liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1112131415 651 - 700 av 719
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 651.
    Yuan, Jun
    et al.
    Univ Calif Los Angeles, CA 90095 USA; Cent S Univ, Peoples R China; Univ Calif Los Angeles, CA 90095 USA.
    Huang, Tianyi
    Univ Calif Los Angeles, CA 90095 USA.
    Cheng, Pei
    Univ Calif Los Angeles, CA 90095 USA.
    Zou, Yingping
    Cent S Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Jonathan Lee
    Univ Calif Berkeley, CA 94720 USA.
    Chang, Sheng-Yung
    Univ Calif Los Angeles, CA 90095 USA.
    Zhang, Zhenzhen
    Cent S Univ, Peoples R China.
    Huang, Wenchao
    Univ Calif Los Angeles, CA 90095 USA.
    Wang, Rui
    Univ Calif Los Angeles, CA 90095 USA.
    Meng, Dong
    Univ Calif Los Angeles, CA 90095 USA.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Yang
    Univ Calif Los Angeles, CA 90095 USA; Univ Calif Los Angeles, CA 90095 USA.
    Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 570Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite significant development recently, improving the power conversion efficiency of organic photovoltaics (OPVs) is still an ongoing challenge to overcome. One of the prerequisites to achieving this goal is to enable efficient charge separation and small voltage losses at the same time. In this work, a facile synthetic strategy is reported, where optoelectronic properties are delicately tuned by the introduction of electron-deficient-core-based fused structure into non-fullerene acceptors. Both devices exhibited a low voltage loss of 0.57 V and high short-circuit current density of 22.0 mA cm(-2), resulting in high power conversion efficiencies of over 13.4%. These unconventional electron-deficient-core-based non-fullerene acceptors with near-infrared absorption lead to low non-radiative recombination losses in the resulting organic photovoltaics, contributing to a certified high power conversion efficiency of 12.6%.

  • 652.
    Yuan, Jun
    et al.
    Univ Calif Los Angeles, CA 90095 USA; Cent S Univ, Peoples R China; Univ Calif Los Angeles, CA 90095 USA.
    Huang, Tianyi
    Univ Calif Los Angeles, CA 90095 USA.
    Cheng, Pei
    Univ Calif Los Angeles, CA 90095 USA.
    Zou, Yingping
    Cent S Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Jonathan Lee
    Univ Calif Berkeley, CA 94720 USA.
    Chang, Sheng-Yung
    Univ Calif Los Angeles, CA 90095 USA.
    Zhang, Zhenzhen
    Cent S Univ, Peoples R China.
    Huang, Wenchao
    Univ Calif Los Angeles, CA 90095 USA.
    Wang, Rui
    Univ Calif Los Angeles, CA 90095 USA.
    Meng, Dong
    Univ Calif Los Angeles, CA 90095 USA; Univ Calif Los Angeles, CA 90095 USA.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yang, Yang
    Univ Calif Los Angeles, CA 90095 USA.
    Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics (vol 10, 570, 2019)2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 1624Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    n/a

  • 653.
    Yuan, Zhongcheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Defects and crystallinity control of perovskite films for light-emitting diodes2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Metal halide perovskites are promising materials for the fabrication of cost-effective and highperformance light-emitting diodes (LEDs), due to their solution processability, high photoluminescence quantum efficiencies (PLQEs) and excellent charge transport properties. Importantly, perovskite LEDs show ultra-pure emission color, which is better than that of the state-of-the-art quantum dot LEDs (QLEDs) and organic LEDs (OLEDs), demonstrating a bright application potential for realizing vivid natural colors display in the future.

    In this thesis, we first incorporate natural molecules, e.g. deoxyribonucleic acid (DNA), to passivate FAPbI3 perovskite films. We notice that the existence of carbonyl and amide groups within DNA are important for efficient passivation of perovskite films. Combining the knowledge, we further introduce amino-functionalized molecules into perovskite films and achieve significantly improved efficiency of 21.6 %, which is a record external quantum efficiency (EQE) of perovskite LEDs. We reveal that by weakening the hydrogen bond strength between passivation molecules and organic cations, the interaction between passivation amino groups and defects improves, contributing to more efficient passivation.

    We also notice that the underlying substrates play important roles on the film quality of perovskite and the device performance of the ensuing LEDs. Here, we reveal that efficient deprotonation of the undesirable organic cations (Methylammonium (MA+) or Formamidinium (FA+)) by a metal oxide interlayer, e.g. ZnO, with a high isoelectric point, is critical to promote the transition from intermediate phases to highly emissive perovskites. We reveal synergistic effects of precursor stoichiometry and interfacial reactions for high-performance perovskite LEDs, and establish useful guidelines for rational device optimisation. With the knowledge we obtain from the deprotonation process, we further push the EL emission from near-infrared (NIR) (around 800 nm) region to deep red emission (around 700 nm) via cation exchange process between cesium (Cs+) and FA+, which promotes enhanced crystallization of the perovskite films and devices performance simultaneously.

    Intensive efforts in the perovskite community have pushed the EQEs of perovskite LEDs to over 20 %for green, red and NIR emission region. However, it is still a long way to go before their practical applications. We believe that efficient control of both the defects and crystallinity of the perovskite films through rational materials development and interfacial modifications is important for the development of perovskite optoelectronic devices. In addition, both our findings on the perovskite film quality control are universal and provide insights to promote the development of perovskites (especially the hybrid ones containing organic components) for the applications of other optoelectronic devices.

    Delarbeten
    1. Rational molecular passivation for high-performance perovskite light-emitting diodes
    Öppna denna publikation i ny flik eller fönster >>Rational molecular passivation for high-performance perovskite light-emitting diodes
    Visa övriga...
    2019 (Engelska)Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 13, nr 6, s. 418-424Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    A major efficiency limit for solution-processed perovskite optoelectronic devices, for example light-emitting diodes, is trap-mediated non-radiative losses. Defect passivation using organic molecules has been identified as an attractive approach to tackle this issue. However, implementation of this approach has been hindered by a lack of deep understanding of how the molecular structures influence the effectiveness of passivation. We show that the so far largely ignored hydrogen bonds play a critical role in affecting the passivation. By weakening the hydrogen bonding between the passivating functional moieties and the organic cation featuring in the perovskite, we significantly enhance the interaction with defect sites and minimize non-radiative recombination losses. Consequently, we achieve exceptionally high-performance near-infrared perovskite light-emitting diodes with a record external quantum efficiency of 21.6%. In addition, our passivated perovskite light-emitting diodes maintain a high external quantum efficiency of 20.1% and a wall-plug efficiency of 11.0% at a high current density of 200 mA cm−2, making them more attractive than the most efficient organic and quantum-dot light-emitting diodes at high excitations.

    Ort, förlag, år, upplaga, sidor
    Springer Nature Publishing AG, 2019
    Nationell ämneskategori
    Fysik
    Identifikatorer
    urn:nbn:se:liu:diva-157707 (URN)10.1038/s41566-019-0390-x (DOI)000468752300019 ()
    Anmärkning

    Funding agencies:  ERC Starting Grant [717026]; National Basic Research Program of China (973 Program) [2015CB932200]; National Natural Science Foundation of China [61704077, 51572016, 51721001, 61634001, 61725502, 91733302, U1530401]; Natural Science Foundation of Jiangsu 

    Tillgänglig från: 2019-06-19 Skapad: 2019-06-19 Senast uppdaterad: 2019-10-10Bibliografiskt granskad
    2. Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization
    Öppna denna publikation i ny flik eller fönster >>Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization
    Visa övriga...
    2018 (Engelska)Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 50, s. 6887-6890Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    We investigate the effect of commonly used solution-processed TiOx, SnO2 and ZnO interlayers on the perovskite film crystallization process. We find that the ZnO/perovskite interface can efficiently catalyze the perovskite crystallization even without thermal annealing.

    Ort, förlag, år, upplaga, sidor
    ROYAL SOC CHEMISTRY, 2018
    Nationell ämneskategori
    Den kondenserade materiens fysik
    Identifikatorer
    urn:nbn:se:liu:diva-149712 (URN)10.1039/c8cc02482k (DOI)000436029000052 ()29781476 (PubMedID)
    Anmärkning

    Funding Agencies|ERC [717026]; Carl Tryggers Stiftelse; European Commission [691210]; China Scholarship Council; VINNMER Marie Curie Fellowships

    Tillgänglig från: 2018-07-24 Skapad: 2018-07-24 Senast uppdaterad: 2019-06-19
  • 654.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Yan, Zhibo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Univ, Peoples R China.
    Liu, Jun-Ming
    Nanjing Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Room-temperature film formation of metal halide perovskites on n-type metal oxides: the catalysis of ZnO on perovskite crystallization2018Ingår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 50, s. 6887-6890Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We investigate the effect of commonly used solution-processed TiOx, SnO2 and ZnO interlayers on the perovskite film crystallization process. We find that the ZnO/perovskite interface can efficiently catalyze the perovskite crystallization even without thermal annealing.

  • 655.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Miao, Yanfeng
    Nanjing Tech Univ, Peoples R China.
    Hu, Zhang-Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Nanjing Tech Univ, Peoples R China.
    Kuang, Chaoyang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Pan, Kang
    Nanjing Tech Univ, Peoples R China.
    Liu, Pinlei
    Nanjing Tech Univ, Peoples R China.
    Lai, Jingya
    Nanjing Tech Univ, Peoples R China.
    Sun, Baoquan
    Soochow Univ, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes2019Ingår i: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, artikel-id 2818Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metal halide perovskites are emerging as promising semiconductors for cost-effective and high-performance light-emitting diodes (LEDs). Previous investigations have focused on the optimisation of the emissive perovskite layer, for example, through quantum confinement to enhance the radiative recombination or through defect passivation to decrease non-radiative recombination. However, an in-depth understanding of how the buried charge transport layers affect the perovskite crystallisation, though of critical importance, is currently missing for perovskite LEDs. Here, we reveal synergistic effect of precursor stoichiometry and interfacial reactions for perovskite LEDs, and establish useful guidelines for rational device optimization. We reveal that efficient deprotonation of the undesirable organic cations by a metal oxide interlayer with a high isoelectric point is critical to promote the transition of intermediate phases to highly emissive perovskite films. Combining our findings with effective defect passivation of the active layer, we achieve high-efficiency perovskite LEDs with a maximum external quantum efficiency of 19.6%.

  • 656.
    Yuan, Zhongcheng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten. Soochow University, Peoples R China.
    Yang, Yingguo
    Chinese Academic Science, Peoples R China.
    Wu, Zhongwei
    Soochow University, Peoples R China.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xu, Weidong
    Soochow University, Peoples R China.
    Song, Tao
    Soochow University, Peoples R China.
    Gao, Xingyu
    Chinese Academic Science, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Sun, Baoquan
    Soochow University, Peoples R China.
    Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells2016Ingår i: ACS APPLIED MATERIALS and INTERFACES, ISSN 1944-8244, Vol. 8, nr 50, s. 34446-34454Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within similar to 300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to similar to 800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.

  • 657.
    Zaushitsyn, Y.
    et al.
    Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
    Gulbinas, V.
    Institute of Physics, Savanoriu 231, LT-02300, Vilnius, Lithuania.
    Zigmantas, D.
    Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
    Zhang, Fengling
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Sundstrom, V.
    Sundström, V., Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
    Yartsev, A.
    Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
    Ultrafast light-induced charge pair formation dynamics in poly[3-(2'-methoxy-5' octylphenyl)thiophene]2004Ingår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 70, nr 7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Charge pair photogeneration was investigated by ultrafast absorption spectroscopy for different excitation photon energies in poly[3-(2'- methoxy-5' octylphenyl)thiophene] (POMeOPT) film with and without an external electric field. Electric field-assisted charge pair photogeneration in POMeOPT occurs from vibrationally relaxed singlet excitons during their entire lifetime and charge pair formation takes place in this manner even in the absence of an external electric field. From our data there are no indications of hot exciton dissociation to charge pairs even when a large amount of excess energy is supplied to the excitons. To explain these observations we present a model with energy transfer to low-barrier dissociation sites as a key feature.

  • 658.
    Zeglio, Erica
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Self-doped Conjugated Polyelectrolytes for Bioelectronics Applications2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Self-doped conjugated polyelectrolytes (CPEs) are a class of conducting polymers constituted of a π-conjugated backbone and charged side groups. The ionic groups provide the counterions needed to balance the charged species formed in the CPEs backbones upon oxidation. As a result, addition of external counterions is not required, and the CPEs can be defined as selfdoped. The combination of their unique optical and electrical properties render them the perfect candidates for optoelectronic applications. Additionally, their “soft” nature provide for the mechanical compatibility necessary to interface with biological systems, rendering them promising materials for bioelectronics applications. CPEs solubility, aggregation state, and optoelectronic properties can be easily tuned by different means, such as blending or interaction with oppositely charged species (such as surfactants), in order to produce materials with the desired properties. In this thesis both the strategies have been explored to produce new functional materials that can be deposited to form a thin film and,  therefore, used as an active layer in organic electrochemical transistors (OECTs). Microstructure formation of the films as well as influence on devices operation and performance have been investigated. We also show that these methods can be exploited to produce materials whose uniquecombination of self-doping ability and hydrophobicity allows incorporation into the phospholipid double layer of biomembranes, while retaining their properties. As a result, self-doped CPEs can be used both as sensing elements to probe the physical state of biomembranes, and as functional ones providing them with new functionalities, such as electrical conductivity. Integration of conductive electronic biomembranes into OECTs devices has brought us one step forward on the interface of manmade technologies with biological systems.

    Delarbeten
    1. Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices
    Öppna denna publikation i ny flik eller fönster >>Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices
    Visa övriga...
    2015 (Engelska)Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 27, nr 18, s. 6385-6393Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Two self-doped conjugated polyelectrolytes, having semiconducting and metallic behaviors, respectively, have been blended from aqueous solutions in order to produce materials with enhanced optical and electrical properties. The intimate blend of two anionic conjugated polyelectrolytes combine the electrical and optical properties of these, and can be tuned by blend stoichiometry. In situ conductance measurements have been done during doping of the blends, while UV vis and EPR spectroelectrochemistry allowed the study of the nature of the involved redox species. We have constructed an accumulation/depletion mode organic electrochemical transistor whose characteristics can be tuned by balancing the stoichiometry of the active material.

    Ort, förlag, år, upplaga, sidor
    AMER CHEMICAL SOC, 2015
    Nationell ämneskategori
    Materialkemi Den kondenserade materiens fysik
    Identifikatorer
    urn:nbn:se:liu:diva-122212 (URN)10.1021/acs.chemmater.5b02501 (DOI)000361935000028 ()
    Anmärkning

    Funding Agencies|Marie Curie network "Renaissance"; Knut and Alice Wallenberg foundation through Wallenberg Scholar grant; Swedish Research Council [VR-2014-3079, D0556101]; Carl Trygger Foundation [CTS 12:206]

    Tillgänglig från: 2015-10-26 Skapad: 2015-10-23 Senast uppdaterad: 2017-12-01
    2. Electronic polymers in lipid membranes
    Öppna denna publikation i ny flik eller fönster >>Electronic polymers in lipid membranes
    Visa övriga...
    2015 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, nr 11242Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium: lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

    Ort, förlag, år, upplaga, sidor
    Nature Publishing Group, 2015
    Nationell ämneskategori
    Biofysik
    Identifikatorer
    urn:nbn:se:liu:diva-120045 (URN)10.1038/srep11242 (DOI)000356090400002 ()26059023 (PubMedID)
    Anmärkning

    Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Research Council

    Tillgänglig från: 2015-07-06 Skapad: 2015-07-06 Senast uppdaterad: 2018-01-25
    3. Conjugated Polyelectrolyte Blend as Photonic Probe of Biomembrane Organization
    Öppna denna publikation i ny flik eller fönster >>Conjugated Polyelectrolyte Blend as Photonic Probe of Biomembrane Organization
    Visa övriga...
    2016 (Engelska)Ingår i: ChemistrySelect, ISSN 2365-6549, Vol. 1, nr 14, s. 4340-4344Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    In the following report, a conjugated polyelectrolyte (CPE) blend has been introduced for the first time as a fluorescent probe of membrane organization. Insertion of the blend into the lipid double layer has been rendered possible through formation of a hydrophobic complex by counterion exchange. Changes in membrane physical state from liquid-disordered (Ldis) to liquid-ordered (Lord), and to solid-ordered (Sord) result in red shifts of blend excitation (up to Δλex=+90 nm) and emission (up to Δλnm=+37 nm) maxima attributable to backbone planarization of CPEs. We found that blend stoichiometry can be adjusted to attain the best interplay among single polyelectrolytes properties, such as sensitivity and luminescence. The resulting probes therefore allow a bimodal detection of membrane physical state: changes in absorption permit a direct visualization of membrane organization, while variations in emission spectra demonstrate that CPE-blends are a promising probes that can be used for imaging applications.

    Ort, förlag, år, upplaga, sidor
    John Wiley & Sons, 2016
    Nyckelord
    Conjugated Polyelectrolytes, Fluorescent Probes, Liposomes, Membrane Probes, Polyelectrolytes blend
    Nationell ämneskategori
    Biomaterialvetenskap Den kondenserade materiens fysik
    Identifikatorer
    urn:nbn:se:liu:diva-132729 (URN)10.1002/slct.201600920 (DOI)000395422000028 ()
    Anmärkning

    Funding agencies: Marie Curie network "Renaissance"; Knut and Alice Wallenberg foundation; DFG [GRK 1640]; Elite Study programme, Macromolecular Science at the University of Bayreuth

    Tillgänglig från: 2016-11-21 Skapad: 2016-11-21 Senast uppdaterad: 2017-04-20Bibliografiskt granskad
  • 659.
    Zeglio, Erica
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad sensorvetenskap. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Highly Stable Conjugated Polyelectrolytes for Water-Based Hybrid Mode Electrochemical Transistors2017Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 29, nr 19, artikel-id 1605787Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hydrophobic, self-doped conjugated polyelectrolytes (CPEs) are introduced as highly stable active materials for organic electrochemical transistors (OECTs). The hydrophobicity of CPEs renders films very stable in aqueous solutions. The devices operate at gate voltages around zero and show no signs of degradation when operated for 10(4) cycles under ambient conditions. These properties make the produced OECTs ideal devices for applications in bioelectronics.

  • 660.
    Zeglio, Erica
    et al.
    Univ Wollongong, Australia.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Active Materials for Organic Electrochemical Transistors2018Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, nr 44, artikel-id 1800941Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The organic electrochemical transistor (OECT) is a device capable of simultaneously controlling the flow of electronic and ionic currents. This unique feature renders the OECT the perfect technology to interface man-made electronics, where signals are conveyed by electrons, with the world of the living, where information exchange relies on chemical signals. The function of the OECT is controlled by the properties of its core component, an organic conductor. Its chemical structure and interactions with electrolyte molecules at the nanoscale play a key role in regulating OECT operation and performance. Herein, the latest research progress in the design of active materials for OECTs is reviewed. Particular focus is given on the conducting polymers whose properties lead to advances in understanding the OECT working mechanism and improving the interface with biological systems for bioelectronics. The methods and device models that are developed to elucidate key relations between the structure of conducting polymer films and OECT function are discussed. Finally, the requirements of OECT design for in vivo applications are briefly outlined. The outcomes represent an important step toward the integration of organic electronic components with biological systems to record and modulate their functions.

  • 661.
    Zeglio, Erica
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Schmidt, Martina M.
    Chemistry I—Applied Functional Polymers University of Bayreuth Bayreuth, Germany.
    Thelakkat, Mukundan
    Chemistry I—Applied Functional Polymers University of Bayreuth Bayreuth, Germany.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Conjugated Polyelectrolyte Blend as Photonic Probe of Biomembrane Organization2016Ingår i: ChemistrySelect, ISSN 2365-6549, Vol. 1, nr 14, s. 4340-4344Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the following report, a conjugated polyelectrolyte (CPE) blend has been introduced for the first time as a fluorescent probe of membrane organization. Insertion of the blend into the lipid double layer has been rendered possible through formation of a hydrophobic complex by counterion exchange. Changes in membrane physical state from liquid-disordered (Ldis) to liquid-ordered (Lord), and to solid-ordered (Sord) result in red shifts of blend excitation (up to Δλex=+90 nm) and emission (up to Δλnm=+37 nm) maxima attributable to backbone planarization of CPEs. We found that blend stoichiometry can be adjusted to attain the best interplay among single polyelectrolytes properties, such as sensitivity and luminescence. The resulting probes therefore allow a bimodal detection of membrane physical state: changes in absorption permit a direct visualization of membrane organization, while variations in emission spectra demonstrate that CPE-blends are a promising probes that can be used for imaging applications.

  • 662.
    Zeglio, Erica
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Schmidt, Martina M.
    University of Bayreuth, Germany.
    Thelakkat, Mukundan
    University of Bayreuth, Germany.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Soling, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Conjugated Polyelectrolyte Blends for Highly Stable Accumulation Mode Electrochemical Transistors2017Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, nr 10, s. 4293-4300Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Counterion exchange has been introduced as a method to modify properties of anionic conjugated poly electrolyte (CPE) blends. Blending of two self-doped CPEs having metallic and semiconducting behavior has been achieved from two different solvents, by exchanging the counterion of the metallic component. Different blending conditions lead to films exhibiting different optical properties, depending on the aggregation states of the CPEs. Conductance responses for the blends showed the opportunity to tune threshold voltage of the films both by blending and counterion exchange. Therefore, the blends have been exploited for the fabrication of accumulation mode organic electrochemical transistors. These devices exhibit short switching times and high transconductance, up to 15.3 rnS, as well as high stability upon fast pulsed cycles, retaining 88% of the drain currents after 2 x 10(3) cycles.

  • 663.
    Zeglio, Erica
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Vagin, Mikhail
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Musumeci, Chiara
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Ajjan, Fátima
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gabrielsson, Roger
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Trinh, Xuan thang
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Son Tien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices2015Ingår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 27, nr 18, s. 6385-6393Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two self-doped conjugated polyelectrolytes, having semiconducting and metallic behaviors, respectively, have been blended from aqueous solutions in order to produce materials with enhanced optical and electrical properties. The intimate blend of two anionic conjugated polyelectrolytes combine the electrical and optical properties of these, and can be tuned by blend stoichiometry. In situ conductance measurements have been done during doping of the blends, while UV vis and EPR spectroelectrochemistry allowed the study of the nature of the involved redox species. We have constructed an accumulation/depletion mode organic electrochemical transistor whose characteristics can be tuned by balancing the stoichiometry of the active material.

  • 664.
    Zerio Mendaza A. Diaz, De
    et al.
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of of Technology, 41296 Göteborg, Sweden.
    Bergqvist, Jonas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Backe, O.
    Department of Applied Physics, Chalmers University of of Technology, 41296 Göteborg, Sweden.
    Lindqvist, C.
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of of Technology, 41296 Göteborg, Sweden.
    Kroon, R.
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of of Technology, 41296 Göteborg, Sweden, Ian Wark Research Institute, University of of South Australia, Mawson Lakes, SA 5095, Australia.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Andersson, M.R.
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of of Technology, 41296 Göteborg, Sweden, Ian Wark Research Institute, University of of South Australia, Mawson Lakes, SA 5095, Australia.
    Olsson, E.
    Department of Applied Physics, Chalmers University of of Technology, 41296 Göteborg, Sweden.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Muller, C.
    Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of of Technology, 41296 Göteborg, Sweden.
    Neat C60:C70 buckminsterfullerene mixtures enhance polymer solar cell performance2014Ingår i: Journal of Materials Chemistry A, ISSN 2050-7496, Vol. 2, nr 35, s. 14354-14359Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate that bulk-heterojunction blends based on neat, unsubstituted buckminsterfullerenes (C60, C70) and a thiophene-quinoxaline copolymer (TQ1) can be readily processed from solution. Atomic force and transmission electron microscopy as well as photoluminescence spectroscopy reveal that thin films with a fine-grained nanostructure can be spin-coated, which display a good photovoltaic performance. Replacement of substituted fullerenes with C60 or C70 only results in a small drop in open-circuit voltage from 0.9 V to about 0.8 V. Thus, a power conversion efficiency of up to 2.9% can be maintained if C70 is used as the acceptor material. Further improvement in photovoltaic performance to 3.6% is achieved, accompanied by a high internal quantum efficiency of 75%, if a 1:1 C60:C70 mixture is used as the acceptor material, due to its improved solubility in ortho-dichlorobenzene. © the Partner Organisations 2014.

  • 665.
    Zhan, Lingling
    et al.
    Zhejiang Univ, Peoples R China.
    Li, Shuixing
    Zhejiang Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Lau, Tsz-Ki
    Chinese Univ Hong Kong, Peoples R China.
    Lu, Xinhui
    Chinese Univ Hong Kong, Peoples R China.
    Sun, Danyang
    Zhejiang Univ, Peoples R China.
    Wang, Peng
    Zhejiang Univ, Peoples R China.
    Shi, Minmin
    Zhejiang Univ, Peoples R China.
    Li, Chang-Zhi
    Zhejiang Univ, Peoples R China.
    Chen, Hongzheng
    Zhejiang Univ, Peoples R China.
    A Near-Infrared Photoactive Morphology Modifier Leads to Significant Current Improvement and Energy Loss Mitigation for Ternary Organic Solar Cells2018Ingår i: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 5, nr 8, artikel-id 1800755Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Herein, efficient organic solar cells (OSCs) are realized with the ternary blend of a medium band gap donor (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b]dithiophene))-alt-(5,5-(1,3-di-2-thienyl-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB-T)) with a low band gap acceptor (2,2-((2Z,2Z)-(((2,5-difluoro-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b]dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (HF-PCIC)) and a near-infrared acceptor (2,2-((2Z,2Z)-(((4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (IEICO-4F)). It is shown that the introduction of IEICO-4F third component into PBDB-T:HF-PCIC blend increases the short-circuit current density (J(sc)) of the ternary OSC to 23.46 mA cm(-2), with a 44% increment over those of binary devices. The significant current improvement originates from the broadened absorption range and the active layer morphology optimization through the introduction of IEICO-4F component. Furthermore, the energy loss of the ternary cells (0.59 eV) is much decreased over that of the binary cells (0.80 eV) due to the reduction of both radiative recombination from the absorption below the band gap and nonradiative recombination upon the addition of IEICO-4F. Therefore, the power conversion efficiency increases dramatically from 8.82% for the binary cells to 11.20% for the ternary cells. This work provides good examples for simultaneously achieving both significant current enhancement and energy loss mitigation in OSCs, which would lead to the further construction of highly efficient ternary OSCs.

  • 666.
    Zhang, Bin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten. Chinese Academy of Sciences, Shanghai, China.
    Huang, Yuqing
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Stehr, Jan Eric
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Chen, P.P.
    Chinese Academy of Sciences, Shanghai, China.
    Wang, X. J.
    Chinese Academy of Sciences, Shanghai, China.
    Lu, W
    Chinese Academy of Sciences, Shanghai, China.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Band structure of wurtzite GaBiAs nanowires2019Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, s. 6454-6460Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report on the first successful growth of wurtzite (WZ) GaBiAs nanowires (NWs) and reveal the effects of Bi incorporation on the electronic band structure by using polarization-resolved optical spectroscopies performed on individual NWs. Experimental evidence of a decrease in the band-gap energy and an upward shift of the topmost three valence subbands upon the incorporation of Bi atoms is provided, whereas the symmetry and ordering of the valence band states remain unchanged, that is, Γ9, Γ7, and Γ7 within the current range of Bi compositions. The extraordinary valence band structure of WZ GaBiAs NWs is explained by anisotropic hybridization and anticrossing between p-like Bi states and the extended valence band states of host WZ GaAs. Moreover, the incorporation of Bi into GaAs is found to significantly reduce the temperature sensitivity of the band-gap energy in WZ GaBiAs NWs. Our work therefore demonstrates that utilizing dilute bismide alloys provides new avenues for band-gap engineering and thus photonic engineering with NWs.

    Publikationen är tillgänglig i fulltext från 2020-08-19 15:11
  • 667.
    Zhang, Bin
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Qiu, Weiyang
    Chinese Acad Sci, Peoples R China.
    Chen, Shula
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Chen, Pingping
    Chinese Acad Sci, Peoples R China.
    Chen, Weimin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Buyanova, Irina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Wang, Xingjun
    Chinese Acad Sci, Peoples R China.
    Effect of exciton transfer on recombination dynamics in vertically nonuniform GaAsSb epilayers2019Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 114, nr 25, artikel-id 252101Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low-temperature photoluminescence (PL), photoreflectance (PR), and temperature dependent time-resolved PL spectroscopies are employed to investigate optical emission processes and exciton dynamics in graded GaAsSb epilayers. The nonuniformity in the Sb composition along the growth direction is disclosed by low-temperature PL and PR measurements. Furthermore, significant differences in PL dynamics are found at low temperatures for the PL emissions originating from spatial regions with the low and high Sb compositions, with a fast decay and a slow rise at the early stage of the PL transient, respectively. This finding is attributed to exciton transfer from the low Sb region to the high Sb region. The obtained results are important for a general understanding of optical transitions and exciton/carrier dynamics in material systems with a graded alloy composition.

  • 668.
    Zhang, Fengling
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Plastic Solar Cells, Materials and devices2008Ingår i: The 8:th International Symposium on Functional Pi-Electron Systems,2008, 2008Konferensbidrag (Övrigt vetenskapligt)
  • 669.
    Zhang, Fengling
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Plastic Solar Cells-Explore New Device Structure2008Ingår i: University of Amsterdam,2008, 2008Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Invited talk

  • 670.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Optimizing Absorption and Transport in APFO3: PCBM Polymer Solar Cells2007Ingår i: MRS Spring Meeting 2007,2007, 2007, s. 535-Z3.4Konferensbidrag (Övrigt vetenskapligt)
  • 671.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Bijleveld, Johan
    Chalmers University of Technology.
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Efficient Near Infrared Polymer Solar Cells with Photoresponse Extended to 900NM2006Ingår i: IPS16,2006, 2006Konferensbidrag (Övrigt vetenskapligt)
  • 672.
    Zhang, Fengling
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska högskolan.
    Bijleveld, Johan
    Chalmers University.
    Perzon, Erik
    Chalmers University.
    Tvingstedt, Kristofer
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Barrau, Sophie
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Andersson , Mats R
    Chalmers University.
    High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives2008Ingår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 18, nr 45, s. 5468-5474Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solar cells based on organic molecules or conjugated polymers attract great attention due to their unique advantages, such as low cost, and their use in flexible devices, but are still limited by their low power conversion efficiency (PCE). To improve the PCEs of polymer solar cells, more efforts have been made to increase short-circuit current (J(sc)) or open-circuit voltage (V-oc). However, the trade-off between J(sc) and V-oc in bulk heterojunctions solar cells makes it tricky to find a polymer with a low band gap to efficiently absorb photons in the visible and near infrared region of the solar spectrum, while maintaining a high V-oc in solar cells. Therefore, it is crucial to design and synthesize polymers with energy levels aligning with the LUMO (lowest unoccupied molecular orbital) of an electron acceptor to minimize the LUMO level difference between donor and acceptor to keep enough driving force for charge generation, thereby maximizing photovoltage in solar cells. Here a novel copolymer APFO-Green 9 was synthesized. Polymer solar cells based on APFO-Green 9 blended with a derivative of fullerene demonstrate high photovoltage by fine tuning the HOMO and LUMO level of APFO-Green 9. Solar cells based on APFO-Green 9 and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) present a photoresponse extended to 900 nm with J(sc) of 6.5 mA cm(-2), V-oc of 0.81 V and PCE of 2.3% under illumination of AM1.5 with light intensity of 100 mW cm(-2). As a low band gap polymer with a V-oc bigger than 0.8 V, APFO-Green 9 is a promising candidate for efficient tandem solar cells.

  • 673.
    Zhang, Fengling
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Ceder, M.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Enhancing the photovoltage of polymer solar cells by using a modified cathode2007Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 19, nr 14, s. 1835-1838Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method to increase the open-circuit voltage (Voc) up to 200 mV and the power conversion efficiency (PCE) by 50%, by using a thin layer of poly(ethylene oxide) (PEO) to modify the cathode in polymer solar cells, was reported. An enhanced photocurrent of polymer solar cells by bending a small amount of PEO and LiCF3SO3 into the active layer was also demonstrated. The results show that the value of open-circuit voltage increases in all diodes with PEO by 150 to 200 mV while the fill factor (FF) increases with a decrease of the thickness of PEO. The thickness of the PEO layers on Si wafers measured by using ellipsometry shows that the thickness are 3.8 nm for 1000 rmp, 2.1 nm for 3000 rmp, and 1.4 nm for 5000 rmp. The quantitative similarity of the J-V characteristics in the dark between the diodes containing PEO and LiF shows that PEO has an analogous function in the device as LiF.

  • 674.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Gadisa, Abay
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Svensson, M.
    Mat./Surf. Chem./Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Andersson, M.R.
    Mat./Surf. Chem./Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Influence of buffer layers on the performance of polymer solar cells2004Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 84, nr 19, s. 3906-3908Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The study of the influence of different anode buffer layers on the performance of solar cells based on blends of polyfluorene copolymers, acting as electron donor, and [6,6]-phenyl-C61-butyric acid methylester (PCBM), acting as electron acceptor was presented. The construction of buffer later was done from different forms of poly(3, 4-ethylenedioxythiophene) poly-(styrenesulfonate) (PEDOT-PSS). Variations in open-circuit voltage, short-circuit current and fill factor were also observed. The anode buffer layer influences the photovoltage of polymer solar cells by controlling the conditions for charge injection at the anode.

  • 675.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Conducting and Transparent Polymer Electrodes2005Ingår i: Organic Photovoltaics: Mechanism, Materials and Devices / [ed] Sam-Shajing Sun, Niyazi Serdar Sariciftci, Boca Raton, FL, USA: CRC Press , 2005, 1, s. 479-494Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices.

    Organic Photovoltaics: Mechanisms, Materials, and Devicesfills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world.  It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center.

    Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades

  • 676.
    Zhang, Fengling
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhou, Yinhua
    Huazhong University of Science and Technology, Peoples R China.
    Vandewal, Koen
    Technical University of Dresden, Germany.
    Development of polymer-fullerene solar cells2016Ingår i: NATIONAL SCIENCE REVIEW, ISSN 2095-5138, Vol. 3, nr 2, s. 222-239Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Global efforts and synergetic interdisciplinary collaborations on solution-processed bulk-heterojunction polymer solar cells (PSCs or OPVs) made power conversion efficiencies over 10% possible. The rapid progress of the field is credited to the synthesis of a large number of novel polymers with specially tunable optoelectronic properties, a better control over the nano-morphology of photoactive blend layers, the introduction of various effective interfacial layers, new device architectures and a deeper understanding of device physics. We will review the pioneering materials for polymer-fullerene solar cells and trace the progress of concepts driving their development. We discuss the evolution of morphology control, interfacial layers and device structures fully exploring the potential of photoactive materials. In order to guide a further increase in power conversion efficiency of OPV, the current understanding of the process of free charge carrier generation and the origin of the photovoltage is summarized followed by a perspective on how to overcome the limitations for industrializing PSCs.

  • 677.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Jespersen, K.G.
    Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Bjorstrom, C.
    Björström, C., Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Svensson, M.
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
    Andersson, M.R.
    Department of Organic Chemistry and Polymer Technology, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
    Sundstrom, V.
    Sundström, V., Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Magnusson, K.
    Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Moons, E.
    Department of Physics, Karlstad University, SE-65188 Karlstad, Sweden.
    Yartsev, A.
    Department of Chemical Physics, Lund University, Kemicentrum, SE-22100 Lund, Sweden.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends2006Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 16, nr 5, s. 667-674Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence of the solvent on the morphology and performance of polymer solar cells is investigated in devices based on blends of the polyfluorene copolymer, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5-(4',7'-di-2- thienyl-2',1',3'-benzothiadiazole)), and [6,6]-phenyl-C 61-: -butyric acid methyl ester. The blends are spin-coated from chloroform or from chloroform mixed with small amounts of xylene, toluene, or chlorobenzene. The devices are characterized under monochromatic light and solar illumination AM1.5 (AM: air mass). An enhancement of the photocurrent density is observed in diodes made from chloroform mixed with chlorobenzene, and reduced photocurrent density is observed in diodes made from chloroform mixed with xylene or toluene, compared to diodes made from neat chloroform. The open-circuit voltages are almost the same in all diodes. The surfaces of the active layers are imaged using atomic force microscopy. Height images indicate that a finer and more uniform distribution of domains corresponds to the diodes with enhanced photocurrent that are made from chloroform mixed with chlorobenzene, while a structure with larger domains is associated with the lower photocurrents in the diodes made from chloroform mixed with xylene or toluene. The influence of the morphology on the excited-state dynamics and charge generation is investigated using time-resolved spectroscopy. Fast formation of bound charge pairs followed by their conversion into free charge carriers is resolved, and excitation-intensity-dependent non-geminate recombination of free charges is observed. A significant enhancement in free-charge-carrier generation is observed on introducing chlorobenzene into chloroform. Imaging photocurrent generation from the solar cells with a light-pulse technique shows an inhomogeneous photocurrent distribution, which is related to the undulations in the thickness of the active layer. Thicker parts of the diodes yield higher photocurrent values. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

  • 678.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Johansson, M
    Andersson, MR
    Hummelen, JC
    Linkoping Univ, IFM, S-58183 Linkoping, Sweden Chalmers Univ Technol, Dept Polymer Technol, S-41296 Gothenburg, Sweden Univ Groningen, Stratingh Inst, NL-9747 AG Groningen, Netherlands.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Polymer photovoltaic cells with conducting polymer anodes2002Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 14, nr 9, s. 662-665Artikel i tidskrift (Refereegranskat)
  • 679.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Johansson, M.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Andersson, M.R.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Hummelen, J.C.
    Stratingh Institute, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Polymer solar cells based on MEH-PPV and PCBM2003Konferensbidrag (Refereegranskat)
    Abstract [en]

    Polymer solar cells based on poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene(MEH-PPV) and fullerene derivative [6,6]phenyl-C61butyric acid methyl ester (PCBM) were fabricated by spin-coating. The improved performance has been achieved by blend polymer MEH-PPV with PCBM in a ratio of 1:4 by weight. The power conversion efficiency reached 1.3% under illumination of AM 1.5 with an incident power density of 78 mW/cm2 in blend single layer polymer solar cells.

  • 680.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Jonforsen, M.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Johansson, D.M.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Andersson, M.R.
    Department of Polymer Technology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Photodiodes and solar cells based on the n-type polymer poly(pyridopyrazine vinylene) as electron acceptor2003Ingår i: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 138, nr 3, s. 555-560Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The photodiodes and solar cells based on the n-type polymer poly(pyridopyrazine vinylene) as electron acceptor were discussed. It was found that the external quantum efficiency of these diodes reached 7%. The analysis showed that under low-intensity monochromatic light, the open circuit voltage reached 900 mv.

  • 681.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Lacic, Sasa
    Linköpings universitet.
    Svensson, Mattias
    Chalmers Tekniska Högskola.
    Andersson, Mats R
    Chalmers Tekniska Högskola.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Theoretical models and experimental results on the temperature dependence of polyfluorene solar cells2006Ingår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 90, s. 1607-1614Artikel i tidskrift (Refereegranskat)
  • 682.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Mammo, W.
    Addis Ababa University.
    Andersson, M.R.
    Chalmers University of Technology.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Efficient Bilayer Low Bandgap Polymer Solar Cells2006Ingår i: European Conference on Hybrid and Organic Solar Celss ECHOS06,2006, 2006, s. N29-03-3-Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

       

  • 683.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Mammo, Wendimagegn
    Addis Ababa Univeristy.
    Andersson, Mattias
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Admassie, Shimelis
    Addis Ababa Univeristy.
    Andersson, Mats R
    Chalmers University of Technology.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells2006Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 18, s. 2169-2173Artikel i tidskrift (Refereegranskat)
  • 684.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Nyberg, Tobias
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Conducting Polymer Nanowires and Nanodots Made with Soft Lithography2002Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 2, nr 12, s. 1373-1377Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT-PSS) was patterned by micromolding in capillaries (MIMIC), in the form of nanowires on a glass or a Si wafer. The periods of the molded nanowires were 833 or 278 nm. By applying force on top of the stamp during MIMIC, the height of these nanowires could be changed. An alternative method of preparing structured surfaces is the liquid embossing technique, used to pattern polymers deposited from dispersion. Nanowires (278 nm) and 2-D nanodots on semiconducting polymer (poly(3-(2'-methoxy-5'-octyphenyl) thiophene)) POMeOPT were also achieved by another soft lithography technique-soft-embossing. The possibility to pattern both semiconducting and metallic conjugated polymers from aqueous solutions or organic solvents on a submicron level makes it possible to use these materials in flexible optoelectronic devices where light propagation and electronic paths are defined by patterning.

  • 685.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Perzon, Erik
    Chalmers Tekniska Högskola.
    Wang, Xiangjun
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Mammo, Wendimagegn
    Chalmers Tekniska Högskola.
    Andersson, Mats R.
    Chalmers Tekniska Högskola.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Polymer Solar Cells Based on a Low-Bandgap Fluorence Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm2005Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 15, nr 5, s. 745-750Artikel i tidskrift (Refereegranskat)
  • 686.
    Zhang, Fengling
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Svensson, M
    Andersson, MR
    Maggini, M
    Linkoping Univ, IFM, SE-58183 Linkoping, Sweden Chalmers Univ Technol, Dept Polymer Technol, SE-41296 Gothenburg, Sweden Univ Padua, Dept Organ Chem, CNR, CMRO, I-35131 Padua, Italy.
    Bucella, S
    Linkoping Univ, IFM, SE-58183 Linkoping, Sweden Chalmers Univ Technol, Dept Polymer Technol, SE-41296 Gothenburg, Sweden Univ Padua, Dept Organ Chem, CNR, CMRO, I-35131 Padua, Italy.
    Menna, E
    Linkoping Univ, IFM, SE-58183 Linkoping, Sweden Chalmers Univ Technol, Dept Polymer Technol, SE-41296 Gothenburg, Sweden Univ Padua, Dept Organ Chem, CNR, CMRO, I-35131 Padua, Italy.
    Inganäs, Olle
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik.
    Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes2001Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 13, nr 24, s. 1871-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel "double cable" material for photodiodes, containing both electron- and hole-transporting functional groups, is obtained by co-polymerization of thiophenes that bear a covalently linker-bound fullerene (see Figure). Even at 14% of fullerene substitution, the order of the main polythiophene chain is not seriously disturbed.

  • 687.
    Zhang, Jiangbin
    et al.
    Univ Cambridge, England; Imperial Coll London, England.
    Kan, Bin
    Nankai Univ, Peoples R China.
    Pearson, Andrew J.
    Univ Cambridge, England.
    Parnell, Andrew J.
    Univ Sheffield, England.
    Cooper, Joshaniel F. K.
    Rutherford Appleton Lab, England.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Cambridge, England.
    Conaghan, Patrick J.
    Univ Cambridge, England.
    Hopper, Thomas R.
    Imperial Coll London, England.
    Wu, Yutian
    Univ Cambridge, England.
    Wan, Xiangjian
    Nankai Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Greenham, Neil C.
    Univ Cambridge, England.
    Bakulin, Artem A.
    Imperial Coll London, England.
    Chen, Yongsheng
    Nankai Univ, Peoples R China.
    Friend, Richard H.
    Univ Cambridge, England.
    Correction: Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers(vol 6, pg 18225, 2018)2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 43, s. 21618-21618Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Correction for Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers by Jiangbin Zhang et al., J. Mater. Chem. A, 2018, 6, 18225-18233.

  • 688.
    Zhang, Jiangbin
    et al.
    Univ Cambridge, England; Imperial Coll London, England.
    Kan, Bin
    Nankai Univ, Peoples R China.
    Pearson, Andrew J.
    Univ Cambridge, England.
    Parnell, Andrew J.
    Univ Sheffield, England.
    Cooper, Joshaniel F. K.
    Rutherford Appleton Lab, England.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Cambridge, England.
    Conaghan, Patrick J.
    Univ Cambridge, England.
    Hopper, Thomas R.
    Imperial Coll London, England.
    Wu, Yutian
    Imperial Coll London, England.
    Wan, Xiangjian
    Nankai Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Greenham, Neil C.
    Univ Cambridge, England.
    Bakulin, Artem A.
    Imperial Coll London, England.
    Chen, Yongsheng
    Nankai Univ, Peoples R China.
    Friend, Richard H.
    Univ Cambridge, England.
    Efficient non-fullerene organic solar cells employing sequentially deposited donor-acceptor layers2018Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, nr 37, s. 18225-18233Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Non-fullerene acceptors (NFAs) have recently outperformed their fullerene counterparts in binary bulk-heterojunction (BHJ) organic solar cells (OSCs). Further development of NFA OSCs may benefit other novel OSC device structures that alter or extend the standard BHJ concept. Here, we report such a new processing route that forms a BHJ-like morphology between sequentially processed polymer donor and NFA with high power conversion efficiencies in excess of 10%. Both devices show similar charge generation and recombination behaviours, supporting formation of similar BHJ active layers. We correlate the approximate to 30 meV smaller open-circuit voltage in sq-BHJ devices to more substantial non-radiative recombination by voltage loss analysis. We also determine the exciton diffusion length of benchmark polymer PBDB-T to be 10 +/- 3 nm. Our results demonstrate high-efficiency OSC devices using sequential deposition method and provide new opportunities to further improve performance of state-of-the-art OSCs.

  • 689.
    Zhang, Liangdong
    et al.
    Nanjing Tech Univ, Peoples R China.
    Jiang, Tao
    Nanjing Tech Univ, Peoples R China.
    Yi, Chang
    Nanjing Tech Univ, Peoples R China.
    Wu, Jiquan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Liu, Xiaoke
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    He, Yaron
    Nanjing Tech Univ, Peoples R China.
    Miao, Yanfeng
    Nanjing Tech Univ, Peoples R China.
    Zhang, Ya
    Nanjing Tech Univ, Peoples R China.
    Zhang, Huotian
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Xie, Xinrui
    Zhejiang Univ, Peoples R China.
    Wang, Peng
    Zhejiang Univ, Peoples R China.
    Li, Renzhi
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Huang, Wei
    Nanjing Tech Univ, Peoples R China; Nanjing Tech Univ, Peoples R China; NPU, Peoples R China.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Bright Free Exciton Electroluminescence from Mn-Doped Two-Dimensional Layered Perovskites2019Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 10, nr 11, s. 3171-3175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two-dimensional (2D) perovskites incorporating hydrophobic organic spacer cations show improved film stability and morphology compared to their three-dimensional (3D) counterparts. However, 2D perovskites usually exhibit low photoluminescence quantum efficiency (PLQE) owing to strong exciton-phonon interaction at room temperature, which limits their efficiency in light-emitting diodes (LEDs). Here, we demonstrate that the device performance of 2D perovskite LEDs can be significantly enhanced by doping Mn(2+)in (benzimidazolium)(2)PbI4 2D perovskite films to suppress the exciton-phonon interaction. The distorted [PbI6](4-) octahedra by Mn-doping and the rigid benzimidazolium (BIZ) ring without branched chains in the 2D perovskite structure lead to improved crystallinity and rigidity of the perovskites, resulting in suppressed phonon-exciton interaction and enhanced PLQE. On the basis of this strategy, for the first time, we report yellow electroluminescence from free excitons in 2D (n = 1) perovskites with a maximum brightness of 225 cd m(-2) and a peak EQE of 0.045%.

    Publikationen är tillgänglig i fulltext från 2020-05-23 13:52
  • 690.
    Zhang, Wenjun
    et al.
    Chinese Academic Science, Peoples R China .
    Wu, Yulei
    Chinese Academic Science, Peoples R China .
    Bao, Qinye
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska högskolan.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Fang, Junfeng
    Chinese Academic Science, Peoples R China .
    Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials2014Ingår i: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 4, nr 12, s. 1400359-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two alcohol-soluble organic molecules are synthesized and introduced into inverted organic solar cells as the cathode interlayer. A power conversion efficiency as high as 9.22% is obtained by using the more hydrophobic molecule FTBTF-N as the cathode interlayer. Morphological studies suggest that design of the backbone can help to enhance short-circuit current density and fill factor.

  • 691.
    Zhang, Y.
    et al.
    University of Cambridge, England.
    Kappers, M. J.
    University of Cambridge, England.
    Zhu, D.
    University of Cambridge, England.
    Oehler, F.
    University of Cambridge, England.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Humphreys, C. J.
    University of Cambridge, England.
    The effect of dislocations on the efficiency of InGaN/GaN solar cells2013Ingår i: Solar Energy Materials and Solar Cells, ISSN 0927-0248, E-ISSN 1879-3398, Vol. 117, s. 279-284Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5 x 10(8) and 5 x 10(9) cm(-2). Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TO density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TO density sample was three times higher than that of the high TD density sample. (C) 2013 Elsevier B.V. All rights reserved.

  • 692.
    Zhang, Yun
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Yao, Huifeng
    Chinese Acad Sci, Peoples R China.
    Zhang, Shaoqing
    Chinese Acad Sci, Peoples R China; Univ Sci and Technol Beijing, Peoples R China.
    Qin, Yunpeng
    Chinese Acad Sci, Peoples R China; Univ Sci and Technol Beijing, Peoples R China.
    Zhang, Jianqi
    Natl Ctr Nanosci and Technol, Peoples R China.
    Yang, Liyan
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Li, Wanning
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Wei, Zhixiang
    Natl Ctr Nanosci and Technol, Peoples R China.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials2018Ingår i: Science in China Series B: Chemistry, ISSN 1674-7291, E-ISSN 1869-1870, Vol. 61, nr 10, s. 1328-1337Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Halogenation is a very efficient chemical modification method to tune the molecular energy levels, absorption spectra and molecular packing of organic semiconductors. Recently, in the field of organic solar cells (OSCs), both fluorine- and chlorinesubstituted photovoltaic materials, including donors and acceptors, demonstrated their great potentials in achieving high power conversion efficiencies (PCEs), raising a question that how to make a decision between fluorination and chlorination when designing materials. Herein, we systemically studied the impact of fluorination and chlorination on the properties of resulting donors (PBDB-T-2F and PBDB-T-2Cl) and acceptors (IT-4F and IT-4Cl). The results suggest that all the OSCs based on different donor and acceptor combinations can deliver good PCEs around 13%-14%. Chlorination is more effective than fluorination in downshifting the molecular energy levels and broadening the absorption spectra. The influence of chlorination and fluorination on the crystallinity of the resulting materials is dependent on their introduction positions. As chlorination has the advantage of easy synthesis, it is more attractive in designing low-cost photovoltaic materials and therefore may have more potential in largescale applications.

  • 693.
    Zhao, Baodan
    et al.
    Univ Cambridge, England.
    Bai, Sai
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Univ Oxford, England.
    Kim, Vincent
    Univ Cambridge, England.
    Lamboll, Robin
    Univ Cambridge, England.
    Shivanna, Ravichandran
    Univ Cambridge, England.
    Auras, Florian
    Univ Cambridge, England.
    Richter, Johannes M.
    Univ Cambridge, England.
    Yang, Le
    Univ Cambridge, England; ASTAR, Singapore.
    Dai, Linjie
    Univ Cambridge, England.
    Alsari, Mejd
    Univ Cambridge, England.
    She, Xiao-Jian
    Univ Cambridge, England.
    Liang, Lusheng
    Chinese Acad Sci, Peoples R China.
    Zhang, Jiangbin
    Univ Cambridge, England.
    Lilliu, Samuele
    Univ Sheffield, England; UAE Ctr Crystallog, U Arab Emirates.
    Gao, Peng
    Chinese Acad Sci, Peoples R China.
    Snaith, Henry J.
    Univ Oxford, England.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Greenham, Neil C.
    Univ Cambridge, England.
    Friend, Richard H.
    Univ Cambridge, England.
    Di, Dawei
    Univ Cambridge, England.
    High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes2018Ingår i: Nature Photonics, ISSN 1749-4885, E-ISSN 1749-4893, Vol. 12, nr 12, s. 783-+Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Perovskite-based optoelectronic devices are gaining much attention owing to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes, non-radiative charge recombination has limited the electroluminescence efficiency. Here we demonstrate perovskite-polymer bulk heterostructure light-emitting diodes exhibiting external quantum efficiencies of up to 20.1% (at current densities of 0.1-1 mA cm(-2)). The light-emitting diode emissive layer comprises quasi-two-dimensional and three-dimensional (2D/3D) perovskites and an insulating polymer. Photogenerated excitations migrate from quasi-2D to lower-energy sites within 1 ps, followed by radiative bimolecular recombination in the 3D regions. From near-unity external photoluminescence quantum efficiencies and transient kinetics of the emissive layer with and without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated, consistent with optical models giving near 100% internal quantum efficiencies. Although the device brightness and stability (T-50 = 46 h in air at peak external quantum efficiency) require further improvement, our results indicate the significant potential of perovskite-based photon sources.

  • 694.
    Zhao, Wenchao
    et al.
    Chinese Academic Science, Peoples R China.
    Qian, Deping
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Shaoqing
    Chinese Academic Science, Peoples R China.
    Li, Sunsun
    Chinese Academic Science, Peoples R China.
    Inganäs, Olle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Hou, Jianhui
    Chinese Academic Science, Peoples R China.
    Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability2016Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 23, s. 4734-4739Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene-based PSCs with respect to the power-conversion efficiency is demonstrated for the first time. An efficiency of amp;gt;11%, which is among the top values in the PSC field, and excellent thermal stability is obtained using PBDB-T and ITIC as donor and acceptor, respectively.

  • 695.
    ZHAO, Yang
    et al.
    Jilin University, Changchun, P. R. China.
    ZHANG, Feng-ling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    ZHANG, Ming
    Jilin University, Changchun, P. R. China.
    MA, Yu-guang
    Jilin University, Changchun, P. R. China.
    Characterization and properties of a new amorphous small-molecule material containing both donor and acceptor moieties for photovoltaic application2013Ingår i: Chemical Research in Chinese Universities, ISSN 1005-9040, E-ISSN 2210-3171, Vol. 29, nr 6, s. 1193-1198Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new amorphous small-molecule material, in which the electron-donating carbazole units are connected to the backbone by flexible side chains, has been synthesized and utilised in the photovoltaic(PV) field. This material exhibits the amorphous feature, higher thermal stability and good film forming ability. The influence of the heat-treatment on the morphology and the performance of PV devices were studied. Eventually, a relatively high photovoltaic conversion efficiency was achieved. At the same time, the PV device displayed an ideal open-circuit voltage(over 1 V) which is very close to the upper limit of its theoretical value.

  • 696.
    Zhen, Hongyu
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China.
    Hou, Qiong
    S China Normal University, Peoples R China S China University of Technology, Peoples R China .
    Li, Kan
    Zhejiang University, Peoples R China .
    Ma, Zaifei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Fabiano, Simone
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska högskolan.
    Gao, Feng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors2014Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, nr 31, s. 12390-12396Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To explore enhancing photocurrent in organic solar cells (OSCs) via harvesting triplet excitons, two novel bicycloiridium complexes (R-1 and R-2) are designed and synthesized. Conventional bulk-heterojunction triplet OSCs are solution processed using R-1 or R-2 as sole electron donors and phenyl-C-71-butyric acid methyl ester (PC71BM) as the electron acceptor. A decent short circuit current (J(sc)) of 6.5 mA cm(-2) is achieved though the overlap between the absorption spectrum (with similar to 550 nm absorption onset) of R-2 and the solar flux is relatively small. With an open circuit voltage of 0.74 V and a fill factor of 0.42, an encouraging power conversion efficiency of 2.0% is achieved in the OSCs based on R-2 and PC71BM without any processing additives and post-treatments. Our preliminary result demonstrates the possibility of utilizing Ir complexes as sole electron donors in OSCs, which extends available soluble small molecules for OSCs.

  • 697.
    Zhen, Hongyu
    et al.
    Zhejiang Univ, Peoples R China.
    Li, Kan
    Zhejiang University, Peoples R China .
    Huang, Zhuoyin
    Zhejiang University, Peoples R China .
    Tang, Zheng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Wu, Rengmao
    Zhejiang University, Peoples R China .
    Li, Guolong
    Zhejiang University, Peoples R China .
    Liu, Xu
    Zhejiang University, Peoples R China .
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Inverted indium-tin-oxide-free cone-shaped polymer solar cells for light trapping2012Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 100, nr 21, s. 213901-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Based on the flexibility of polymer film, cone-shaped polymer solar cells (PSCs) are fabricated and studied. Effective light trapping is achieved due to multi-absorption in all 360 degrees directions. Monte Carlo ray tracing is used to simulate the absorption of cone-shaped PSCs with two variables: wavelength and half cone angle. With an inverted indium-tin-oxide-free device structure, a 43% enhanced light utilization without loss of material utilization is realized in the cone-shaped PSCs with a half cone angle of 45 degrees, compared with the planar PSCs.

  • 698.
    Zheng, Kaibo
    et al.
    Lund University, Sweden .
    Zidek, Karel
    Lund University, Sweden .
    Abdellah, Mohamed
    Lund University, Sweden .
    Torbjornsson, Magne
    Lund University, Sweden .
    Chabera, Pavel
    Lund University, Sweden .
    Shao, Shuyan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tillämpad Fysik. Linköpings universitet, Tekniska högskolan.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
    Pullerits, Tonu
    Lund University, Sweden .
    Fast Monolayer Adsorption and Slow Energy Transfer in CdSe Quantum Dot Sensitized ZnO Nanowires2013Ingår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 117, nr 29, s. 5919-5925Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of similar to 4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

  • 699.
    Zheng, Wenhao
    et al.
    Jinan University, Peoples R China.
    Lin, Yuanbao
    Jinan University, Peoples R China.
    Zhang, Yangdong
    Jinan University, Peoples R China.
    Yang, Junyu
    Jinan University, Peoples R China.
    Peng, Zuosheng
    Jinan University, Peoples R China.
    Liu, Alei
    Jinan University, Peoples R China.
    Zhang, Fengling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Jinan University, Peoples R China.
    Hou, Lintao
    Jinan University, Peoples R China.
    Dual Function of UV/Ozone Plasma-Treated Polymer in Polymer/Metal Hybrid Electrodes and Semitransparent Polymer Solar Cells2017Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 51, s. 44656-44666Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, high-performance inverted indium tin oxide (ITO)-free semitransparent polymer solar cells are comprehensively investigated using a novel polymer/metal hybrid transparent electrode. The electrical and optical characteristics of hybrid electrodes are significantly enhanced by introducing UV/ozone plasma treatment on the polymer poly[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN), which is functioned as both a seed layer for ultrathin Ag metal electrode and an optical spacer for transparent devices. The optimized sheet resistance of PFN/Ag (12 nm) hybrid electrode is only half of the commercial ITO (9.4 vs 20.0 Omega sq(-1)) and the high wavelength-dependent reflectance of hybrid electrode helps to increase the ITO-free device short-circuit current density. Furthermore, the interface property between PFN and ultrathin Ag is analyzed in detail and the optical field distribution is calculated for comparison. A high power conversion efficiency of 5.02%, which is increased by 35% compared to that of the ITO-based device, is achieved in the ITO-free semitransparent device in conjunction with an excellent average visible transmittance above 28% that is higher than the benchmark of 25% for power-generating window, indicating its great potential in building integrated photovoltaic systems in the future. Furthermore, the strategy is successfully developed for other polymer systems, suggesting the universal applicability for plastic electronics.

  • 700.
    Zhou, Ke
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. Xi An Jiao Tong Univ, Peoples R China.
    Wu, Yang
    Xi An Jiao Tong Univ, Peoples R China.
    Liu, Yanfeng
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
    Zhou, Xiaobo
    Xi An Jiao Tong Univ, Peoples R China.
    Zhang, Lin
    Xi An Jiao Tong Univ, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Molecular Orientation of Polymer Acceptor Dominates Open-Circuit Voltage Losses in All-Polymer Solar Cells2019Ingår i: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 4, nr 5, s. 1057-1064Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low open-circuit voltage (V-oc) induced by energy loss in organic solar cells is considered to be one of the most influencing factors limiting device performance, in which morphology of the active layer plays a crucial role in determining energy loss. By employing a bilayer structure of the P3HT:N2200 all-polymer system, we have identified the isolated impact of a molecular packing structure on device V-oc with analysis of energy loss processes. Thermal annealing and various solvents were used to control molecular orientation in P3HT:N2200 bilayer devices, in which different V-oc spanning from 0.45 to 0.54 V could be obtained. It was found that energy of charge-transfer state (E-ct) differed in these bilayer devices. Besides, increased charge recombination could be observed in bilayer devices when N2200 layers exhibited face-on orientation, which caused an additional energy loss and decreased V-oc. Our results suggest that rational control of polymer molecular orientation is essential to reduce the energy loss and ultimately achieve high V-oc in all-polymer solar cells.

1112131415 651 - 700 av 719
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf