liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmadian, Amirhossein
    et al.
    Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering.
    Lindsten, Fredrik
    Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering.
    Likelihood-free Out-of-Distribution Detection with Invertible Generative Models2021In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI 2021), 2021Conference paper (Refereed)
    Abstract [en]

    Likelihood of generative models has been used traditionally as a score to detect atypical (Out-of-Distribution, OOD) inputs. However, several recent studies have found this approach to be highly unreliable, even with invertible generative models, where computing the likelihood is feasible. In this paper, we present a different framework for generative model--based OOD detection that employs the model in constructing a new representation space, instead of using it directly in computing typicality scores, where it is emphasized that the score function should be interpretable as the similarity between the input and training data in the new space. In practice, with a focus on invertible models, we propose to extract low-dimensional features (statistics) based on the model encoder and complexity of input images, and then use a One-Class SVM to score the data. Contrary to recently proposed OOD detection methods for generative models, our method does not require computing likelihood values. Consequently, it is much faster when using invertible models with iteratively approximated likelihood (e.g. iResNet), while it still has a performance competitive with other related methods

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf