liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Matthiesen, Isabelle
    et al.
    KTH Royal Inst Technol, Sweden; AstraZeneca, Sweden.
    Jury, Michael
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Rasti Boroojeni, Fatemeh
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Ludwig, Saskia L.
    KTH Royal Inst Technol, Sweden.
    Holzreuter, Muriel
    Karolinska Inst, Sweden.
    Buchmann, Sebastian
    KTH Royal Inst Technol, Sweden; Karolinska Inst, Sweden; KTH Royal Inst Technol, Sweden.
    Träger, Andrea
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Selegård, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Winkler, Thomas E.
    KTH Royal Inst Technol, Sweden; Tech Univ Carolo Wilhelmina Braunschweig, Germany; Tech Univ Carolo Wilhelmina Braunschweig, Germany.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Herland, Anna
    KTH Royal Inst Technol, Sweden; Karolinska Inst, Sweden; KTH Royal Inst Technol, Sweden.
    Astrocyte 3D culture and bioprinting using peptide functionalized hyaluronan hydrogels2023In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 24, no 1, article id 2165871Article in journal (Refereed)
    Abstract [en]

    Astrocytes play an important role in the central nervous system, contributing to the development of and maintenance of synapses, recycling of neurotransmitters, and the integrity and function of the blood-brain barrier. Astrocytes are also linked to the pathophysiology of various neurodegenerative diseases. Astrocyte function and organization are tightly regulated by interactions mediated by the extracellular matrix (ECM). Engineered hydrogels can mimic key aspects of the ECM and can allow for systematic studies of ECM-related factors that govern astrocyte behaviour. In this study, we explore the interactions between neuroblastoma (SH-SY5Y) and glioblastoma (U87) cell lines and human fetal primary astrocytes (FPA) with a modular hyaluronan-based hydrogel system. Morphological analysis reveals that FPA have a higher degree of interactions with the hyaluronan-based gels compared to the cell lines. This interaction is enhanced by conjugation of cell-adhesion peptides (cRGD and IKVAV) to the hyaluronan backbone. These effects are retained and pronounced in 3D bioprinted structures. Bioprinted FPA using cRGD functionalized hyaluronan show extensive and defined protrusions and multiple connections between neighboring cells. Possibilities to tailor and optimize astrocyte-compatible ECM-mimicking hydrogels that can be processed by means of additive biofabrication can facilitate the development of advanced tissue and disease models of the central nervous system.

    Download full text (pdf)
    fulltext
  • 2.
    Träger, Andrea
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Naeimipour, Sajjad
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Jury, Michael
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Selegård, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Biophysics and bioengineering. Linköping University, Faculty of Science & Engineering.
    Nanocellulose Reinforced Hyaluronan-Based Bioinks2023In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 24, no 7, p. 3086-3093Article in journal (Refereed)
    Abstract [en]

    Bioprinting of hydrogel-based bioinks can allow for thefabricationof elaborate, cell-laden 3D structures. In addition to providing anadequate extracellular matrix mimetic environment and high cell viability,the hydrogels must offer facile extrusion through the printing nozzleand retain the shape of the printed structure. We demonstrate a strategyto incorporate cellulose oxalate nanofibrils in hyaluronan-based hydrogelsto generate shear thinning bioinks that allowed for printing of free-standingmultilayer structures, covalently cross-linked after bioprinting,yielding long-term stability. The storage modulus of the hydrogelswas tunable between 0.5 and 1.5 kPa. The nanocellulose containinghydrogels showed good biocompatibility, with viability of primaryhuman dermal fibroblasts above 80% at day 7 after seeding. The cellswere also shown to tolerate the printing process well, with viabilityabove 80% 24 h after printing. We anticipate that this hydrogel systemcan find broad use as a bioink to produce complex geometries thatcan support cell growth.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf