liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Qifan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huang, Jun-Da
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Tiefeng
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    van der Pol, Tom
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Qilun
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Wallenberg Wood Science Center.
    Jeong, Sang Young
    Korea Univ, South Korea.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, SE-60221 Norrkoping, Sweden.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Silan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, SE-60221 Norrkoping, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, SE-60221 Norrkoping, Sweden.
    A Highly Conductive n-Type Conjugated Polymer Synthesized in Water2024In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126Article in journal (Refereed)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a benchmark hole-transporting (p-type) polymer that finds applications in diverse electronic devices. Most of its success is due to its facile synthesis in water, exceptional processability from aqueous solutions, and outstanding electrical performance in ambient. Applications in fields like (opto-)electronics, bioelectronics, and energy harvesting/storage devices often necessitate the complementary use of both p-type and n-type (electron-transporting) materials. However, the availability of n-type materials amenable to water-based polymerization and processing remains limited. Herein, we present a novel synthesis method enabling direct polymerization in water, yielding a highly conductive, water-processable n-type conjugated polymer, namely, poly[(2,2 '-(2,5-dihydroxy-1,4-phenylene)diacetic acid)-stat-3,7-dihydrobenzo[1,2-b:4,5-b ']difuran-2,6-dione] (PDADF), with remarkable electrical conductivity as high as 66 S cm(-1), ranking among the highest for n-type polymers processed using green solvents. The new n-type polymer PDADF also exhibits outstanding stability, maintaining 90% of its initial conductivity after 146 days of storage in air. Our synthetic approach, along with the novel polymer it yields, promises significant advancements for the sustainable development of organic electronic materials and devices.

  • 2.
    Holzer, Isabelle
    et al.
    Univ Bern, Switzerland.
    Lemaur, Vincent
    Univ Mons, Belgium.
    Wang, Meng
    Queen Mary Univ London, England; Chinese Acad Sci, Peoples R China.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Lu
    Cavendish Lab, England.
    Marcial-Hernandez, Raymundo
    Queen Mary Univ London, England.
    Gilhooly-Finn, Peter
    Queen Mary Univ London, England.
    Cavassin, Priscila
    Univ Bern, Switzerland.
    Hoyas, Sebastien
    Univ Mons, Belgium; Univ Mons UMONS, Belgium.
    Meli, Dilara
    Northwestern Univ, IL 60208 USA.
    Wu, Ruiheng
    Northwestern Univ, IL 60208 USA.
    Paulsen, Bryan D.
    Northwestern Univ, IL 60208 USA.
    Strzalka, Joseph
    X Ray Sci Div, IL 60439 USA.
    Liscio, Andrea
    CNR, Italy.
    Rivnay, Jonathan
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60611 USA.
    Sirringhaus, Henning
    Cavendish Lab, England.
    Banerji, Natalie
    Univ Bern, Switzerland.
    Beljonne, David
    Univ Mons, Belgium.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nielsen, Christian B.
    Queen Mary Univ London, England.
    Side chain engineering in indacenodithiophene-<i>co</i>-benzothiadiazole and its impact on mixed ionic-electronic transport properties2024In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534Article in journal (Refereed)
    Abstract [en]

    Organic semiconductors are increasingly being decorated with hydrophilic solubilising chains to create materials that can function as mixed ionic-electronic conductors, which are promising candidates for interfacing biological systems with organic electronics. While numerous organic semiconductors, including p- and n-type materials, small molecules and polymers, have been successfully tailored to encompass mixed conduction properties, common to all these systems is that they have been semicrystalline materials. Here, we explore how side chain engineering in the nano-crystalline indacenodithiophene-co-benzothiadiazole (IDTBT) polymer can be used to instil ionic transport properties and how this in turn influences the electronic transport properties. This allows us to ultimately assess the mixed ionic-electronic transport properties of these new IDTBT polymers using the organic electrochemical transistor as the testing platform. Using a complementary experimental and computational approach, we find that polar IDTBT derivatives can be infiltrated by water and solvated ions, they can be electrochemically doped efficiently in aqueous electrolyte with fast doping kinetics, and upon aqueous swelling there is no deterioration of the close interchain contacts that are vital for efficient charge transport in the IDTBT system. Despite these promising attributes, mixed ionic-electronic charge transport properties are surprisingly poor in all the polar IDTBT derivatives. Albeit a "negative" result, this finding clearly contradicts established side chain engineering rules for mixed ionic-electronic conductors, which motivated our continued investigation of this system. We eventually find this anomalous behaviour to be caused by increasing energetic disorder in the polymers with increasing polar side chain content. We have investigated computationally how the polar side chain motifs contribute to this detrimental energetic inhomogeneity and ultimately use the learnings to propose new molecular design criteria for side chains that can facilitate ion transport without impeding electronic transport.

  • 3.
    Liu, Tiefeng
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Heimonen, Johanna
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Qilun
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Norrkoping, Sweden.
    Huang, Jun-Da
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Norrkoping, Sweden.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Norrkoping, Sweden.
    van der Pol, Tom
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Li, Yuxuan
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Jeong, Sang Young
    Korea Univ, South Korea.
    Marks, Adam
    Univ Oxford, England.
    Wang, Xin-Yi
    Peking Univ, Peoples R China.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Shimolo, Asaminew Yerango
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Silan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Li, Qifan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Massetti, Matteo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Pei, Jian
    Peking Univ, Peoples R China.
    McCulloch, Iain
    Univ Oxford, England.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kroon, Renee
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Norrkoping, Sweden.
    Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers2023In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 8454Article in journal (Refereed)
    Abstract [en]

    Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000x higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics. Chemical approaches to improve aqueous dispersions of conjugated polymers are limited by the feasibility of modifying the backbone or lead to poor performance. Here, Liu et al. show that ground-state electron transfer in donor:acceptor blends aids aqueous dispersion, for high conductivity and solubility.

  • 4.
    Padinhare, Harikesh
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Silan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Donahue, Mary
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Caravaca, April S.
    Karolinska Inst, Sweden.
    Huang, Jun-Da
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Olofsson, Peder S.
    Karolinska Inst, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons2023In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 22, p. 242-248Article in journal (Refereed)
    Abstract [en]

    Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.

    Download full text (pdf)
    fulltext
  • 5.
    Wu, Hanyan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huang, Jun-Da
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Jeong, Sang Young
    Korea Univ, South Korea.
    Liu, Tiefeng
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Ziang
    Korea Univ, South Korea.
    van der Pol, Tom
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Qingqing
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Li, Qifan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. n Ink AB, Sweden.
    Stable organic electrochemical neurons based on p-type and n-type ladder polymers2023In: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, no 10, p. 4213-4223Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in & mu;C* (mobility x volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.

    Download full text (pdf)
    fulltext
  • 6.
    Chen, Yongzhen
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals2022In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 55, no 16, p. 7294-7302Article in journal (Refereed)
    Abstract [en]

    Ladder-type conjugated polymers exhibit a remarkable performance in (opto)electronic devices. Their double-stranded planar structure promotes an extended pi-conjugation compared to inter-ring-twisted analogues, providing an excellent basis for exploring the effects of charge localization on polaron formation. Here, we investigated alkali-metal n -doping of the ladder-type conjugated polymer (polybenzimidazobenzophe-nanthroline) (BBL) through detailed in situ spectroscopic and electrical characterizations. Photoelectron spectroscopy and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy indicate polaron formation upon potassium (K) doping, which agrees well with theoretical predictions. The semiladder BBB displays a similar evolution in the valence band with the appearance of two new features below the Fermi level upon K-doping. Compared to BBL, distinct differences appear in the UV-vis-NIR spectra due to more localized polaronic states in BBB. The high conductivity (2 S cm(-1)) and low activation energy (44 meV) measured for K-doped BBL suggest disorder-free polaron transport. An even higher conductivity (37 S cm(-1)) is obtained by changing the dopant from K to lithium (Li). We attribute the enhanced conductivity to a decreased perturbation of the polymer nanostructure induced by the smaller Li ions. These results highlight the importance of polymer chain planarity and dopant size for the polaronic state in conjugated polymers.

    Download full text (pdf)
    fulltext
  • 7.
    Wu, Hanyan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Yang, Chiyuan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Li, Qifan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Strakosas, Xenofon
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Ziang
    Korea Univ, South Korea.
    Jin, Wenlong
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Savvakis, Marios
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kroon, Renee
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Tekn Ringen 7, SE-58330 Linkoping, Sweden.
    Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers2022In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, no 4, article id 2106235Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (g(m,norm) approximate to 11 S cm(-1)) and electron mobility x volumetric capacitance (mu C* approximate to 26 F cm(-1) V-1 s(-1)), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.

    Download full text (pdf)
    fulltext
  • 8.
    Yang, Chiyuan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ruoko, Tero-Petri
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gerasimov, Jennifer
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Padinhare, Harikesh
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Massetti, Matteo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kroon, Renee
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Muller, Christian
    Chalmers Univ Technol, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, Teknikringen 7, SE-58330 Linkoping, Sweden.
    Low-Power/High-Gain Flexible Complementary Circuits Based on Printed Organic Electrochemical Transistors2022In: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 8, no 3, article id 2100907Article in journal (Refereed)
    Abstract [en]

    The ability to accurately extract low-amplitude voltage signals is crucial in several fields, ranging from single-use diagnostics and medical technology to robotics and the Internet of Things (IoT). The organic electrochemical transistor (OECT), which features large transconductance values at low operating voltages, is ideal for monitoring small signals. Here, low-power and high-gain flexible circuits based on printed complementary OECTs are reported. This work leverages the low threshold voltage of both p-type and n-type enhancement-mode OECTs to develop complementary voltage amplifiers that can sense voltages as low as 100 mu V, with gains of 30.4 dB and at a power consumption of 0.1-2.7 mu W (single-stage amplifier). At the optimal operating conditions, the voltage gain normalized to power consumption reaches 169 dB mu W-1, which is &gt;50 times larger than state-of-the-art OECT-based amplifiers. In a monolithically integrated two-stage configuration, these complementary voltage amplifiers reach voltage gains of 193 V/V, which are among the highest for emerging complementary metal-oxide-semiconductor-like technologies operating at supply voltages below 1 V. These flexible complementary circuits based on printed OECTs define a new power-efficient platform for sensing and amplifying low-amplitude voltage signals in several emerging beyond-silicon applications.

    Download full text (pdf)
    fulltext
  • 9.
    Yang, Chiyuan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stoeckel, Marc-Antoine
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ruoko, Tero-Petri
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Hanyan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xianjie
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kolhe, Nagesh B.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Wu, Ziang
    Korea Univ, South Korea.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Musumeci, Chiara
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Massetti, Matteo
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Kai
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tu, Deyu
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Electronic and photonic materials. Linköping University, Faculty of Science & Engineering.
    Woo, Han Young
    Korea Univ, South Korea.
    Fahlman, Mats
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jenekhe, Samson A.
    Univ Washington, WA 98195 USA; Univ Washington, WA 98195 USA.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, S-58330 Linkoping, Sweden.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. N Ink AB, S-58330 Linkoping, Sweden.
    A high-conductivity n-type polymeric ink for printed electronics2021In: Nature Communications, E-ISSN 2041-1723, Vol. 12, no 1, article id 2354Article in journal (Refereed)
    Abstract [en]

    Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8Scm(-1), along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance. The development of n-type conductive polymer inks is critical for the development of next-generation opto-electronic devices that rely on efficient hole and electron transport. Here, the authors report an alcohol-based, high performance and stable n-type conductive ink for printed electronics.

    Download full text (pdf)
    fulltext
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf