Open this publication in new window or tab >>2023 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 31, no 6, p. 10673-10683Article in journal (Refereed) Published
Abstract [en]
Photonic spatial quantum states are a subject of great interest for applications in quantum communication. One important challenge has been how to dynamically generate these states using only fiber-optical components. Here we propose and experimentally demonstrate an all-fiber system that can dynamically switch between any general transverse spatial qubit state based on linearly polarized modes. Our platform is based on a fast optical switch based on a Sagnac interferometer combined with a photonic lantern and few-mode optical fibers. We show switching times between spatial modes on the order of 5 ns and demonstrate the applicability of our scheme for quantum technologies by demonstrating a measurement-device-independent (MDI) quantum random number generator based on our platform. We run the generator continuously over 15 hours, acquiring over 13.46 Gbits of random numbers, of which we ensure that at least 60.52% are private, following the MDI protocol. Our results show the use of photonic lanterns to dynamically create spatial modes using only fiber components, which due to their robustness and integration capabilities, have important consequences for photonic classical and quantum information processing.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
Place, publisher, year, edition, pages
Optica Publishing Group, 2023
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-193996 (URN)10.1364/OE.481974 (DOI)000974423800007 ()37157609 (PubMedID)
Note
Funding Agencies|Knut och Alice Wallenbergs Stiftelse; QuantERA grant SECRET [VR 2019-268 00392]; Swedish Research 266 Council [VR 2017-04470]; Centrum foer Industriell Informationsteknologi, Linkoepings Universitet
2023-05-232023-05-232024-01-10