liu.seSearch for publications in DiVA
Change search
Refine search result
11121314 651 - 655 of 655
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 651.
    Yang, Zhongping
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Engquist, Isak
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Kauffmann, JM
    Université Libre de Bruxelles, Belgium.
    Electrochemical characterisation of mixed monolayer assemblies of thiol analogues of cholesterol and fatty acids on gold1997In: Journal of Electroanalytical Chemistry, ISSN 0022-0728, E-ISSN 1873-2569, Vol. 430, no 1-2, p. 189-195Article in journal (Refereed)
    Abstract [en]

    A self-assembled monolayer (SAM) on gold prepared from a binary mixture of a thiol analogue of cholesterol (thiocholesterol, TC) and a functionalised alkanethiol (11-mercaptoundecanoic acid, MUA) has been investigated by voltammetry. The voltammetric results are in agreement with previously reported spectroscopic data and show that the geometric arrangement and composition of the molecules in the mixed monolayer controls the heterogeneous electron transfer process of Fe(CN)(6)(3-) across the assembly. The quantitative description of the influence of TC on the electron transfer rate constant is given through Tafel plots. At the pure MUA SAM electrode, the electron transfer is governed by penetration through the monolayer. The introduction of TC into the SAMs creates defects giving rise to diffusion controlled electron transfer in addition to penetration. By raising the TC content the electron transfer rate constant increases due to diffusion, This behaviour can be explained by a model in which the assembly goes from a penetrative but defect-free film barrier (pure MUA SAM) via a structure with defects in the mixed composition regime to a defect-rich structure consisting of an array of ultramicroelectrodes (pure TC SAM). (C) 1997 Elsevier Science S.A.

  • 652.
    Yang, Zhongping
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Engquist, Isak
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Wirde, M.
    Uppsala Universitet.
    Kauffmann, J. M.
    Université Libre de Bruxelles, Belgium.
    Gelius, U.
    Uppsala universitet.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Preparation and characterization of mixed monolayer assemblies composed of thiol analogues of cholesterol and fatty acid1997In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 13, no 12, p. 3210-3218Article in journal (Refereed)
    Abstract [en]

    Mixed self-assembled monolayers provide an attractive model system for investigating the role of different molecules in biological membranes. This paper describes the preparation and characterization of a novel type of mixed monolayer assemblies composed of thiol analogues of cholesterol and fatty acid. The mixed: monolayers are prepared by coadsorbing 11-mercaptoundecanoic acid (MUA) and thiocholesterol(cholest-5-ene-3 beta-thiol, TC) from solution directly onto evaporated gold surfaces. The influence of TC on the molecular composition and conformation in the mixed monolayer is analyzed by using a combination of infrared reflection-absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurement, and cyclic voltammetry. The results indicate that the TC molecules maintain their conformation in the mixed monolayers, whereas the MUA molecules display a significantly more disordered conformation as compared to the MUA molecules in the pure monolayer. Cyclic voltammetry shows that the mixed monolayers are more densely packed and less permeable than the pure TC and MUA monolayers. The kinetics of the coadsorption of TC and MUA from ethanol indicates that adsorption of TC initially is strongly preferred over MUA but that MUA dominates over TC at long coadsorption times. This is because there is a larger energy gain per unit area in forming monolayers with MUA, Further, it is also seen that the number of molecules per unit area changes with the molecular composition, as a consequence of the different sizes of TC and MUA. We present herein a method for calculating the mole fraction of TC on the gold surface, (chi TC), which accounts for this variation. As a consequence of the dissimilar size and shape of the two molecules, the wetting properties of the mixed monolayer are found to be mainly governed by the fractional area of TC, rather than by the molecular composition of TC, (chi TC).

  • 653.
    Zangooie, S
    et al.
    Linkoping Univ, S SENCE, SE-58183 Linkoping, Sweden Linkoping Univ, Div Appl Phys, SE-58183 Linkoping, Sweden Linkoping Univ, Lab Appl Opt, SE-58183 Linkoping, Sweden.
    Arwin, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Ozone treatment of SiC for improved performance of gas sensitive Schottky diodes2000In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 338-3, p. 1085-1088Article in journal (Refereed)
    Abstract [en]

    Schottky diodes with catalytic metal gates fabricated on SiC are suitable for sensing of hydrogen containing gases. The device performance, including reproducibility and long term stability, is improved by including an ozone treatment in the device processing. In this investigation, the properties of the oxide layer formed on 4H SiC by such ozone treatment are studied with spectroscopic ellipsometry. It was found that both the oxide thickness and its properties are different compared to those for a native oxide formed without ozone treatment.

  • 654.
    Zhang, Xuanjun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ali Ballem, Mohamed
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Suska, Anke
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Bergman, Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Nanoscale Ln(III)-carboxylate coordination polymers (Ln = Gd, Eu, Yb): temperature-controlled guest encapsulation and light harvesting2010In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 30, p. 10391-10397Article in journal (Refereed)
    Abstract [en]

    We report the self-assembly of stable nanoscale coordination polymers (NCPs), which exhibit temperature-controlled guest encapsulation and release, as well as an efficient light-harvesting property. NCPs are obtained by coordination-directed organization of pi-conjugated dicarboxylate (L1) and lanthanide metal ions Gd(III), Eu(III), and Yb(III) in a DMF system. Guest molecules trans-4-styryl-1-methylpyridiniumiodide (D1) and methylene blue (D2) can be encapsulated into NCPs, and the loading amounts can be controlled by changing reaction temperatures. Small angle X-ray diffraction (SAXRD) results reveal that the self-assembled discus-like NCPs exhibit long-range ordered structures, which remain unchanged after guest encapsulations. Experimental results reveal that the negatively charged local environment around the metal connector is the driving force for the encapsulation of cationic guests. The D1 molecules encapsulated in NCPs at 140 degrees C can be released gradually at room temperature in DMF. Guest-loaded NCPs exhibit efficient light harvesting with energy transfer from the framework to the guest D1 molecule, which is studied by photoluminescence and fluorescence lifetime decays. This coordination-directed encapsulation approach is general and should be extended to the fabrication of a wide range of multifunctional nanomaterials.

  • 655.
    Zheng, Kaibo
    et al.
    Lund University, Sweden .
    Zidek, Karel
    Lund University, Sweden .
    Abdellah, Mohamed
    Lund University, Sweden .
    Torbjornsson, Magne
    Lund University, Sweden .
    Chabera, Pavel
    Lund University, Sweden .
    Shao, Shuyan
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Zhang, Fengling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
    Pullerits, Tonu
    Lund University, Sweden .
    Fast Monolayer Adsorption and Slow Energy Transfer in CdSe Quantum Dot Sensitized ZnO Nanowires2013In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, no 29, p. 5919-5925Article in journal (Refereed)
    Abstract [en]

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of similar to 4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

11121314 651 - 655 of 655
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf