorporation. The revealed defect-mediated TS-TPA process can boost efficiency of harvesting solar energy in GaNP NWs, beneficial for applications of this novel material system in third-generation photovoltaic devices.

  • 82.
    Chen, Weimin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Ga(In)NAs Dilute Nitride: An Unconventional Spintronic Semiconductor.2014Ingår i: Abstract Book of the 56th Electronic Materials Conference, 2014, s. 51-Konferensbidrag (Refereegranskat)
  • 83.
    Dobrovolsky, Alexandr
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    GaNP nanowires – a novel material system for solar cell applications2014Ingår i: Abstract Book of the Materials Challenges in Alternative and Renewable Energy, 2014, s. 42-Konferensbidrag (Övrigt vetenskapligt)
  • 84.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Dobrovolsky, Alexander
    Filippov, Stanislav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, California, USA.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    GaP/GaNP core/shell nanowires - a novel material system for optoelectronics and photonics2014Ingår i: Abstract Book of the 3rd Int. Conf. on Nanostructures, Nanomaterials and Nanoengineering, 2014, s. 31-Konferensbidrag (Refereegranskat)
  • 85.
    Sukrittanon, S.
    et al.
    University of California, San Diego, La Jolla, USA .
    Kuang, Y. J.
    University of California, San Diego, La Jolla, USA .
    Dobrovolsky, Alexandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kang, Won-Mo
    Gwangju institute of Science and Technology (GIST), South Korea .
    Jang, Ja-Soon
    Yeungnam University, Daegu, South Korea .
    Kim, Bong-Joong
    DGwangju institute of Science and Technology (GIST), South Korea.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tu, C. W.
    University of California, San Diego, La Jolla, USA .
    Growth and characterization of dilute nitride GaNxP1−x nanowires and GaNxP1−x/GaNyP1−y core/shell nanowires on Si (111) by gas source molecular beam epitaxy2014Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, nr 7, s. 072107-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have demonstrated self-catalyzed GaN xP1−x and GaN xP1−x/GaNyP1−y core/shell nanowire growth by gas-source molecular beam epitaxy. The growth window for GaN xP1−x nanowires was observed to be comparable to that of GaP nanowires (∼585 °C to ∼615 °C). Transmission electron microscopy showed a mixture of cubic zincblende phase and hexagonal wurtzite phase along the [111] growth direction in GaN xP1−x nanowires. A temperature-dependent photoluminescence (PL) study performed on GaN xP1−x/GaNyP1−y core/shell nanowires exhibited an S-shape dependence of the PL peaks. This suggests that at low temperature, the emission stems from N-related localized states below the conduction band edge in the shell, while at high temperature, the emission stems from band-to-band transition in the shell as well as recombination in the GaN xP1−x core.

  • 86.
    Sukrittanon, S.
    et al.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA .
    Dobrovolsky, Alexandr
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, USA .
    Growth and Optical Properties of GaNxP1-x/GaNyP1-y Core/Shell Nanowires Grown by Gas-Source Molecular Beam Epitaxy2014Ingår i: Abstract Book of the 56th Electronic Materials Conference, 2014, s. 130-Konferensbidrag (Refereegranskat)
  • 87.
    Dagnelund, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Puustinen, J.
    Tampere University of Technology, Finland .
    Guina, M.
    Tampere University of Technology, Finland .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Identification of an isolated arsenic antisite defect in GaAsBi2014Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 104, nr 5, s. 052110-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optically detected magnetic resonance and photoluminescence spectroscopy are employed to study grown-in defects in GaAs0.985Bi0.015 epilayers grown by molecular beam epitaxy. The dominant paramagnetic defect is identified as an isolated arsenic antisite, As-Ga, with an electron g-factor of 2.03 +/- 0.01 and an isotropic hyperfine interaction constant A (900 +/- 620) x 10(-4) cm(-1). The defect is found to be preferably incorporated during the growth at the lowest growth temperature of 270 degrees C, but its formation can be suppressed upon increasing growth temperature to 315 degrees C. The As-Ga concentration is also reduced after post-growth rapid thermal annealing at 600 degrees C.

  • 88.
    Puttisong, Yuttapoom
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Limiting factor of defect-engineered spin-filtering effect at room temperature2014Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, nr 19, s. 195412-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We identify hyperfine-induced electron and nuclear spin cross-relaxation as the dominant physical mechanism for the longitudinal electron spin relaxation time (T-1) of the spin-filtering Ga-i(2+) defects in GaNAs alloys. This conclusion is based on our experimental findings that T-1 is insensitive to temperature over 4-300 K, and its exact value is directly correlated with the hyperfine coupling strength of the defects that varies between different configurations of the Ga-i(2+) defects present in the alloys. These results thus provide a guideline for further improvements of the spin-filtering efficiency by optimizing growth and processing conditions to preferably incorporate the Ga-i(2+) defects with a weak hyperfine interaction and by searching for new spin-filtering defects with zero nuclear spin.

  • 89.
    Chen, S. L.
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Magneto-optical properties and recombination dynamics of  isoelectronic bound excitons in ZnO2014Ingår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1583, s. 186-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Magneto-optical and time-resolved photoluminescence (PL) spectroscopies are employed to evaluate electronic structure of a bound exciton (BX) responsible for the 3.364 eV line (labeled as I * 1 ) in bulk ZnO. From time-resolved PL spectroscopy, I * 1 is concluded to originate from the exciton ground state. Based on performed magneto-PL studies, the g-factors of the involved electron and hole are determined as being ge = 1.98 and g ∥ h (g ⊥ h ) = 1.2(1.62) , respectively. These values are nearly identical to the reported g-factors for the I* line in ZnO (Phys. Rev. B 86, 235205 (2012)), which proves that I * 1 should have a similar origin as I* and should arise from an exciton bound to an isoelectronic center with a hole-attractive potential.

  • 90.
    Dobrovolskiy, Alexander
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Stehr, Jan Eric
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Kuang, Y. J.
    Department of Physics, University of California, La Jolla, San Diego, California, 92093, USA.
    Sukrittanon, S.
    Graduate Program of Material Science and Engineering, University of California, La Jolla, San Diego, California, 92093, USA.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, La Jolla, San Diego, California, 92093, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska fakulteten.
    Bouianova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Optical properties and defect formation in GaP/GaNP core/shell nanowires2014Ingår i: Program Book of the 226th Meeting of The Electrochemical Society, 2014, s. p.72-Konferensbidrag (Refereegranskat)
  • 91.
    Chen, Shula
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Filippov, Stanislav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Ishikawa, Fumitaro
    Ehime University, Japan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires2014Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, nr 25, s. 253106-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Radiative carrier recombination processes in GaAs/GaNAs core/shell nanowires grown by molecular beam epitaxy on a Si substrate are systematically investigated by employing micro-photoluminescence (mu-PL) and mu-PL excitation (mu-PLE) measurements complemented by time-resolved PL spectroscopy. At low temperatures, alloy disorder is found to cause localization of photo-excited carriers leading to predominance of optical transitions from localized excitons (LE). Some of the local fluctuations in N composition are suggested to lead to strongly localized three-dimensional confining potential equivalent to that for quantum dots, based on the observation of sharp and discrete PL lines within the LE contour. The localization effects are found to have minor influence on PL spectra at room temperature due to thermal activation of the localized excitons to extended states. Under these conditions, photo-excited carrier lifetime is found to be governed by non-radiative recombination via surface states which is somewhat suppressed upon N incorporation. (C) 2014 AIP Publishing LLC.

  • 92.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, Supanee
    University of California, La Jolla, USA.
    Kuang, Yanjin
    University of California, La Jolla, USA.
    Tu, Charles W.
    University of California, La Jolla, USA.
    Persson, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Origin of strong photoluminescence polarization in GaNP nanowires2014Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 14, nr 9, s. 5264-5269Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The III-V semiconductor nanowires (NWs) have a great potential for applications in a variety of future electronic and photonic devices with enhanced functionality. In this work, we employ polarization resolved micro-photoluminescence (µ-PL) spectroscopy to study polarization properties of light emissions from individual GaNP and GaP/GaNP core/shell nanowires (NWs) with average diameters ranging between 100 and 350 nm. We show that the near-band-edge emission, which originates from the GaNP regions of the NWs, is strongly polarized (up to 60 % at 150 K) in the direction perpendicular to the NW axis. The polarization anisotropy can be retained up to room temperature. This polarization behavior, which is unusual for zinc blende NWs, is attributed to local strain in the vicinity of the N-related centers participating in the radiative recombination and to preferential alignment of their principal axis along the growth direction. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to tailor the polarization anisotropy of III-V nanowires, advantageous for their applications as nanoscale emitters of polarized light.

  • 93.
    Filippov, Stanislav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    Graduate Program of Materials Science and Engineering, La Jolla, California, USA .
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, USA .
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Preferential formation of nitrogen clusters in GaNP nanowires probed by polarization resolved μ-photoluminescence2014Ingår i: abstract book, 2014, s. p.67-Konferensbidrag (Övrigt vetenskapligt)
  • 94.
    Dobrovolsky, A.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Sukrittanon, S.
    Grad Program Mat Science and Engn, CA 92093 USA.
    Kuang, Y. J.
    University of Calif San Diego, CA 92093 USA.
    Tu, C. W.
    University of Calif San Diego, CA 92093 USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Raman spectroscopy of GaP/GaNP core/shell nanowires2014Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 105, nr 19, s. 193102-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Raman spectroscopy is employed to characterize structural and phonon properties of GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. According to polarization-dependent measurements performed on single NWs, the dominant Raman modes associated with zone-center optical phonons obey selection rules in a zinc-blende lattice, confirming high crystalline quality of the NWs. Two additional modes at 360 and 397 cm(-1) that are specific to the NW architecture are also detected in resonant Raman spectra and are attributed to defect-activated scattering involving zone-edge transverse optical phonons and surface optical phonons, respectively. It is concluded that the formation of the involved defect states are mainly promoted during the NW growth with a high V/III ratio.

  • 95.
    Philipps, Jan M.
    et al.
    I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, D-35392 Giessen, Germany .
    Stehr, Jan Eric
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tarun, Marianne C.
    Department of Physics and Astronomy and Materials Science Program, Washington State University, Pullman, Washington 99164-2814, USA.
    McCluskey, Matthew D.
    Department of Physics and Astronomy and Materials Science Program, Washington State University, Pullman, Washington 99164-2814, USA.
    Meyer, Bruno K.
    I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, D-35392 Giessen, Germany.
    Hofmann, Detlev M.
    I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, D-35392 Giessen, Germany.
    Recharging behavior of nitrogen-centers in ZnO2014Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 116, nr 063701Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electron Paramagnetic Resonance was used to study N2-centers in ZnO, which show a 5-line spectrum described by the hyperfine interaction of two nitrogen nuclei (nuclear spin I  = 1, 99.6% abundance). The recharging of this center exhibits two steps, a weak onset at about 1.4 eV and a strongly increasing signal for photon energies above 1.9 eV. The latter energy coincides with the recharging energy of NO centers (substitutional nitrogen atoms on oxygen sites). The results indicate that the N2-centers are deep level defects and therefore not suitable to cause significant hole-conductivity at room temperature.

  • 96.
    Chen, Weimin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Room-Temperature Defect-Enabled Spin Functionality in GaAs-Based Coumpound Semiconductors2014Ingår i: Program Book of the 226th Meeting of The Electrochemical Society, 2014, s. 127-Konferensbidrag (Övrigt vetenskapligt)
  • 97.
    Chen, Shula
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Spin dynamics of isoelectronic bound excitons in ZnO2014Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, nr 23, s. 235202-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Time-resolved optical spin orientation is employed to study spin dynamics of I * and I-1* excitons bound to isoelectronic centers in bulk ZnO. It is found that spin orientation at the exciton ground state can be generated using resonant excitation via a higher lying exciton state located at about 4 meV from the ground state. Based on the performed rate equation analysis of the measured spin dynamics, characteristic times of subsequent hole, electron, and direct exciton spin flips in the exciton ground state are determined as being tau(s)(h) = 0.4 ns, tau(s)(e) greater than= 15 ns, and tau(s)(eh) greater than= 15 ns, respectively. This relatively slow spin relaxation of the isoelectronic bound excitons is attributed to combined effects of (i) weak e-h exchange interaction, (ii) restriction of the exciton movement due to its binding at the isoelectronic center, and (iii) suppressed spin-orbit coupling for the tightly bound hole.

  • 98.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Shula
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Koteeswara Reddy, Nandanapalli
    Gwangju Institute Science and Technology, South Korea .
    Tu, Charles W.
    University of California, La Jolla, USA.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Turning ZnO into an Efficient Energy Upconversion Material by Defect Engineering2014Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 24, nr 24, s. 3760-3764Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Photon upconversion materials are attractive for a wide range of applications from medicine, biology, to photonics. Among them, ZnO is of particular interest owing to its outstanding combination of materials and physical properties. Though energy upconversion has been demonstrated in ZnO, the exact physical mechanism is still unknown, preventing control of the processes. Here, defects formed in bulk and nanostructured ZnO synthesized using standard growth techniques play a key role in promoting efficient energy upconversion via two-step two-photon absorption (TS-TPA). From photoluminescence excitation of the anti-Stokes emissions, the threshold energy of the TS-TPA process is determined as being 2.10-2.14 eV in all studied ZnO materials irrespective of the employed growth techniques. This photo-electron paramagnetic resonance studies show that this threshold closely matches the ionization energy of the zinc vacancy (a common grown-in intrinsic defect in ZnO), thereby identifying the zinc vacancy as being the dominant defect responsible for the observed efficient energy upconversion. The upconversion is found to persist even at a low excitation density, making it attractive for photonic and photovoltaic applications.

  • 99.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Tu, C. W.
    Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California, USA .
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Unintentional Nitrogen Doping in ZnO Nanowires Revealed by Electron Paramagnetic Resonance Spectroscopy2014Ingår i: Abstract Book of the 56th Electronic Materials Conference, 2014, s. 113-Konferensbidrag (Refereegranskat)
  • 100.
    Stehr, Jan Eric
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Johansen, K. M.
    University of Oslo, Norway.
    Bjørheim, T. S.
    University of Oslo, Norway.
    Vines, L.
    University of Oslo, Norway.
    Svensson, B. G.
    University of Oslo, Norway.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Funktionella elektroniska material. Linköpings universitet, Tekniska högskolan.
    Zinc-Vacancy–Donor Complex: A Crucial Compensating Acceptor in ZnO2014Ingår i: Physical Review Applied, ISSN 2331-7019, Vol. 2, nr 021001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aluminum–zinc-vacancy (Al Zn −V Zn ) complex is identified as one of the dominant defects in Al-containing n -type ZnO after electron irradiation at room temperature with energies above 0.8 MeV. The complex is energetically favorable over the isolated V Zn , binding more than 90% of the stable V Zn ’s generated by the irradiation. It acts as a deep acceptor with the (0/− ) energy level located at approximately 1 eV above the valence band. Such a complex is concluded to be a defect of crucial and general importance that limits the n -type doping efficiency by complex formation with donors, thereby literally removing the donors, as well as by charge compensation.

1234567 51 - 100 av 431
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf