liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Zohrevandi, Elmira
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Westin, Carl
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Lundberg, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Design and Evaluation Study of Visual Analytics Decision Support Tools in Air Traffic Control2022In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 41, no 1, p. 230-242Article in journal (Refereed)
    Abstract [en]

    Operators in air traffic control facing time- and safety-critical situations call for efficient, reliable and robust real-time processing and interpretation of complex data. Automation support tools aid controllers in these processes to prevent separation losses between aircraft. Issues of current support tools include limited what-if and what-else probe functionalities in relation to vertical solutions. This work presents the design and evaluation of two visual analytics interfaces that promote contextual awareness and support what-if and what-else probes in the spatio-temporal domain aiming to improve information integration and support controllers in prioritising conflict resolution. Both interfaces visualize vertical solution spaces against a time-altitude graph. The main contributions of this paper are: (a) the presentation of two interfaces for supporting conflict solving; (b) the novel representation of how vertical information and aircraft rate of climb and descent affect conflicts and (c) an evaluation and comparison of the interfaces with a traditional air traffic control support system. The evaluation study was performed with domain experts to compare the effects of visualization concepts on operator engagement in processing solutions suggested by the tools. Results show that the visualizations support operators ability to understand and resolve conflicts. Based on the results, general design guidelines for time-critical domains are proposed.

    Download full text (pdf)
    fulltext
  • 2.
    Zohrevandi, Elmira
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Westin, Carl
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Vrotsou, Katerina
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Lundberg, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Exploring Effects of Ecological Visual Analytics Interfaces on Experts' and Novices' Decision‐Making Processes: A Case Study in Air Traffic Control2022In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 41, no 3, p. 453-464Article in journal (Refereed)
    Abstract [en]

    Operational demands in safety-critical systems impose a risk of failure to the operators especially during urgent situations. Operators of safety-critical systems learn to make decisions effectively throughout extensive training programs and many years of experience. In the domain of air traffic control, expensive training with high dropout rates calls for research to enhance novices' ability to detect and resolve conflicts in the airspace. While previous researchers have mostly focused on redesigning training instructions and programs, the current paper explores possible benefits of novel visual representations to improve novices' understanding of the situations as well as their decision-making process. We conduct an experimental evaluation study testing two ecological visual analytics interfaces, developed in a previous study, as support systems to facilitate novice decision-making. The main contribution of this paper is threefold. First, we describe the application of an ecological interface design approach to the development of two visual analytics interfaces. Second, we perform a human-in-the-loop experiment with forty-five novices within a simplified air traffic control simulation environment. Third, by performing an expert-novice comparison we investigate the extent to which effects of the proposed interfaces can be attributed to the subjects' expertise. The results show that the proposed ecological visual analytics interfaces improved novices' understanding of the information about conflicts as well as their problem-solving performance. Further, the results show that the beneficial effects of the proposed interfaces were more attributable to the visual representations than the users' expertise. 

    Download full text (pdf)
    fulltext
  • 3. Order onlineBuy this publication >>
    Zohrevandi, Elmira
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Real-Time Visual Analytics Interfaces to Strengthen Human-Automation Collaboration2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Automation in today’s world supports human operators to accomplish several tasks in limited time. With more advanced automation and autonomous systems, the hu-mans’ role is shifting from hands-on operational tasks to supervisory tasks. In complex environments such as air traffic control, supervisory tasks become difficult to manage during unexpected situations as the operator needs to have a clear understanding of various resolution strategies and their consequences and make decisions about them in a limited amount of time (i.e. within a couple of minutes). In such environments, interface designers must carefully consider how information should be presented to the operators. An improper way of presenting information could, wastefully consume operators’ cognitive resources resulting in inefficient decision-making and an increased risk of failure. 

    By designing ecological visual analytics interfaces, this thesis addresses the problem of real-time decision-making in the domain of air traffic control. The aim of this thesis has been to apply ecological design theories to the design and evaluation of visual representations to better support controllers’ analytical capabilities and decision-making. Four novel visual analytics interfaces were designed, developed, and tested over the course of this research project. To understand how the designed visual representations affected the operators’ decision-making processes, evaluation studies with air traffic controllers as well as novices without ATC experience were conducted for two of the designed interfaces and the results were analyzed. 

    The contribution of this thesis to the field of air traffic control and visualization design is fourfold. First, the thesis contributes knowledge on what information should be visualized and how, to achieve functional goals of conflict detection and resolution task of air traffic control. Second, evolved through a series of design studies, a final interactive visual analytics interface is proposed that visualizes information about the available solution space for solving conflict situations between airborne traffic and the traffic complexity. The interface supports controllers’ decision-making process for resolving conflicts and ability to reduce the traffic complexity. Third, the method developed for evaluating the interface designs contribute with knowledge on how interfaces tailored to safety-critical systems can be tested. Fourth, findings show that the integration of ecological interface design with the development of visual representations can shape novice and expert operators’ decision-making towards domain-specific functional goals, while allowing them to follow their own problem-solving strategies. 

    List of papers
    1. Design of a Real Time Visual Analytics Support Tool for Conflict Detection and Resolution in Air Traffic Control
    Open this publication in new window or tab >>Design of a Real Time Visual Analytics Support Tool for Conflict Detection and Resolution in Air Traffic Control
    2020 (English)In: EuroVis 2020 - Short Papers, Eurographics - European Association for Computer Graphics, 2020Conference paper, Published paper (Refereed)
    Abstract [en]

    Air traffic control is a safety critical high-risk environment where operators need to analyse and interpret traffic dynamics of spatio-temporal data in real-time. To support the air traffic controller in safely separating traffic, earlier research has applied real-time visualisation techniques that explore the constraints and solution spaces of separation problems. Traditionally, situation displays for conflict detection and resolution have used visualisations that convey information about the relative horizontal position between aircraft. Although vertical solutions for solving conflicts are common, and often a preferred among controllers, visualisations typically provide limited information about the vertical relationship between aircraft. This paper presents a design study of an interactive conflict detection and resolution support tool and explores techniques for real-time visualisation of spatio-temporal data. The design evolution has incorporated several activities, including an initial work domain analysis, iterative rounds of programming, design, and evaluations with a domain expert, and an evaluation with eight active controllers. The heading-time-altitude visualisation system is developed based on formulating and solving aircraft movements in a relative coordinate system. A polar-graph visualisation technique is used to construct a view of conflicting aircraft vertical solution spaces in the temporal domain. Using composite glyphs, the final heading-time-altitude visualisation provides a graphical representation of both horizontal and vertical solution spaces for the traffic situation.

    Place, publisher, year, edition, pages
    Eurographics - European Association for Computer Graphics, 2020
    National Category
    Media and Communication Technology
    Identifiers
    urn:nbn:se:liu:diva-179234 (URN)10.2312/evs.20201044 (DOI)
    Conference
    EuroVis, Norrköping, Sweden, May 25-29, 2020
    Funder
    Swedish Research Council
    Available from: 2021-09-14 Created: 2021-09-14 Last updated: 2022-09-14Bibliographically approved
    2. Design and Evaluation Study of Visual Analytics Decision Support Tools in Air Traffic Control
    Open this publication in new window or tab >>Design and Evaluation Study of Visual Analytics Decision Support Tools in Air Traffic Control
    2022 (English)In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 41, no 1, p. 230-242Article in journal (Refereed) Published
    Abstract [en]

    Operators in air traffic control facing time- and safety-critical situations call for efficient, reliable and robust real-time processing and interpretation of complex data. Automation support tools aid controllers in these processes to prevent separation losses between aircraft. Issues of current support tools include limited what-if and what-else probe functionalities in relation to vertical solutions. This work presents the design and evaluation of two visual analytics interfaces that promote contextual awareness and support what-if and what-else probes in the spatio-temporal domain aiming to improve information integration and support controllers in prioritising conflict resolution. Both interfaces visualize vertical solution spaces against a time-altitude graph. The main contributions of this paper are: (a) the presentation of two interfaces for supporting conflict solving; (b) the novel representation of how vertical information and aircraft rate of climb and descent affect conflicts and (c) an evaluation and comparison of the interfaces with a traditional air traffic control support system. The evaluation study was performed with domain experts to compare the effects of visualization concepts on operator engagement in processing solutions suggested by the tools. Results show that the visualizations support operators ability to understand and resolve conflicts. Based on the results, general design guidelines for time-critical domains are proposed.

    Place, publisher, year, edition, pages
    Wiley, 2022
    Keywords
    Human-computer interfaces; interaction; information visualization; visual analytics; visualization
    National Category
    Human Computer Interaction
    Identifiers
    urn:nbn:se:liu:diva-182019 (URN)10.1111/cgf.14431 (DOI)000729763500001 ()
    Available from: 2022-01-03 Created: 2022-01-03 Last updated: 2022-10-27
    3. Exploring Effects of Ecological Visual Analytics Interfaces on Experts' and Novices' Decision‐Making Processes: A Case Study in Air Traffic Control
    Open this publication in new window or tab >>Exploring Effects of Ecological Visual Analytics Interfaces on Experts' and Novices' Decision‐Making Processes: A Case Study in Air Traffic Control
    2022 (English)In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 41, no 3, p. 453-464Article in journal (Refereed) Published
    Abstract [en]

    Operational demands in safety-critical systems impose a risk of failure to the operators especially during urgent situations. Operators of safety-critical systems learn to make decisions effectively throughout extensive training programs and many years of experience. In the domain of air traffic control, expensive training with high dropout rates calls for research to enhance novices' ability to detect and resolve conflicts in the airspace. While previous researchers have mostly focused on redesigning training instructions and programs, the current paper explores possible benefits of novel visual representations to improve novices' understanding of the situations as well as their decision-making process. We conduct an experimental evaluation study testing two ecological visual analytics interfaces, developed in a previous study, as support systems to facilitate novice decision-making. The main contribution of this paper is threefold. First, we describe the application of an ecological interface design approach to the development of two visual analytics interfaces. Second, we perform a human-in-the-loop experiment with forty-five novices within a simplified air traffic control simulation environment. Third, by performing an expert-novice comparison we investigate the extent to which effects of the proposed interfaces can be attributed to the subjects' expertise. The results show that the proposed ecological visual analytics interfaces improved novices' understanding of the information about conflicts as well as their problem-solving performance. Further, the results show that the beneficial effects of the proposed interfaces were more attributable to the visual representations than the users' expertise. 

    Place, publisher, year, edition, pages
    Chichester, United Kingdom: Wiley-Blackwell Publishing Inc., 2022
    National Category
    Human Computer Interaction
    Identifiers
    urn:nbn:se:liu:diva-187151 (URN)10.1111/cgf.14554 (DOI)000842261500039 ()
    Conference
    24th Eurographics/IEEE VGTC Conference on Visualization (EuroVis), Rome, ITALY, jun 12-17, 2022
    Note

    Funding: KAW Scholar Grant

    Available from: 2022-08-08 Created: 2022-08-08 Last updated: 2022-09-27Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 4.
    Zohrevandi, Elmira
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Westin, Carl
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Lundberg, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Ynnerman, Anders
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Design of a Real Time Visual Analytics Support Tool for Conflict Detection and Resolution in Air Traffic Control2020In: EuroVis 2020 - Short Papers, Eurographics - European Association for Computer Graphics, 2020Conference paper (Refereed)
    Abstract [en]

    Air traffic control is a safety critical high-risk environment where operators need to analyse and interpret traffic dynamics of spatio-temporal data in real-time. To support the air traffic controller in safely separating traffic, earlier research has applied real-time visualisation techniques that explore the constraints and solution spaces of separation problems. Traditionally, situation displays for conflict detection and resolution have used visualisations that convey information about the relative horizontal position between aircraft. Although vertical solutions for solving conflicts are common, and often a preferred among controllers, visualisations typically provide limited information about the vertical relationship between aircraft. This paper presents a design study of an interactive conflict detection and resolution support tool and explores techniques for real-time visualisation of spatio-temporal data. The design evolution has incorporated several activities, including an initial work domain analysis, iterative rounds of programming, design, and evaluations with a domain expert, and an evaluation with eight active controllers. The heading-time-altitude visualisation system is developed based on formulating and solving aircraft movements in a relative coordinate system. A polar-graph visualisation technique is used to construct a view of conflicting aircraft vertical solution spaces in the temporal domain. Using composite glyphs, the final heading-time-altitude visualisation provides a graphical representation of both horizontal and vertical solution spaces for the traffic situation.

  • 5.
    Zohrevandi, Elmira
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Visualization of Complex Situations to Strengthen Human-Automation Collaboration2019In: PROCEEDINGS OF THE 31ST EUROPEAN CONFERENCE ON COGNITIVE ERGONOMICS: DESIGN FOR COGNITION (ECCE 2019), ASSOC COMPUTING MACHINERY , 2019, p. 14-18Conference paper (Refereed)
    Abstract [en]

    Automation in todays world has helped human operators accomplish several tasks in limited time. Therefore, humans role in automated environments are shifting from operational tasks to supervisory tasks. In complex environments such as air traffic control, supervisory tasks become difficult to manage during unforeseen situations as the controller needs to have a clear understanding of different operational levels in the system and make decisions about them in a limited amount of time. For the operators working with highly complex information-rich automated systems, an improper way of presenting the information would waste operators cognitive resources resulting in inefficient decision making and increase in risk of failure. In this research proposal goals and plans are described for doing research on design and visualization of information specifically applied to high stake automated environments. The research project initially addresses the problem in the domain of air traffic control. The contribution of the project to the field so far has been design and development of an interactive tool, which visualizes the information about conflict solution space to facilitate decision making process. The research project is planned to be completed over the course of a four-year PhD studies.

  • 6.
    Zohrevandi, Elmira
    et al.
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Polishchuk, Valentin
    Linköping University, Department of Science and Technology, Communications and Transport Systems. Linköping University, Faculty of Science & Engineering.
    Lundberg, Jonas
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Svensson, Åsa
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Johansson, Jimmy
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
    Josefsson, Billy
    Air Navigation Services of Sweden (LFV) Norrköping, Sweden.
    Modeling and Analysis of Controller’s Taskload in Different Predictability Conditions2016Conference paper (Refereed)
    Abstract [en]

    This study aims to first develop a successful taskloadmodel which is able to relate the controller’s interaction with theradar screen to the dynamical changes in air traffic patterns.Secondly, the study aims to examine whether i4D equipage, as aspecific notion of automation, contributes to an improvement inquantification of controller’s taskload model. Thirdly, in a morespecific approach the study intends to analyze to what extentcontrollers may or may not benefit from predictable situations atdense traffic conditions when exposed to higher automatedairspace environment. The model is applied on 18 data setsfeaturing different i4D-equipage levels. It compares controllers’taskload for three different scenarios between an en-route and aterminal sector. 

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf