liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Christensen, Andreas
    Linköping University, Department of Mathematics, Analysis and Mathematics Education. Linköping University, Faculty of Science & Engineering.
    Capacities, Poincaré inequalities and gluing metric spaces.2023Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis consists of an introduction, and one research paper with results related to potential theory both in the classical Euclidean setting, as well as in quite general metric spaces.

    The introduction contains a theoretical and historical background of some basic concepts, and their more modern generalisations to metric spaces developed in the last 30 years. By using upper gradients it is possible to define such notions as first order Sobolev spaces, p-harmonic functions and capacity on metric spaces. When generalising classical results to metric spaces, one often needs to impose some structure on the space by making additional assumptions, such as a doubling condition and a Poincaré inequality.

    In the included research paper, we study a certain type of metric spaces called bow-ties, which consist of two metric spaces glued together at a single designated point. For a doubling measure μ, we characterise when μ supports a Poincar´e inequality on the bow-tie, in terms of Poincaré inequalities on the separate parts together with a variational p-capacity condition and a quasiconvexity-type condition. The variational p-capacity condition is then characterised by a sharp measure decay condition at the designated point.

    We also study the special case when the bow-tie consists of the positive and negative hyperquadrants in Rn, equipped with a radial doubling measure. In this setting, we characterise the validity of the p-Poincaré inequality in various ways, and then provide a formula for the variational p-capacity of annuli centred at the origin.i 

    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf