Underwater surveillance using passive sonar and track-before-detect technology requires accurate models of the tracked signal and the background noise. However, in an underwater environment, the signal channel is time-varying and prior knowledge about the spatial distribution of the background noise is unavailable. In this paper, an autoregressive model that captures a time-varying signal level caused by multi-path propagation is presented. In addition, a multi-source model is proposed to describe spatially distributed background noise. The models are used in a Bernoulli filter track-before-detect framework and evaluated using both simulated and sea trial data. The simulations demonstrate clear improvements in terms of target loss and improved ability to discern the target from the noisy background. An evaluation of the track-before-detect algorithm on the sea trial data indicates a performance gain when incorporating the proposed models in underwater surveillance and tracking problems.
A theoretically sound likelihood function for passive sonar surveillance using a hydrophone array is presented. The likelihood is derived from first order principles along with the assumption that the source signal can be approximated as white Gaussian noise within the considered frequency band. The resulting likelihood is a nonlinear function of the delay-and-sum beamformer response and signal-to-noise ratio (SNR). Evaluation of the proposed likelihood function is done by using it in a Bernoulli filter based track-before-detect (TkBD) framework. As a reference, the same TkBD framework, but with another beamforming response based likelihood, is used. Results from Monte-Carlo simulations of two bearings-only tracking scenarios are presented. The results show that the TkBD framework with the proposed likelihood yields an approx. 10 seconds faster target detection for a target at an SNR of -27 dB, and a lower bearing tracking error. Compared to a classical detect-and-track target tracker, the TkBD framework with the proposed likelihood yields 4 dB to 5 dB detection gain.
We study different aspects of active learning with deep neural networks in a consistent and unified way. i) We investigate incremental and cumulative training modes which specify how the newly labeled data are used for training. ii) We study active learning w.r.t. the model configurations such as the number of epochs and neurons as well as the choice of batch size. iii) We consider in detail the behavior of query strategies and their corresponding informativeness measures and accordingly propose more efficient querying procedures. iv) We perform statistical analyses, e.g., on actively learned classes and test error estimation, that reveal several insights about active learning. v) We investigate how active learning with neural networks can benefit from pseudo-labels as proxies for actual labels.