liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mohammadi, Arman
    et al.
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Krysander, Mattias
    Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.
    Jung, Daniel
    Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
    Analysis of grey-box neural network-based residuals for consistency-based fault diagnosis2022Conference paper (Refereed)
    Abstract [en]

    Data-driven fault diagnosis requires training data that is representative of the different operating conditions of the system to capture its behavior. If training data is limited, one solution is to incorporate physical insights into machine learning models to improve their effectiveness. However, while previous works show the usefulness of hybrid approaches for isolation of faults, the impact of training data must be taken into consideration when drawing conclusions from data-driven residuals in a consistency-based diagnosis framework. By giving an understanding of the physical interaction between the signals, a hybrid fault diagnosis approach, can enforce model properties of residual generators to isolate faults that are not represented in training data. The objective of this work is to analyze the impact of limited training data when training neural network-based residual generators. It is also investigated how the use of structural information when selecting the network structure is a solution to limited training data and how to ameliorate the performance of hybrid approaches in face of this challenge.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf