liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Augier, Gaëlle
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Schwabl, Veronika
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Lguensat, Asmae
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Atudorei, Mihai
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Iyere, Osamudiamen
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Eriksson Solander, Sandra
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Eric
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Wistar rats choose alcohol over social interaction in a discrete-choice model2023In: Neuropsychopharmacology, ISSN 0893-133X, E-ISSN 1740-634X, Vol. 48, p. 1098-1107Article in journal (Refereed)
    Abstract [en]

    Animal models of substance use disorders have been criticized for their limited translation. One important factor behind seeking and taking that has so far been largely overlooked is the availability of alternative non-drug rewards. We recently reported that only about 15% of outbred Wistar rats will choose alcohol over a sweet solution of saccharin. It was also shown using a novel operant model of choice of drugs over social rewards that social interaction consistently attenuates self-administration and incubation of craving for stimulants and opioids. Whether this is also true for alcohol and choice of alcohol over a sweet reward translates to social rewards is currently unknown. We therefore evaluated choice between alcohol and a social reward in different experimental settings in both male and female Wistar rats. We found, in contrast to prior work that employed discrete choice of drugs vs. social reward, that rats almost exclusively prefer alcohol over social interaction, irrespective of the nature of the social partner (cagemate vs. novel rat), the length of interaction, housing conditions and sex. Alcohol choice was reduced when the response requirement for alcohol was increased. However, rats persisted in choosing alcohol, even when the effort required to obtain it was 10-16 times higher (for females and males respectively) than the one for the social reward. Altogether, these results indicate that the social choice model may not generalize to alcohol, pointing to the possibility that specific interactions between alcohol and social reward, not seen when a sweet solution is used as an alternative to the drug, may play a crucial role in alcohol vs. social choice experiments.

    Download full text (pdf)
    fulltext
  • 2.
    Barchiesi, Riccardo
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Chanthongdee, Kanat
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Mahidol Univ, Thailand.
    Petrella, Michele
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Xu, Li
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Söderholm, Simon
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology. Linköping University, Faculty of Medicine and Health Sciences.
    Domi, Esi
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Coppola, Andrea
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Wiskerke, Joost
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Szczot, Ilona
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Domi, Ana
    Univ Gothenburg, Sweden.
    Adermark, Louise
    Univ Gothenburg, Sweden.
    Augier, Eric
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Cantù, Claudio
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology. Linköping University, Faculty of Medicine and Health Sciences.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Barbier, Estelle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    An epigenetic mechanism for over-consolidation of fear memories2022In: Molecular Psychiatry, ISSN 1359-4184, E-ISSN 1476-5578, Vol. 27, no 12, p. 4893-4904Article in journal (Refereed)
    Abstract [en]

    Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.

    Download full text (pdf)
    fulltext
  • 3.
    Barbier, Estelle
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Barchiesi, Riccardo
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Domi, Ana
    Univ Gothenburg, Sweden.
    Chanthongdee, Kanat
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Mahidol Univ, Thailand.
    Domi, Esi
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Eric
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Xu, Li
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Sichuan Prov Peoples Hosp, Peoples R China.
    Adermark, Louise
    Univ Gothenburg, Sweden.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Downregulation of Synaptotagmin 1 in the Prelimbic Cortex Drives Alcohol-Associated Behaviors in Rats2021In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 89, no 4, p. 398-406Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Alcohol addiction is characterized by persistent neuroadaptations in brain structures involved in motivation, emotion, and decision making, including the medial prefrontal cortex, the nucleus accumbens, and the amygdala. We previously reported that induction of alcohol dependence was associated with long-term changes in the expression of genes involved in neurotransmitter release. Specifically, Syt1, which plays a key role in neurotransmitter release and neuronal functions, was downregulated. Here, we therefore examined the role of Syt1 in alcohol-associated behaviors in rats. METHODS: We evaluated the effect of Syt1 downregulation using an adeno-associated virus (AAV) containing a short hairpin RNA against Syt1. Cre-dependent Syt1 was also used in combination with an rAAV2 retro-Cre virus to assess circuit-specific effects of Syt1 knockdown (KD). RESULTS: Alcohol-induced downregulation of Syt1 is specific to the prelimbic cortex (PL), and KD of Syt1 in the PL resulted in escalated alcohol consumption, increased motivation to consume alcohol, and increased alcohol drinking despite negative consequences ("compulsivity"). Syt1 KD in the PL altered the excitation/inhibition balance in the basolateral amygdala, while the nucleus accumbens core was unaffected. Accordingly, a projection-specific Syt1 KD in the PL-basolateral amygdala projection was sufficient to increase compulsive alcohol drinking, while a KD of Syt1 restricted to PL-nucleus accumbens core projecting neurons had no effect on tested alcohol-related behaviors. CONCLUSIONS: Together, these data suggest that dysregulation of Syt1 is an important mechanism in long-term neuroadaptations observed after a history of alcohol dependence, and that Syt1 regulates alcohol-related behaviors in part by affecting a PL-basolateral amygdala brain circuit.

    Download full text (pdf)
    fulltext
  • 4.
    Barchiesi, Riccardo
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Chanthongdee, Kanat
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Mahidol Univ, Thailand.
    Domi, Esi
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Gobbo, Francesco
    Univ Edinburgh, Scotland.
    Coppola, Andrea
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Asratian, Anna
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Toivainen, Sanne
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Holm, Lovisa
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Xu, Li
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Univ Elect Sci & Technol China, Peoples R China.
    Augier, Eric
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Barbier, Estelle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Stress-induced escalation of alcohol self-administration, anxiety-like behavior, and elevated amygdala Avp expression in a susceptible subpopulation of rats2021In: Addiction Biology, ISSN 1355-6215, E-ISSN 1369-1600, Vol. 26, no 5, article id e13009Article in journal (Refereed)
    Abstract [en]

    Comorbidity between alcohol use and anxiety disorders is associated with more severe symptoms and poorer treatment outcomes than either of the conditions alone. There is a well-known link between stress and the development of these disorders, with post-traumatic stress disorder as a prototypic example. Post-traumatic stress disorder can arise as a consequence of experiencing traumatic events firsthand and also after witnessing them. Here, we used a model of social defeat and witness stress in rats, to study shared mechanisms of stress-induced anxiety-like behavior and escalated alcohol self-administration. Similar to what is observed clinically, we found considerable individual differences in susceptibility and resilience to the stress. Both among defeated and witness rats, we found a subpopulation in which exposure was followed by emergence of increased anxiety-like behavior and escalation of alcohol self-administration. We then profiled gene expression in tissue from the amygdala, a key brain region in the regulation of stress, alcohol use, and anxiety disorders. When comparing "comorbid" and resilient socially defeated rats, we identified a strong upregulation of vasopressin and oxytocin, and this correlated positively with the magnitude of the alcohol self-administration and anxiety-like behavior. A similar trend was observed in comorbid witness rats. Together, our findings provide novel insights into molecular mechanisms underpinning the comorbidity of escalated alcohol self-administration and anxiety-like behavior.

    Download full text (pdf)
    fulltext
  • 5.
    Mayo, Leah
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Asratian, Anna
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Lindé, Johan
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Morena, Maria
    Cummings Scool Med, Canada; Univ Calgary, Canada; Univ Calgary, Canada.
    Haataja, Roosa
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Hammar, Valter
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Hill, Matthew N.
    Cummings Scool Med, Canada; Cummings Scool Med, Canada; Univ Calgary, Canada; Univ Calgary, Canada.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Elevated Anandamide, Enhanced Recall of Fear Extinction, and Attenuated Stress Responses Following Inhibition of Fatty Acid Amide Hydrolase: A Randomized, Controlled Experimental Medicine Trial2020In: Biological Psychiatry, ISSN 0006-3223, E-ISSN 1873-2402, Vol. 87, no 6, p. 538-547Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Posttraumatic stress disorder, an area of large unmet medical needs, is characterized by persistence of fear memories and maladaptive stress responses. In rodents, elevation of the endocannabinoid anandamide due to inhibition of fatty acid amide hydrolase (FAAH) facilitates fear extinction and protects against the anxiogenic effects of stress. We recently reported that elevated anandamide levels in people homozygous for a loss-of-function FAAH mutation are associated with a similar phenotype, suggesting a translational validity of the preclinical findings. METHODS: In this double-blind, placebo-controlled experimental medicine study, healthy adults were randomized to an FAAH inhibitor (PF-04457845, 4 mg orally, once daily; n = 16) or placebo (n = 29) for 10 days. On days 9 and 10, participants completed a task battery assessing psychophysiological indices of fear learning, stress reactivity, and stress-induced affective responses. RESULTS: FAAH inhibition produced a 10-fold increase in baseline anandamide. This was associated with potentiated recall of fear extinction memory when tested 24 hours after extinction training. FAAH inhibition also attenuated autonomic stress reactivity, assessed via electrodermal activity, and protected against stress-induced negative affect, measured via facial electromyography. CONCLUSIONS: Our data provide preliminary human evidence that FAAH inhibition can improve the recall of fear extinction memories and attenuate the anxiogenic effects of stress, in a direct translation of rodent findings. The beneficial effects of FAAH inhibition on fear extinction, as well as stress- and affect-related behaviors, provide a strong rationale for developing this drug class as a treatment for posttraumatic stress disorder.

    Download full text (pdf)
    fulltext
  • 6.
    Domi, Esi
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Xu, Li
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Sichuan Prov Peoples Hosp, Peoples R China.
    Paetz, Marvin
    Heidelberg Univ, Germany.
    Nordeman, Anton
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Holm, Lovisa
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Toivainen, Sanne
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Eric
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Hansson, Anita C.
    Heidelberg Univ, Germany.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Nicotine increases alcohol self-administration in male rats via a mu-opioid mechanism within the mesolimbic pathway2020In: British Journal of Pharmacology, ISSN 0007-1188, E-ISSN 1476-5381, Vol. 177, no 19, p. 4516-4531Article in journal (Refereed)
    Abstract [en]

    Background and Purpose: Alcohol and nicotine use disorders are commonly comorbid. Both alcohol and nicotine can activate opioid systems in reward-related brain regions, leading to adaptive changes in opioid signalling upon chronic exposure. The potential role of these adaptations for comorbidity is presently unknown. Here, we examined the contribution of mu and kappa-opioid receptors to nicotine-induced escalation of alcohol self-administration in rats. Experimental Approach: Chronic nicotine was tested on alcohol self-administration and motivation to obtain alcohol. We then tested the effect of the kappa antagonist CERC-501 and the preferential mu receptor antagonist naltrexone on basal and nicotine-escalated alcohol self-administration. To probe mu or kappa receptor adaptations, receptor binding and G-protein coupling assays were performed in reward-related brain regions. Finally, dopaminergic activity in response to alcohol was examined, using phosphorylation of DARPP-32 in nucleus accumbens as a biomarker. Key Results: Nicotine robustly induced escalation of alcohol self-administration and motivation to obtain alcohol. This was blocked by naltrexone but not by CERC-501. Escalation of alcohol self-administration was associated with decreased DAMGO-stimulated mu receptor signalling in the ventral tegmental area (VTA) and decreased pDARPP-32 in the nucleus accumbens shell in response to alcohol. Conclusions and Implications: Collectively, these results suggest that nicotine contributes to escalate alcohol self-administration through a dysregulation of mu receptor activity in the VTA. These data imply that targeting mu rather than kappa receptors may be the preferred pharmacotherapeutic approach for the treatment of alcohol use disorder when nicotine use contributes to alcohol consumption.

    Download full text (pdf)
    fulltext
  • 7.
    Mayo, Leah M.
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Asratian, Anna
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Lindé, Johan
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Holm, Lovisa
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nätt, Daniel
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Stensson, Niclas
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Pain and Rehabilitation Center.
    Vecchiarelli, Haley A.
    Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Canada.
    Balsevich, Georgia
    Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Canada.
    Aukema, Robert J.
    Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Canada.
    Ghafouri, Bijar
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Pain and Rehabilitation Center. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine.
    Spagnolo, Primavera A.
    National Institute on Alcohol Abuse and Alcoholism and National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA.
    Lee, Francis S.
    Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York, USA.
    Hill, Matthew N.
    Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Canada.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Protective effects of elevated anandamide on stress and fear-related behaviors: translational evidence from humans and mice2020In: Molecular Psychiatry, ISSN 1359-4184, E-ISSN 1476-5578, Vol. 25, no 5, p. 993-1005Article in journal (Refereed)
    Abstract [en]

    Post-traumatic stress disorder (PTSD) is a common, debilitating condition with limited treatment options. Extinction of fear memories through prolonged exposure therapy, the primary evidence-based behavioral treatment for PTSD, has only partial efficacy. In mice, pharmacological inhibition of fatty acid amide hydrolase (FAAH) produces elevated levels of anandamide (AEA) and promotes fear extinction, suggesting that FAAH inhibitors may aid fear extinction-based treatments. A human FAAH 385C-greater thanA substitution encodes an FAAH enzyme with reduced catabolic efficacy. Individuals homozygous for the FAAH 385A allele may therefore offer a genetic model to evaluate the impact of elevations in AEA signaling in humans, helping to inform whether FAAH inhibitors have the potential to facilitate fear extinction therapy for PTSD. To overcome the challenge posed by low frequency of the AA genotype (appr. 5%), we prospectively genotyped 423 individuals to examine the balanced groups of CC, AC, and AA individuals (n = 25/group). Consistent with its loss-of-function nature, the A allele was dose dependently associated with elevated basal AEA levels, facilitated fear extinction, and enhanced the extinction recall. Moreover, the A-allele homozygotes were protected against stress-induced decreases in AEA and negative emotional consequences of stress. In a humanized mouse model, AA homozygous mice were similarly protected against stress-induced decreases in AEA, both in the periphery, and also in the amygdala and prefrontal cortex, brain structures critically involved in fear extinction and regulation of stress responses. Collectively, these data suggest that AEA signaling can temper aspects of the stress response and that FAAH inhibition may aid the treatment for stress-related psychiatric disorders, such as PTSD.

  • 8.
    Augier, Eric
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Barbier, Estelle
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Dulman, Russell S
    Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL 60612, USA.
    Licheri, Valentina
    Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Göteborg, 413 90 Göteborg, Sweden.
    Augier, Gaëlle
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Domi, Esi
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Barchiesi, Riccardo
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Farris, Sean
    The Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX 78712, USA.
    Nätt, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Mayfield, R Dayne
    The Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX 78712, USA.
    Adermark, Louise
    Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Göteborg, 413 90 Göteborg, Sweden.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    A molecular mechanism for choosing alcohol over an alternative reward.2018In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 360, no 6395, p. 1321-1326Article in journal (Refereed)
    Abstract [en]

    Alcohol addiction leads to increased choice of alcohol over healthy rewards. We established an exclusive choice procedure in which ~15% of outbred rats chose alcohol over a high-value reward. These animals displayed addiction-like traits, including high motivation to obtain alcohol and pursuit of this drug despite adverse consequences. Expression of the γ-aminobutyric acid (GABA) transporter GAT-3 was selectively decreased within the amygdala of alcohol-choosing rats, whereas a knockdown of this transcript reversed choice preference of rats that originally chose a sweet solution over alcohol. GAT-3 expression was selectively decreased in the central amygdala of alcohol-dependent people compared to those who died of unrelated causes. Impaired GABA clearance within the amygdala contributes to alcohol addiction, appears to translate between species, and may offer targets for new pharmacotherapies for treating this disorder.

  • 9.
    Domi, Esi
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Barbier, Estelle
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Eric
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Augier, Gaëlle
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Gehlert, D.
    Cerecor, MD USA; Matrix Pharmaceut Consulting, CO USA.
    Barchiesi, Riccardo
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Thorsell, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Holm, Lovisa
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    Preclinical evaluation of the kappa-opioid receptor antagonist CERC-501 as a candidate therapeutic for alcohol use disorders2018In: Neuropsychopharmacology, ISSN 0893-133X, E-ISSN 1740-634X, Vol. 43, no 9, p. 1805-1812Article in journal (Refereed)
    Abstract [en]

    Prior work suggests a role of kappa-opioid signaling in the control of alcohol drinking, in particular when drinking is escalated due to alcohol-induced long-term neuroadaptations. Here, we examined the small molecule selective kappa antagonist CERC-501 in rat models of alcohol-related behaviors, with the objective to evaluate its potential as a candidate therapeutic for alcohol use disorders. We first tested the effect of CERC-501 on acute alcohol withdrawal-induced anxiety-like behavior. CERC-501 was then tested on basal as well as escalated alcohol self-administration induced by 20% alcohol intermittent access. Finally, we determined the effects of CERC-501 on relapse to alcohol seeking triggered by both stress and alcohol-associated cues. Control experiments were performed to confirm the specificity of CERC-501 effects on alcohol-related behaviors. CERC-501 reversed anxiety-like behavior induced by alcohol withdrawal. It did not affect basal alcohol self-administration but did dose-dependently suppress self-administration that had escalated following long-term intermittent access to alcohol. CERC-501 blocked relapse to alcohol seeking induced by stress, but not when relapse-like behavior was triggered by alcohol-associated cues. The effects of CERC-501 were observed in the absence of sedative side effects and were not due to effects on alcohol metabolism. Thus, in a broad battery of preclinical alcohol models, CERC-501 has an activity profile characteristic of anti-stress compounds. Combined with its demonstrated preclinical and clinical safety profile, these data support clinical development of CERC-501 for alcohol use disorders, in particular for patients with negatively reinforced, stress-driven alcohol seeking and use.

  • 10.
    Augier, Eric
    et al.
    Linköping University, Center for Social and Affective Neuroscience (CSAN). Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Dulman, Russell S.
    NIAAA, MD USA.
    Rauffenbart, Caroline
    NIAAA, MD USA.
    Augier, Gaelle
    Linköping University, Center for Social and Affective Neuroscience (CSAN). Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Cross, Alan J.
    AstraZeneca Neurosci, MA USA.
    Heilig, Markus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Social and Affective Neuroscience (CSAN). Region Östergötland, Local Health Care Services in Central Östergötland, Department of Psychiatry.
    The mGluR2 Positive Allosteric Modulator, AZD8529, and Cue-Induced Relapse to Alcohol Seeking in Rats2016In: Neuropsychopharmacology, ISSN 0893-133X, E-ISSN 1740-634X, Vol. 41, no 12, p. 2932-2940Article in journal (Refereed)
    Abstract [en]

    Group II metabotropic glutamate receptors (mGluR2 and mGluR3) may control relapse of alcohol seeking, but previously available Group II agonists were unable to discriminate between mGluR2 and mGluR3. Here we use AZD8529, a novel positive allosteric mGluR2 modulator, to determine the role of this receptor for alcohol-related behaviors in rats. We assessed the effects of AZD8529 (20 and 40 mg/kg s.c.) on male Wistar rats trained to self-administer 20% alcohol and determined the effects of AZD8529 on self-administration, as well as stress-induced and cue-induced reinstatement of alcohol seeking. The on-target nature of findings was evaluated in Indiana P-rats, a line recently shown to carry a mutation that disrupts the gene encoding mGluR2. The behavioral specificity of AZD8529 was assessed using self-administration of 0.2% saccharin and locomotor activity tests. AZD8529 marginally decreased alcohol self-administration at doses that neither affected 0.2% saccharin self-administration nor locomotor activity. More importantly, cue- but not stress-induced alcohol seeking was blocked by the mGluR2 positive allosteric modulator. This effect of AZD8529 was completely absent in P rats lacking functional mGluR2s, demonstrating the receptor specificity of this effect. Our findings provide evidence fora causal role of mGluR2 in cue induced relapse to alcohol seeking. They contribute support for the notion that positive allosteric modulators of mGluR2 block relapse-like behavior across different drug categories.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf