liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Liao, Jialing
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Chen, Zheng
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Larsson, Erik G
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
    Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations2022In: 2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), IEEE , 2022Conference paper (Refereed)
    Abstract [en]

    In this paper, we consider privacy aspects of wireless federated learning (FL) with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server. OtA FL enables the users to transmit their updates simultaneously with linear processing techniques, which improves resource efficiency. However, this setting is vulnerable to privacy leakage since an adversary node can hear directly the uncoded message. Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy due to the reduced signal-to-noise ratio. In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server at the same time. More explicitly, spatially correlated perturbations are added to the gradient vectors at the users before transmission. Using the zero-sum property of the correlated perturbations, the side effect of the added perturbation on the aggregated gradients at the edge server can be minimized In the meanwhile, the added perturbation will not be canceled out at the adversary, which prevents privacy leakage. Theoretical analysis of the perturbation covariance matrix, differential privacy, and model convergence is provided, based on which an optimization problem is formulated to jointly design the covariance matrix and the power scaling factor to balance between privacy protection and convergence performance. Simulation results validate the correlated perturbation approach can provide strong defense ability while guaranteeing high learning accuracy.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf