liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dávid, Anna
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Morat, Julia
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Chen, Mengyun
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mapping Uncharted Lead-Free Halide Perovskites and Related Low-Dimensional Structures2024In: Materials, E-ISSN 1996-1944, Vol. 17, no 2, article id 491Article, review/survey (Refereed)
    Abstract [en]

    Research on perovskites has grown exponentially in the past decade due to the potential of methyl ammonium lead iodide in photovoltaics. Although these devices have achieved remarkable and competitive power conversion efficiency, concerns have been raised regarding the toxicity of lead and its impact on scaling up the technology. Eliminating lead while conserving the performance of photovoltaic devices is a great challenge. To achieve this goal, the research has been expanded to thousands of compounds with similar or loosely related crystal structures and compositions. Some materials are "re-discovered", and some are yet unexplored, but predictions suggest that their potential applications may go beyond photovoltaics, for example, spintronics, photodetection, photocatalysis, and many other areas. This short review aims to present the classification, some current mapping strategies, and advances of lead-free halide double perovskites, their derivatives, lead-free perovskitoid, and low-dimensional related crystals.

  • 2.
    Mopoung, Kunpot
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Dávid, Anna
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Buyanova, Irina
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Spin Centers in Vanadium-Doped Cs<sub>2</sub>NaInCl<sub>6</sub> Halide Double Perovskites2024In: ACS Materials Letters, E-ISSN 2639-4979, Vol. 6, no 2, p. 566-571Article in journal (Refereed)
    Abstract [en]

    We provide direct evidence for a spin-active V4+ defect center, likely in the form of a VO2+ complex, predominantly introduced in single crystals of vanadium-doped Cs2NaInCl6 halide double perovskites grown by the solution-processed hydrothermal method. The defect has C-4v point group symmetry, exhibiting an electron paramagnetic resonance (EPR) spectrum arising from an effective electron spin of S = 1/2 and a nuclear spin of I = 7/2 (corresponding to V-51 with nearly 100% natural abundance). The determined electron g-factor and hyperfine parameter values are g(perpendicular to)= 1.973, g(parallel to) = 1.945, A(perpendicular to) = 180 MHz, and A(parallel to) = 504 MHz, with the principal axis z along a &lt; 001 &gt; crystallographic axis. The controlled growth of V-doped Cs2NaInCl6 in an oxygen-free environment is shown to suppress the V4+ EPR signal. The defect model is suggested to have a VOCl5 octahedral coordination, where one of the nearest-neighbor Cl- of V is replaced by O2-, with octahedral compression along the V-O axis. This VO complex formation competes with the isolated V3+ substitution of In3+, which in turn provides a means for the charge-state tuning of V ions. This finding calls for a better understanding and control of defect formation in solution-grown halide double perovskites, which is critical for optimizing and tailoring material design for solution-processable optoelectronics and spintronics.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf