liu.seSearch for publications in DiVA
Change search
Refine search result
12345 1 - 50 of 215
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ding, Haoming
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Li, Youbing
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Li, Mian
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Liang, Kun
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Chen, Guoxin
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China.
    Gogotsi, Yury
    Drexel Univ, PA 19104 USA.
    Huang, Qing
    Chinese Acad Sci, Peoples R China; CNiTECH, Peoples R China; Adv Energy Sci & Technol Guangdong Lab, Peoples R China.
    Chemical scissor-mediated structural editing of layered transition metal carbides2023In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 379, no 6637, p. 1130-1135Article in journal (Refereed)
    Abstract [en]

    Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.

    Download full text (pdf)
    fulltext
  • 2.
    Etman, Ahmed
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Lind, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Dorri, Megan
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Materials design. Linköping University, Faculty of Science & Engineering.
    Computationally Driven Discovery of Quaternary Tantalum-Based MAB-Phases: Ta4M & DPRIME;SiB2 (M & DPRIME; = V, Cr, or Mo): Synthesis, Characterization, and Elastic Properties2023In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 23, no 6, p. 4442-4447Article in journal (Refereed)
    Abstract [en]

    Out-of-plane chemically ordered transitionmetal boride(o-MAB) phases, Ta4M & DPRIME;SiB2 (M & DPRIME; = V, Cr), and a structurally equivalent disordered solidsolution MAB phase, Ta4MoSiB2, are synthesized.DFT calculations are used to examine the dynamic stability, elasticproperties, and electronic density states of the MAB phases. We report on the synthesis of computationally predictedout-of-planechemically ordered transition metal borides labeled o-MAB phases, Ta4M & DPRIME;SiB2 (M & DPRIME; =V, Cr), and a structurally equivalent disordered solid solution MABphase Ta4MoSiB2. The boride phases were preparedusing solid-state reaction sintering of the constituting elements.High-resolution scanning transmission electron microscopy along withRietveld refinement of the powder-X-ray diffraction patterns revealedthat the synthesized o-MAB phases Ta4CrSiB2 (98 wt % purity) and Ta4VSiB2 (81 wt% purity) possess chemical ordering with Ta preferentially residingin the 16l position and Cr and V in the 4c position, whereas Ta4MoSiB2 (46wt % purity) was concluded to form a disordered solid solution. Densityfunctional theory (DFT) calculations were used to investigate thedynamic stability, elastic properties, and electronic density statesfor the MAB phases, confirming the stability and suggesting the boridesbased on Cr and Mo to be stiffer than those based on V and Nb.

  • 3.
    Furlan, Andrej
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jansson, Ulf
    Uppsala Univ, Sweden.
    Magnuson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Correction: Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites (vol 26, 415501,2014)2023In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 35, no 13, article id 139501Article in journal (Other academic)
  • 4.
    Pshyk, Oleksandr
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci & Technol, Taiwan.
    Bakhit, Babak
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Energy-efficient physical vapor deposition of dense and hard Ti-Al-W-N coatings deposited under industrial conditions2023In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 227, article id 111753Article in journal (Refereed)
    Abstract [en]

    Decreasing the growth temperature to lower energy consumption and enable deposition on temperature-sensitive substrates during thin film growth by magnetron sputtering is crucial for sustainable develop-ment. High-mass metal ion irradiation of the growing film surface with ion energy controlled by metal-ion-synchronized biasing, allows to replace conventionally-used resistive heating, as was recently demonstrated in experiments involving a hybrid high-power impulse and dc magnetron co-sputtering (HiPIMS/DCMS) setup and stationary substrates. Here, we report the extension of the method to indus-trial scale conditions. As a model-case towards understanding the role of one-fold substrate rotation on Ti0.50Al0.50N film growth employing W irradiation, we investigate the effect of two parameters: W ion energy (controlled in the range 45 <= EW <= 630 eV by the amplitude of synchronized substrate bias voltage) and W ion dose per deposited metal atom (determined by the target power). We show that the efficient densification of coatings grown without external heating can be achieved by minimizing the thickness of DCMS-deposited Ti0.50Al0.50N layer that is exposed to an W ion flux, or by increasing EW, at a given Ti0.50Al0.50N thickness.(c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • 5.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Zhu, Shuairu
    Tianjin Univ, Peoples R China.
    Wu, Erxiao
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Ding, Haoming
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mu, Xulin
    Beijing Univ Technol, Peoples R China.
    Chen, Lu
    Chinese Acad Sci, Peoples R China; Qianwan Institute of CNiTECH, Peoples R China.
    Zhang, Yiming
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Chen, Ke
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Li, Mian
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Yan, Pengfei
    Beijing Univ Technol, Peoples R China.
    Persson, Per O Å
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Kuang, Yongbo
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Nanolaminated Ternary Transition Metal Carbide (MAX Phase)-Derived Core-Shell Structure Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions in Alkaline Electrolytes2023In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 14, no 2, p. 481-488Article in journal (Refereed)
    Abstract [en]

    The development of abundant, cheap, and highly active catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for hydrogen production. Nanolaminate ternary transition metal carbides (MAX phases) and their derived two-dimensional transition metal carbides (MXenes) have attracted considerable interest for electrocatalyst applications. Herein, four new MAX@MXene core-shell structures (Ta2CoC@ Ta2CTx, Ta2NiC@Ta2CTx, Nb2CoC@Nb2CTx, and Nb2NiC@Nb2CTx), in which the core region is Co/Ni-MAX phases while the edge region is MXenes, have been prepared. Under alkaline electrolyte conditions, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 239 mV and excellent stability during the HER with MXenes as the active sites. For the OER, the Ta2CoC@Ta2CTx core- shell structure showed an overpotential of 373 mV and a small Tafel plot (56 mV dec-1), which maintained a bulk crystalline structure and generated Co-based oxyhydroxides that formed by surface reconstruction as active sites. Considering rich chemical compositions and structures of MAX phases, this work provides a new strategy for designing multifunctional electrocatalysts and also paves the way for further development of MAX phase-based materials for clean energy applications.

    The full text will be freely available from 2024-01-10 10:13
  • 6.
    Xin, Binbin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ekström, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Shih, Yueh-Ting
    Rensselaer Polytech Inst, NY 12180 USA.
    Huang, Liping
    Rensselaer Polytech Inst, NY 12180 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Elsukova, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhang, Yun
    Rensselaer Polytech Inst, NY 12180 USA.
    Zhu, Wenkai
    Rensselaer Polytech Inst, NY 12180 USA.
    Borca-Tasciuc, Theodorian
    Rensselaer Polytech Inst, NY 12180 USA.
    Ramanath, Ganpati
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Rensselaer Polytech Inst, NY 12180 USA.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Engineering thermoelectric and mechanical properties by nanoporosity in calcium cobaltate films from reactions of Ca(OH)(2)/Co3O4 multilayers2022In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, no 16, p. 3353-3361Article in journal (Refereed)
    Abstract [en]

    Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)(2)/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b(t)). Our results show that doubling b(t), e.g., from 12 to 26 nm, more than triples the average pore size from similar to 120 nm to similar to 400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of sigma similar to 90 S cm(-1) and a high Seebeck coefficient of alpha similar to 135 mu V K-1, but also a thermal conductivity as low as kappa similar to 0.87 W m(-1) K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.

    Download full text (pdf)
    fulltext
  • 7.
    Leijon, Freddy
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Hydro Extruded Solut AB, Sweden.
    Johansson, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Hydro Extruded Solut AB, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Skjervold, Svein
    Hydro Extruded Solut AB, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Investigation of Ti-1_x(Zr,Ta,V,W)(x)B-2 and A(l3)Ti(1_x)(Zr,V)(x) grain refiners in additively manufactured Al-2 wt%Cu alloys by a high throughput method2022In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 222, article id 111093Article in journal (Refereed)
    Abstract [en]

    Grain refinement plays a central role in powder bed fusion (PBF) additive manufacturing by preventing hot cracking and thus enabling the development of high-strength alloys. However, the mechanism behind grain refinement is not fully understood for conventional casting, nor for PBF. In this work, a high throughput method have been used to produce Al-2 wt%Cu alloys with additions of Ti1-xM(Zr,Ta,V,W)(x)B-2, Al3Ti1-xM(Zr,V)(x) or AlB2 grain refiners for 0.1 < x < 0.9. It was found that grain size varied with x, M and the sum of Ti + M. Ti1-xMxB2 grain refiners offered no advantage over Al3Ti1-xMx. Overall, Ti and Zr provide the best grain refinement, both as Ti1-xMxB2 and Al3Ti1-xMx. However, Ti1-xZrxB2 had a grain refinement minimum around x = 0.65-0.70. The behavior was similar with Ta, but to a lesser extent. V and W had detrimental effects on grain refinement. Despite the fact that no AlB2 particles were observed, additions of B provided excellent grain refinement and was more efficient than Ti below 0.5at%. Ti1-xMxB2 lattice parameters varied with x and followed Vegards law, however, a clear relationship between grain size and epitaxial strain/lattice match could not be established. Similarly, the growth restricting factor alone was not a predictor of grain size.

    Download full text (pdf)
    fulltext
  • 8.
    Shu, Rui
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Southern University of Science and Technology Shenzhen, China;.
    Han, Zhijia
    Southern University of Science and Technology Shenzhen, China.
    Elsukova, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhu, Yongbin
    Southern University of Science and Technology Shenzhen, China.
    Qin, Peng
    Southern University of Science and Technology Shenzhen, China.
    Jiang, Feng
    Southern University of Science and Technology Shenzhen, China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhang, Wenqing
    Southern University of Science and Technology Shenzhen, China.
    Cojocaru‐Mirédin, Oana
    Aachen University, Aachen Germany.
    Yu, Yuan
    Aachen University, Aachen Germany.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Weishu
    Southern University of Science and Technology Shenzhen, China.
    Solid‐State Janus Nanoprecipitation Enables Amorphous‐Like Heat Conduction in Crystalline Mg 3 Sb 2 ‐Based Thermoelectric Materials2022In: Advanced Science, E-ISSN 2198-3844, article id 2202594Article in journal (Refereed)
    Abstract [en]

    Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3Sb1.5Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

    Download full text (pdf)
    fulltext
  • 9.
    Shu, Rui
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Southern Univ Sci & Technol, Peoples R China.
    Han, Zhijia
    Southern Univ Sci & Technol, Peoples R China.
    Elsukova, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhu, Yongbin
    Southern Univ Sci & Technol, Peoples R China.
    Qin, Peng
    Southern Univ Sci & Technol, Peoples R China.
    Jiang, Feng
    Southern Univ Sci & Technol, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhang, Wenqing
    Southern Univ Sci & Technol, Peoples R China.
    Cojocaru-Miredin, Oana
    Rhein Westfal TH Aachen, Germany.
    Yu, Yuan
    Rhein Westfal TH Aachen, Germany.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Weishu
    Southern Univ Sci & Technol, Peoples R China; Southern Univ Sci & Technol, Peoples R China.
    Solid-State Janus Nanoprecipitation Enables Amorphous-Like Heat Conduction in Crystalline Mg3Sb2-Based Thermoelectric Materials2022In: Advanced Science, E-ISSN 2198-3844, Vol. 9, no 25, article id 2202594Article in journal (Refereed)
    Abstract [en]

    Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3Sb1.5Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

    Download full text (pdf)
    fulltext
  • 10.
    Xin, Binbin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Platit AG, Switzerland.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of textured discontinuous-nanoisland Ca3Co4O9 thin films2022In: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, p. 3318-3322Article in journal (Refereed)
    Abstract [en]

    Controllable engineering of the nanoporosity in layered Ca3Co4O9 remains a challenge. Here, we show the synthesis of discontinuous films with islands of highly textured Ca3Co4O9, effectively constituting distributed nanoparticles with controlled porosity and morphology. These discontinuously dispersed textured Ca3Co4O9 nanoparticles may be a candidate for hybrid thermoelectrics.

    Download full text (pdf)
    fulltext
  • 11.
    Pallier, Camille
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Djemia, Philippe
    Univ Sorbonne Paris Nord, France.
    Fournier, Daniele
    Sorbonne Univ, France.
    Belliard, Laurent
    Sorbonne Univ, France.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thermal, electrical, and mechanical properties of hard nitrogen-alloyed Cr thin films deposited by magnetron sputtering2022In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 441, article id 128575Article in journal (Refereed)
    Abstract [en]

    Cr-N based materials, including stoichiometric CrN and Cr:N with a wide range of nitrogen contents, are commonly used as hard and corrosion-resistant coatings. Cr-rich films in this materials system can retain the bcc structure of metallic Cr with few percent of dissolved nitrogen, which can be used for tailoring the mechanical, thermal, and electrical properties. Here, we investigated low nitrogen containing Cr thin films deposited by high ion assisted magnetron sputtering with a substrate temperature of 200 degrees C. With the gas flow ratio maintained at f(N2/Ar) = 0.02, the substrate bias and the target power allows for control of the film composition (0.03 < N/Cr < 0.34). The films comprise a mixture of bcc-Cr and hexagonal Cr2N1-delta phases. The mechanical properties studied by nanoindentation and Brillouin inelastic light scattering revealed a hardening effect due to the multiphase nanostructure. The mechanical properties of the Cr:N films depend on the residual stress, on the amount of h-Cr2N1-delta phase and on the nanostructuring nature of the coatings. A maximum hardness of 37 GPa was achieved for a dense film with a Youngs modulus of 340 GPa, a shear modulus of 118 GPa, and a relatively low thermal conductivity of 7 W/mK.

    Download full text (pdf)
    fulltext
  • 12.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mráz, Stanislav
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Schneider, Jochen M.
    Materials Chemistry, RWTH Aachen University, Aachen, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dense Ti0.67Hf0.33B1.7 thin films grown by hybrid HfB2-HiPIMS/TiB2-DCMS co-sputtering without external heating2021In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 186, article id 110057Article in journal (Refereed)
    Abstract [en]

    There is a need for developing synthesis techniques that allow the growth of high-quality functional films at low substrate temperatures to minimize energy consumption and enable coating temperature-sensitive substrates. A typical shortcoming of conventional low-temperature growth strategies is insufficient atomic mobility, which leads to porous microstructures with impurity incorporation due to atmosphere exposure, and, in turn, poor mechanical properties. Here, we report the synthesis of dense Ti0.67Hf0.33B1.7 thin films with a hardness of ∼41.0 GPa grown without external heating (substrate temperature below ∼100 °C) by hybrid high-power impulse and dc magnetron co-sputtering (HfB2-HiPIMS/TiB2-DCMS) in pure Ar on Al2O3(0001) substrates. A substrate bias potential of −300 V is synchronized to the target-ion-rich portion of each HiPIMS pulse. The limited atomic mobility inherent to such desired low-temperature deposition is compensated for by heavy-mass ion (Hf+) irradiation promoting the growth of dense Ti0.67Hf0.33B1.7.

    Download full text (pdf)
    fulltext
  • 13.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Ma, Guoliang
    Sichuan Univ, Peoples R China.
    Shao, Hui
    Univ Toulouse III Paul Sabatier, France.
    Xiao, Peng
    Sichuan Univ, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Xu, Jin
    Dongguan Univ Technol, Peoples R China.
    Hou, Jinrong
    Tongji Univ, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Zhang, Xiao
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Li, Mian
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Huang, Zhengren
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Jin, Na
    Sichuan Univ, Peoples R China.
    Ma, Jiwei
    Tongji Univ, Peoples R China.
    Liu, Ying
    Sichuan Univ, Peoples R China.
    Lin, Zifeng
    Sichuan Univ, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase2021In: Nano-Micro Letters, ISSN 2311-6706, Vol. 13, no 1, article id 158Article in journal (Refereed)
    Abstract [en]

    MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g(-1) and volumetric capacity of 570 mAh cm(-3) as well as superior rate performance of 95 mAh g(-1) (110 mAh cm(-3)) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.

    Download full text (pdf)
    fulltext
  • 14.
    Weigel, Kai
    et al.
    Fraunhofer Inst Surface Engn & Thin Films IST, Germany.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Bewilogua, Klaus
    Fraunhofer Inst Surface Engn & Thin Films IST, Germany.
    Keunecke, Martin
    Fraunhofer Inst Surface Engn & Thin Films IST, Germany.
    Petersen, Jan
    Fraunhofer Inst Surface Engn & Thin Films IST, Germany.
    Grumbt, Gundis
    IMA Mat & Anwendungstech GmbH, Germany.
    Zenker, Rolf
    Tech Univ Bergakad Freiberg, Germany; Zenker Consult, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Electron irradiation induced modifications of Ti(1-x)AlxN coatings and related buffer layers on steel substrates2021In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 185, article id 110028Article in journal (Refereed)
    Abstract [en]

    Ti(1-x )AlxN hard coatings were prepared by reactive magnetron sputtering onto steel substrates (51CrV4 - 1.8159) and subsequently exposed for a short-time (similar to 1 s) to high-flux electron beam (EB) treatment. Morphology, composition and the structure of as-deposited and EB treated coatings were investigated using transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS) and X-ray diffraction (XRD). It was found that the EB treatment had only a minor influence on the morphology and crystallinity of the Ti(1-x)AlxN phase, however, the stress-free lattice parameter and partly the compressive stress in the coatings were clearly reduced by the treatment. On the other hand, major changes of composition profiles and structure were observed in the metallic buffer layer between substrate and Ti(1-x)AlxN. The observed modifications in the coating-substrate system are explained by rapid heat up and radiation damage due to the fast electron exposure.

  • 15.
    Alnoor, Hatim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Elsukova, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tseng, Eric Nestor
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Exploring MXenes and their MAX phase precursors by electron microscopy2021In: Materials Today Advances, E-ISSN 2590-0498, Vol. 9, article id 100123Article in journal (Refereed)
    Abstract [en]

    This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties that have revolutionized ranges of applications, including energy storage, electromagnetic interference shielding, water filtering, sensors, and catalysis. Few other methods have been more essential in MXene research and development of corresponding applications, compared with electron microscopy, which enables structural and chemical identification at the atomic scale. In the following, the electron microscopy methods that have been applied to MXene and MAX phase precursor research are presented together with research examples and are discussed with respect to advantages and challenges.

    Download full text (pdf)
    fulltext
  • 16.
    Li, Mian
    et al.
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Li, Xinliang
    City Univ Hong Kong, Peoples R China.
    Qin, Guifang
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Luo, Kan
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Li, Youbing
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Liang, Guojin
    City Univ Hong Kong, Peoples R China.
    Huang, Zhaodong
    City Univ Hong Kong, Peoples R China.
    Zhou, Jie
    Chinese Acad Sci, Peoples R China.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Zhi, Chunyi
    City Univ Hong Kong, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Halogenated Ti3C2 MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries2021In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 15, no 1, p. 1077-1085Article in journal (Refereed)
    Abstract [en]

    The class of two-dimensional metal carbides and nitrides known as MXenes offer a distinct manner of property tailoring for a wide range of applications. The ability to tune the surface chemistry for expanding the property space of MXenes is thus an important topic, although experimental exploration of surface terminals remains a challenge. Here, we synthesized Ti3C2 MXene with unitary, binary, and ternary halogen terminals, e.g., -Cl, -Br, -I, -BrI, and -ClBrI, to investigate the effect of surface chemistry on the properties of MXenes. The electrochemical activity of Br and I elements results in the extraordinary electrochemical performance of the MXenes as cathodes for aqueous zinc ion batteries. The -Br- and -I-containing MXenes, e.g., Ti3C2Br2 and Ti3C2I2, exhibit distinct discharge platforms with considerable capacities of 97.6 and 135 mA.g(-1). Ti3C2 (BrI) and Ti3C2 (ClBrI) exhibit dual discharge platforms with capacities of 117.2 and 106.7 mAh.g(-1). In contrast, the previously discovered MXenes Ti3C2Cl2 and Ti3C2 (OF) exhibit no discharge platforms and only similar to 50% of capacities and energy densities of Ti3C2Br2. These results emphasize the effectiveness of the Lewis-acidic-melt etching route for tuning the surface chemistry of MXenes and also show promise for expanding the MXene family toward various applications.

    Download full text (pdf)
    fulltext
  • 17.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dorri, Samira
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kooijman, Agnieszka
    Department of Materials Science and Engineering, Delft University of Technology, Delft, the Netherlands.
    Wu, Zhengtao
    School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mol, Johannes M.C.
    Department of Materials Science and Engineering, Delft University of Technology, Delft, the Netherlands.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan .
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Materials Research Laboratory and Department of Materials Science, University of Illinois, Urbana, IL, USA; Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan .
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Multifunctional ZrB2-rich Zr1-xCrxBy thin films with enhanced mechanical, oxidation, and corrosion properties2021In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 185, article id 109990Article in journal (Refereed)
    Abstract [en]

    Refractory transition-metal (TM) diborides have high melting points, excellent hardness, and good  chemical  stability.  However, these properties are not sufficient for applications involving extreme  environments that require high mechanical strength as well as oxidation and corrosion resistance. Here, we study the effect of Cr addition on the properties of ZrB2-rich Zr1-xCrxBy thin films grown by hybrid high-power impulse and dc magnetron co-sputtering (Cr-HiPIMS/ZrB2-DCMS) with a 100-V Cr-metal-ion synchronized potential. Cr metal fraction, x = Cr/(Zr+Cr), is increased from 0.23 to 0.44 by decreasing the power Pzrb2 applied to the DCMS ZrB2 target from 4000 to 2000 W, while the average power, pulse width, and frequency applied to the HiPIMS Cr target are maintained constant. In addition, y decreases from 2.18 to 1.11 as a function of Pzrb2, as a result of supplying Cr to the growing film and preferential B resputtering caused by the pulsed Cr-ion flux. ZrB2.18, Zr0.77Cr0.23B1.52, Zr0.71Cr0.29B1.42, and Zr0.68Cr0.32B1.38 2 films have hexagonal AlB2 crystal structure with a columnar nanostructure, while Zr0.64Cr0.36B1.30 and Zr0.56Cr0.44B1.11 are  amorphous. All films show hardness above 30 GPa. Zr0.56Cr0.44B1.11 alloys exhibit much better toughness, wear, oxidation, and corrosion resistance than ZrB2.18. This combination of properties   makes Zr0.56Cr0.44B1.11 ideal candidates for numerous strategic applications.

    Download full text (pdf)
    fulltext
  • 18.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Liang, Jinghua
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Ding, Haoming
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mu, Xulin
    Beijing Univ Technol, Peoples R China.
    Yan, Pengfei
    Beijing Univ Technol, Peoples R China.
    Zhang, Xiao
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Li, Mian
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Persson, Per O. A.
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Hultman, Lars
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Eklund, Per
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Yang, Hongxin
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China; Qianwan Inst CNiTECH, Peoples R China.
    Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases2021In: Applied Physics Reviews, E-ISSN 1931-9401, Vol. 8, no 3, article id 031418Article in journal (Refereed)
    Abstract [en]

    M(n+)(1)AX(n) (MAX) phases nanolaminated ternary carbides or nitrides possess a unique crystal structure in which single-atom-thick "A" sublayers are interleaved by alternative stacking of a "Mn+1Xn" sublayer; these materials have been investigated as promising high-safety structural materials for industrial applications because of their laminated structure and metal and ceramic properties. However, limited of A-site elements in the definition of M(n+)(1)AX(n) phases, it is a huge challenge for designing nanolaminated ferromagnetic materials with single-atom-thick two-dimensional iron layers occupying the A layers in the M(n+)(1)AX(n) phases. Here, we report three new ternary magnetic M(n+)(1)AX(n) phases (Ta2FeC, Ti2FeN, and Nb2FeC) with A sublayers of single-atom-thick two-dimensional iron through an isomorphous replacement reaction of M(n+)(1)AX(n) precursors (Ta2AlC, Ti2AlN, and Nb2AlC) with a Lewis acid salts (FeCl2). All these M(n+)(1)AX(n) phases exhibit ferromagnetic behavior. The Curie temperatures of the Ta2FeC and Nb2FeC M(n+)(1)AX(n) phases are 281 and 291K, respectively, i.e., close to room temperature. The saturation magnetization of these ternary magnetic MAX phases is almost two orders of magnitude higher than V-2(Sn,Fe)C, whose A-site is partially substituted by Fe. Theoretical calculations on magnetic orderings of spin moments of Fe atoms in these nanolaminated magnetic M(n+)(1)AX(n) phases reveal that the magnetism can be mainly ascribed to an intralayer exchange interaction of the two-dimensional Fe atomic layers. Owing to the richness in composition of M(n+)(1)AX(n) phases, our work provides a large imaginary space for constructing functional single-atom-thick two-dimensional layers in materials using these nanolaminated templates.

  • 19.
    Dahlqvist, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhou, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ahmed, Bilal
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Palisaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Thörnberg, Jimmy
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Helmer, Pernilla
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O Å
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Out-Of-Plane Ordered Laminate Borides and Their 2D Ti-Based Derivative from Chemical Exfoliation2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 38, article id 2008361Article in journal (Refereed)
    Abstract [en]

    Exploratory theoretical predictions in uncharted structural and compositional space are integral to materials discoveries. Inspired by M5SiB2 (T2) phases, the finding of a family of laminated quaternary metal borides, M M-4 SiB2, with out-of-plane chemical order is reported here. 11 chemically ordered phases as well as 40 solid solutions, introducing four elements previously not observed in these borides are predicted. The predictions are experimentally verified for Ti4MoSiB2, establishing Ti as part of the T2 boride compositional space. Chemical exfoliation of Ti4MoSiB2 and select removal of Si and MoB2 sub-layers is validated by derivation of a 2D material, TiOxCly, of high yield and in the form of delaminated sheets. These sheets have an experimentally determined direct band gap of approximate to 4.1 eV, and display characteristics suitable for supercapacitor applications. The results take the concept of chemical exfoliation beyond currently available 2D materials, and expands the envelope of 3D and 2D candidates, and their applications.

    Download full text (pdf)
    fulltext
  • 20.
    Gharavi, Mohammad Amin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Armiento, Rickard
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Phase Transformation and Superstructure Formation in (Ti-0.5, Mg-0.5)N Thin Films through High-Temperature Annealing2021In: Coatings, ISSN 2079-6412, Vol. 11, no 1, article id 89Article in journal (Refereed)
    Abstract [en]

    (Ti-0.5, Mg-0.5)N thin films were synthesized by reactive dc magnetron sputtering from elemental targets onto c-cut sapphire substrates. Characterization by theta-2 theta X-ray diffraction and pole figure measurements shows a rock-salt cubic structure with (111)-oriented growth and a twin-domain structure. The films exhibit an electrical resistivity of 150 m omega center dot cm, as measured by four-point-probe, and a Seebeck coefficient of -25 mu V/K. It is shown that high temperature (similar to 800 degrees C) annealing in a nitrogen atmosphere leads to the formation of a cubic LiTiO2-type superstructure as seen by high-resolution scanning transmission electron microscopy. The corresponding phase formation is possibly influenced by oxygen contamination present in the as-deposited films resulting in a cubic superstructure. Density functional theory calculations utilizing the generalized gradient approximation (GGA) functionals show that the LiTiO2-type TiMgN2 structure has a 0.07 eV direct bandgap.

    Download full text (pdf)
    fulltext
  • 21.
    Jamnig, Andreas
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering. Univ Poitiers, France.
    Pliatsikas, Nikolaos
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Konpan, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kehagias, Thomas
    Aristotle Univ Thessaloniki, Greece.
    Kotanidis, Alexios N.
    Univ Ioannina, Greece.
    Kalfagiannis, Nikolaos
    Nottingham Trent Univ, England.
    Bellas, Dimitris V
    Univ Ioannina, Greece.
    Lidorikis, Elefterios
    Univ Ioannina, Greece; Univ Res Ctr Ioannina URCI, Greece.
    Kovac, Janez
    Jozef Stefan Inst, Slovenia.
    Abadias, Gregory
    Univ Poitiers, France.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci and Technol, Taiwan.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    3D-to-2D Morphology Manipulation of Sputter-Deposited Nanoscale Silver Films on Weakly Interacting Substrates via Selective Nitrogen Deployment for Multifunctional Metal Contacts2020In: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 3, no 5, p. 4728-4738Article in journal (Refereed)
    Abstract [en]

    The ability to reverse the inherent tendency of noble metals to grow in an uncontrolled three-dimensional (3D) fashion on weakly interacting substrates, including two-dimensional (2D) materials and oxides, is essential for the fabrication of high-quality multifunctional metal contacts in key enabling devices. In this study, we show that this can be effectively achieved by deploying nitrogen (N-2) gas with high temporal precision during magnetron sputtering of nanoscale silver (Ag) islands and layers on silicon dioxide (SiO2) substrates. We employ real-time in situ film growth monitoring using spectroscopic ellipsometry, along with optical modeling in the framework of the finite-difference time-domain method, and establish that localized surface plasmon resonance (LSPR) from nanoscale Ag islands can be used to gauge the evolution of surface morphology of discontinuous layers up to a SiO2 substrate area coverage of similar to 70%. Such analysis, in combination with data on the evolution of room-temperature resistivity of electrically conductive layers, reveals that presence of N-2 in the sputtering gas atmosphere throughout all film-formation stages: (i) promotes 2D growth and smooth film surfaces and (ii) leads to an increase of the continuous-layer electrical resistivity by similar to 30% compared to Ag films grown in a pure argon (Ar) ambient atmosphere. Detailed ex situ nanoscale structural analyses suggest that N-2 favors 2D morphology by suppressing island coalescence rates during initial growth stages, while it causes interruption of local epitaxial growth on Ag crystals. Using these insights, we deposit Ag layers by deploying N-2 selectively, either during the early precoalescence growth stages or after coalescence completion. We show that early N-2 deployment leads to 2D morphology without affecting the Ag-layer resistivity, while postcoalescence introduction of N-2 in the gas atmosphere further promotes formation of three-dimensional (3D) nanostructures and roughness at the film growth front. In a broader context this study generates knowledge that is relevant for the development of (i) single-step growth manipulation strategies based on selective deployment of surfactant species and (ii) real-time methodologies for tracking film and nanostructure morphological evolution using LSPR.

    Download full text (pdf)
    fulltext
  • 22.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Shao, Hui
    Univ Toulouse, France; CNRS, France.
    Lin, Zifeng
    Sichuan Univ, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Liu, Liyuan
    Univ Toulouse, France; CNRS, France.
    Duployer, Benjamin
    Univ Toulouse, France; CNRS, France.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Li, Mian
    Chinese Acad Sci, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China.
    Zha, Xian-Hu
    Chinese Acad Sci, Peoples R China.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China.
    Rozier, Patrick
    Univ Toulouse, France; CNRS, France.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China.
    Raymundo-Pinero, Encarnacion
    CNRS, France; Univ Orleans, France.
    Taberna, Pierre-Louis
    Univ Toulouse, France; CNRS, France.
    Simon, Patrice
    Univ Toulouse, France; CNRS, France; Inst Univ France, France.
    Huang, Qing
    Chinese Acad Sci, Peoples R China.
    A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte2020In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 19, no 8, p. 894-899Article in journal (Refereed)
    Abstract [en]

    Two-dimensional transition metal carbides and nitrides, known as MXenes, are currently considered as energy storage materials. A generic Lewis acidic etching route for preparing high-rate negative-electrode MXenes with enhanced electrochemical performance in non-aqueous electrolyte is now proposed. Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of materials that have attracted attention as energy storage materials. MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by Al dissolution in F-containing solution; most other MAX phases have not been explored. Here a redox-controlled A-site etching of MAX phases in Lewis acidic melts is proposed and validated by the synthesis of various MXenes from unconventional MAX-phase precursors with A elements Si, Zn and Ga. A negative electrode of Ti3C2 MXene material obtained through this molten salt synthesis method delivers a Li+ storage capacity of up to 738 C g(-1) (205 mAh g(-1)) with high charge-discharge rate and a pseudocapacitive-like electrochemical signature in 1 M LiPF6 carbonate-based electrolyte. MXenes prepared via this molten salt synthesis route may prove suitable for use as high-rate negative-electrode materials for electrochemical energy storage applications.

    Download full text (pdf)
    fulltext
  • 23.
    Li, Hao
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shi, Yuchen
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Shang, Huan
    Cent China Normal Univ, Peoples R China.
    Wang, Weimin
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Max IV Lab, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zakharov, Alexei A.
    Max IV Lab, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Uhrberg, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Syväjärvi, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Zhang, Lizhi
    Cent China Normal Univ, Peoples R China.
    Sun, Jianwu
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
    Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion2020In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, no 4, p. 4905-4915Article in journal (Refereed)
    Abstract [en]

    Engineering tunable graphene-semiconductor interfaces while simultaneously preserving the superior properties of graphene is critical to graphene-based devices for electronic, optoelectronic, biomedical, and photoelectrochemical applications. Here, we demonstrate this challenge can be surmounted by constructing an interesting atomic Schottky junction via epitaxial growth of high-quality and uniform graphene on cubic SiC (3C-SiC). By tailoring the graphene layers, the junction structure described herein exhibits an atomic-scale tunable Schottky junction with an inherent built-in electric field, making it a perfect prototype to systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, the atomicscale-tuned Schottky junction is demonstrated to promote both the separation and transport of charge carriers in a typical photoelectrochemical system for solar-to-fuel conversion under low bias. Simultaneously, the as-grown monolayer graphene with an extremely high conductivity protects the surface of 3C-SiC from photocorrosion and energetically delivers charge carriers to the loaded cocatalyst, achieving a synergetic enhancement of the catalytic stability and efficiency.

    Download full text (pdf)
    fulltext
  • 24.
    Du, Yong
    et al.
    Shanghai Inst Technol, Peoples R China.
    Chen, Jiageng
    Shanghai Inst Technol, Peoples R China.
    Meng, Qiufeng
    Shanghai Inst Technol, Peoples R China.
    Xu, Jiayue
    Shanghai Inst Technol, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Flexible Thermoelectric Double-Layer Inorganic/Organic Composites Synthesized by Additive Manufacturing2020In: Advanced Electronic Materials, E-ISSN 2199-160X, Vol. 6, no 8, article id 2000214Article in journal (Refereed)
    Abstract [en]

    This study shows an approach to combine a high electrical conductivity of one composite layer with a high Seebeck coefficient of another composite layer in a double-layer composite, resulting in high thermoelectric power factor. Flexible double-layer-composites, made from Bi2Te3-based-alloy/polylactic acid (BTBA/PLA) composites and Ag/PLA composites, are synthesized by solution additive manufacturing. With the increase in Ag volume-ratio from 26.3% to 41.7% in Ag/PLA layers, the conductivity of the double-layer composites increases from 12 S cm(-1)to 1170 S cm(-1), while the Seebeck coefficient remains approximate to 80 mu V K(-1)at 300 K. With further increase in volume ratio of Ag until 45.6% in Ag/PLA composite layer, the electrical conductivity of the double-layer composites increases to 1710 S cm(-1), however, with a slight decrease of the Seebeck coefficient to 64 mu V K-1. The electrical conductivity and Seebeck coefficient vary only to a limited extent with the temperature. The high Seebeck coefficient is due to scattering of low energy charge carriers across compositionally graded interfaces. A power factor of 875 mu W m(-1) K(-2)is achieved at 360 K for 41.7 vol.% Ag in the Ag/PLA layers. Solution additive manufacturing can directly print this double-layer composite into intricate geometries, making this process is promising for large-scale fabrication of thermoelectric composites.

    Download full text (pdf)
    fulltext
  • 25.
    Kashiwaya, Shun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lai, Chung-Chuan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Formation of Ti2AuN from Au-Covered Ti2AlN Thin Films: A General Strategy to Thermally Induce Intercalation of Noble Metals into MAX Phases2020In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 20, no 6, p. 4077-4081Article in journal (Refereed)
    Abstract [en]

    Thermally induced intercalation of noble metals into non-van der Waals ceramic compounds presents a method to produce a new class of layered materials. We recently demonstrated an exchange reaction of Au with A layers of MAX phase carbides with plentiful combinations of A and M elements. Here, we report the first substitution of Al with Au in a Ti2AlN MAX phase nitride at an elevated temperature without destroying the original layered structure. These results bolster the generalization of the Au intercalation for the A elements in MAX phases with diverse combinations of M, A, and X elements. Furthermore, we propose crucial factors to achieve the exchange reaction: there should be a chemical potential for the A element to dissolve in or react with noble metals to intercalate; the noble metals should be inert to the initial metal carbides/nitrides; and it is necessary to choose the reaction temperature that allows balanced interdiffusion of the noble metals and A elements.

    Download full text (pdf)
    fulltext
  • 26.
    Wu, Zhengtao
    et al.
    Guangdong Univ Technol, Peoples R China.
    Tengstrand, Olof
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Bakhit, Babak
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci and Technol, Taiwan.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Growth of dense, hard yet low-stress Ti0.40Al0.27W0.33N nanocomposite films with rotating substrate and no external substrate heating2020In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, no 2Article in journal (Refereed)
    Abstract [en]

    W+ irradiation of TiAlN is used to demonstrate growth of dense, hard, and stress-free refractory nitride coatings with no external heating during reactive magnetron sputtering. Ti0.40Al0.27W0.33N nanocomposite films are deposited on Si(001) substrates using hybrid high-power impulse and dc magnetron cosputtering (HiPIMS and DCMS) in an industrial sputtering system employing substrate rotation during film growth from six cathodes. Two W targets powered by HiPIMS serve as a pulsed source of energetic W+ ions with incident fluxes analyzed by in situ time- and energy-resolved mass spectroscopy, while the remaining four targets (two elemental Ti targets and two Ti plates with Al plugs) are operated in the DCMS mode (W-HiPIMS/TiAl-DCMS) to provide a continuous flux of metal atoms and sustain a high deposition rate. A negative substrate bias V-s is applied only in synchronous with the W+-ion-rich portion of each HiPIMS pulse in order to provide film densification by heavy-ion irradiation of the TiAlN layers deposited between W+-ion exposures. W is selected for densification due to its high mass and relatively low reactivity with N-2, thus minimizing target poisoning while enhancing gas rarefaction. Dense Ti0.40Al0.27W0.33N alloy films, grown with no external substrate heating (substrate temperature T-s lower than 150 degrees C due to heat load from the plasma) and V-s=500V, exhibit a nanoindentation hardness of H=23.1GPa and an elastic modulus of E=378GPa, which are, respectively, 210% and 40% higher than for reference underdense DCMS Ti0.58Al0.42N films grown under the same conditions, but without W+ irradiation. The W ion bombardment does not affect the film stress state, which is compressive and low at 1.2GPa.

    Download full text (pdf)
    fulltext
  • 27.
    Shu, Rui
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Paschalidou, Eirini-Maria
    Uppsala Univ, Sweden.
    Gangaprasad Rao, Smita
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lewin, Erik
    Uppsala Univ, Sweden.
    Nyholm, Leif
    Uppsala Univ, Sweden.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)N-x coatings2020In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 389, article id 125651Article in journal (Refereed)
    Abstract [en]

    A series of (TiNbZrTa)Nx coatings with a thickness of similar to 1.1 mu m were deposited using reactive magnetron sputtering with segmented targets. The deposition temperature was varied from room temperature to 700 degrees C resulting in coatings with different microstructures. The coatings were characterized by electron microscopy, atomic force microscopy, compositional analysis, and X-ray diffraction. Effects of the deposition temperature on the electrical, mechanical and corrosion properties were studied with four-point probe, nanoindentation and potentiodynamic polarization measurements, respectively. X-ray photoelectron spectroscopy (XPS) analyses reveal a gradual change in the chemical state of all elements with increasing growth temperature from nitridic at room temperature to metallic at 700 degrees C. A NaCl-type structure with (001) preferred orientation was observed in the coating deposited at 400 degrees C, while an hcp structure was found for the coatings deposited above 400 degrees C. The resistivities of the TiNbZrTa nitride coatings were found to be around 200 mu Ocm. In 0.1 M H2SO4 aqueous solution, a corrosion current density of 2.8 x 10(-8) A/cm(2) and a passive behaviour up to 1.5 V vs. Ag/AgCl were found for the most corrosion resistant coating. The latter corrosion current is about two orders of magnitude lower than that found for a reference hyper-duplex stainless steel.

    Download full text (pdf)
    fulltext
  • 28.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Li, Mian
    Chinese Acad Sci, Peoples R China.
    Chang, Keke
    Chinese Acad Sci, Peoples R China.
    Zha, Xianhu
    Chinese Acad Sci, Peoples R China; Peng Cheng Lab, Peoples R China.
    Zhang, Yiming
    Chinese Acad Sci, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China.
    Francisco, Joseph S.
    Univ Penn, PA 19104 USA.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China.
    Huang, Zhengren
    Chinese Acad Sci, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China.
    Multielemental single atom-thick A layers in nanolaminated V2(Sn, A) C (A = Fe, Co, Ni, Mn) for tailoring magnetic properties2020In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 117, no 2, p. 820-825Article in journal (Refereed)
    Abstract [en]

    Tailoring of individual single-atom-thick layers in nanolaminated materials offers atomic-level control over material properties. Nonetheless, multielement alloying in individual atomic layers in nanolaminates is largely unexplored. Here, we report 15 inherently nanolaminated V-2(A(x)Sn(1-x))C (A = Fe, Co, Ni, Mn, and combinations thereof, with x similar to 1/3) MAX phases synthesized by an alloy-guided reaction. The simultaneous occupancy of the 4 magnetic elements and Sn in the individual single-atom-thick A layers constitutes high-entropy MAX phase in which multielemental alloying exclusively occurs in the 2 -dimensional (2D) A layers. V-2(A(x)Sn(1-x))C exhibit distinct ferromagnetic behavior that can be compositionally tailored from the multielement A-layer alloying. Density functional theory and phase diagram calculations are performed to understand the structure stability of these MAX phases. This 2D multielemental alloying approach provides a structural design route to discover nanolaminated materials and expand their chemical and physical properties. In fact, the magnetic behavior of these multielemental MAX phases shows strong dependency on the combination of various elements.

    Download full text (pdf)
    fulltext
  • 29.
    Tao, Quanzheng
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Helmer, Pernilla
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jouffret, Laurent
    Univ Grenoble Alpes, France.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Zhou, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Single Crystal Growth and Structural Characterization of Theoretically Predicted Nanolaminates M2Al2C3, Where M = Sc and Er2020In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 20, no 12, p. 7640-7646Article in journal (Refereed)
    Abstract [en]

    Nanolaminated materials including magnetic ele-ments are of special interest for commonly observed nontrivial magnetic characteristics and as potential precursors for 2D materials. Here, we explore the previously unknown layered phase M2Al2C3, where M = Sc and Er. Sc2Al2C3 was synthesized as single crystals of similar to mm(2) size, and its structure was determined by single crystal X-ray diffraction and scanning transmission electron microscopy. Evaluation of phase stability and possible vacancy formation based on first-principles calculations confirms the attained phase and suggests full occupancy on both the Al and C sites. Potential realization of the hypothetical phase Y2Al2C3 is also proposed. Furthermore, we also demonstrate that Er2Al2C3 can be synthesized in powder form, providing experimental evidence for stoichiometries based on rare earth elements, which, in turn, suggests possible incorporation of other lanthanides.

    Download full text (pdf)
    fulltext
  • 30.
    Griseri, Matteo
    et al.
    SCK CEN, Belgium; Katholieke Univ Leuven, Belgium.
    Tunca, Bensu
    SCK CEN, Belgium; Katholieke Univ Leuven, Belgium.
    Huang, Shuigen
    Katholieke Univ Leuven, Belgium.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Popescu, Lucia
    SCK CEN, Belgium.
    Vleugels, Jozef
    Katholieke Univ Leuven, Belgium.
    Lambrinou, Konstantina
    SCK CEN, Belgium; Univ Huddersfield, England.
    Ta-based 413 and 211 MAX phase solid solutions with Hf and Nb2020In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 40, no 54, p. 1829-1838Article in journal (Refereed)
    Abstract [en]

    New bulk MAX phase-based ceramics were synthesized in the Ta-Hf-Al-C and Ta-Nb-Al-C systems. Specifically, (Ta1-x,Hf-x)(4)AlC3 and (Ta1-x,Nb-x)(4)AlC3 stoichiometries with x = 0.05, 0.1, 0.15, 0.2, 0.25 were targeted by reactive hot pressing of Ta2H, HfH2, NbH0.89, Al and C powder mixtures at 1550 degrees C in vacuum. The produced ceramics were characterized in terms of phase composition and microstructure by X-ray diffraction, scanning electron microscopy, electron probe microanalysis and scanning transmission electron microscopy. The investigation confirmed the existence of such M-site solid solutions with low solute concentrations, as predicted by first-principles calculations. These calculations also predicted a linear trend in lattice parameter evolution with increasing Hf concentration, in agreement with the experimental results. In order to increase the low phase purity of the produced ceramics, Sn was added to form (Ta1-x,Hf-x)(4)(Al-0.5,Sn-0.5)C-3 and (Ta1-x,Nb-x)(4)(Al-0.5,Sn-0.5)C-3 double solid solutions, thus resulting in a higher content of the 413 MAX phase compounds in the produced ceramics.

    Download full text (pdf)
    fulltext
  • 31.
    Petruhins, Andrejs
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Theoretical Prediction and Experimental Verification of the Chemically Ordered Atomic-Laminate i-MAX Phases (Cr2/3Sc1/3)(2)GaC and (Mn2/3Sc1/3)(2)GaC2020In: Crystal Growth & Design, ISSN 1528-7483, E-ISSN 1528-7505, Vol. 20, no 1, p. 55-61Article in journal (Refereed)
    Abstract [en]

    We combine predictive ab initio calculations with experimental verification of bulk materials synthesis for exploration of new and potentially magnetic atomically laminated i-MAX phases. Two such phases are discovered: (Cr2/3Sc1/3)(2)GaC and (Mn2/3Sc1/3)(2)GaC synthesized by the solid state reaction from elemental constituents. The latter compound displays a 2-fold increase in Mn content compared to previously reported bulk MAX phases. Both new compounds exhibit the characteristic in-plane chemical order of Cr(Mn) and Sc, and crystallize in an orthorhombic structure, space group Cmcm, as confirmed by scanning transmission electron microscopy. From density functional theory calculations of the magnetic ground state, including the electron-interaction parameter U, we suggest an antiferromagnetic ground state, close to degenerate with the ferromagnetic state.

    Download full text (pdf)
    fulltext
  • 32.
    Xu, Qiang
    et al.
    Southwest Jiaotong Univ, Peoples R China.
    Zhou, Yanchun
    Aerosp Res Inst Mat & Proc Technol, Peoples R China.
    Zhang, Haiming
    Aerosp Res Inst Mat & Proc Technol, Peoples R China; Beijing Jiaotong Univ, Peoples R China.
    Jiang, Anna
    Southwest Jiaotong Univ, Peoples R China.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Niu, Yunhui
    Southwest Univ Sci & Technol, Peoples R China.
    Grasso, Salvatore
    Southwest Jiaotong Univ, Peoples R China.
    Hu, Chunfeng
    Southwest Jiaotong Univ, Peoples R China.
    Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC2020In: JOURNAL OF ADVANCED CERAMICS, ISSN 2226-4108, Vol. 9, no 4, p. 481-492Article in journal (Refereed)
    Abstract [en]

    Guided by the theoretical prediction, a new MAX phase V2SnC was synthesized experimentally for the first time by reaction of V, Sn, and C mixtures at 1000 degrees C. The chemical composition and crystal structure of this new compound were identified by the cross-check combination of first-principles calculations, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and high resolution scanning transmission electron microscopy (HR-STEM). The stacking sequence of V2C and Sn layers results in a crystal structure of space group P6(3)/mmc. Thea- andc-lattice parameters, which were determined by the Rietveld analysis of powder XRD pattern, are 0.2981(0) nm and 1.3470(6) nm, respectively. The atomic positions are V at 4f (1/3, 2/3, 0.0776(5)), Sn at 2d (2/3, 1/3, 1/4), and C at 2a (0, 0, 0). A new set of XRD data of V2SnC was also obtained. Theoretical calculations suggest that this new compound is stable with negative formation energy and formation enthalpy, satisfied Born-Huang criteria of mechanical stability, and positive phonon branches over the Brillouin zone. It also has low shear deformation resistancec(44)(second-order elastic constant,c(ij)) and shear modulus (G), positive Cauchy pressure, and low Pughs ratio (G/B= 0.500 < 0.571), which is regarded as a quasi-ductile MAX phase. The mechanism underpinning the quasi-ductility is associated with the presence of a metallic bond.

    Download full text (pdf)
    fulltext
  • 33.
    Anasori, Babak
    et al.
    Drexel Univ, PA 19104 USA; Drexel Univ, PA 19104 USA.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, Oleg
    Nucl Res Ctr Negev, Israel.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Halim, Joseph
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Voigt, Cooper
    Drexel Univ, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, Michel W.
    Drexel Univ, PA 19104 USA.
    Caspi, Elad N.
    Drexel Univ, PA 19104 USA; Nucl Res Ctr Negev, Israel.
    A Tungsten-Based Nanolaminated Ternary Carbide: (W,Ti)(4)C4-x2019In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 58, no 2, p. 1100-1106Article in journal (Refereed)
    Abstract [en]

    Nanolamellar transition metal carbides are gaining increasing interests because of the recent developments of their twodimensional (2D) derivatives and promising performance for a variety of applications from energy storage, catalysis to transparent conductive coatings, and medicine. To develop more novel 2D materials, new nanolaminated structures are needed. Here we report on a tungsten based nanolaminated ternary phase, (W,Ti)(4)C4-x, synthesized by an Al catalyzed reaction of W, Ti, and C powders at 1600 degrees C for 4 h, under flowing argon. X-ray and neutron diffraction, along with Z-contrast scanning transmission electron microscopy, were used to determine the atomic structure, ordering, and occupancies. This phase has a layered hexagonal structure (P6(3)/mmc) with lattice parameters, a = 3.00880(7) angstrom, and c = 19.5633(6) angstrom and a nominal chemistry of (W,Ti)(4)C4-x (actual chemistry, W2.1(1)Ti1.6(1)C2.6(1)). The structure is comprised of layers of pure W that are also twin planes with two adjacent atomic layers of mixed W and Ti, on either side. The use of Al as a catalyst for synthesizing otherwise difficult to make phases, could in turn lead to the discovery of a large family of nonstoichiometric ternary transition metal carbides, synthesized at relatively low temperatures and shorter times.

    Download full text (pdf)
    fulltext
  • 34.
    Tao, Quanzheng
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Mockuté, Aurelija
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Oak Ridge Natl Lab, TN 37831 USA.
    Calder, Stuart
    Oak Ridge Natl Lab, TN 37831 USA.
    Petruhins, Andrejs
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Meshkian, Rahele
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rivin, Oleg
    Nucl Res Ctr Negev, Israel; Helmholtz Zentrum Berlin Mat and Energie, Germany.
    Potashnikov, Daniel
    Technion Israeli Inst Technol, Israel; Israel Atom Energy Commiss, Israel.
    Caspi, Elad N.
    Nucl Res Ctr Negev, Israel.
    Shaked, Hagai
    Ben Gurion Univ Negev, Israel.
    Hoser, Andreas
    Helmholtz Zentrum Berlin Mat and Energie, Germany.
    Opagiste, Christine
    Univ Grenoble Alpes, France.
    Galera, Rose-Marie
    Univ Grenoble Alpes, France.
    Salikhov, Ruslan
    Univ Duisburg Essen, Germany; Univ Duisburg Essen, Germany.
    Wiedwald, Ulf
    Univ Duisburg Essen, Germany; Univ Duisburg Essen, Germany.
    Ritter, Clemens
    Inst Laue Langevin, France.
    Wildes, Andrew R.
    Inst Laue Langevin, France.
    Johansson, Boerje
    Uppsala Univ, Sweden; Humboldt Univ, Germany.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Fade, Michael
    Univ Duisburg Essen, Germany; Univ Duisburg Essen, Germany.
    Barsoum, Michel
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Drexel Univ, PA 19104 USA.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds2019In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 31, no 7, p. 2476-2485Article in journal (Refereed)
    Abstract [en]

    In 2017, we discovered quaternary i-MAX phases atomically layered solids, where M is an early transition metal, A is an A group element, and X is C-with a ((M2/3M1/32)-M-1)(2)AC chemistry, where the M-1 and M-2 atoms are in-plane ordered. Herein, we report the discovery of a class of magnetic i-MAX phases in which bilayers of a quasi-2D magnetic frustrated triangular lattice overlay a Mo honeycomb arrangement and an Al Kagome lattice. The chemistry of this family is (Mo2/3RE1/3)(2)AlC, and the rare-earth, RE, elements are Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The magnetic properties were characterized and found to display a plethora of ground states, resulting from an interplay of competing magnetic interactions in the presence of magnetocrystalline anisotropy.

    Download full text (pdf)
    fulltext
  • 35.
    Magnuson, Martin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Tengdelius, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Samuelsson, Mattias
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target2019In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 2, article id 021506Article in journal (Refereed)
    Abstract [en]

    The authors investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 °C as well as the influence of the sputtering power at 850 °C for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in the angular distribution between C, Si, and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at. % in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by x-ray photoelectron spectroscopy shows C–Ti and Si–C bonding in the Ti3SiC2 films and Si–Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 °C and with the growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 °C. Four-point probe resistivity measurements give values in the range ∼120 to ∼450 μΩ cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.

    Download full text (pdf)
    Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target
  • 36.
    Greczynski, Grzegorz
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Rhein Westfal TH Aachen, Germany.
    Mraz, Stanislav
    Rhein Westfal TH Aachen, Germany.
    Hans, Marcus
    Rhein Westfal TH Aachen, Germany.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Schneider, Jochen M.
    Rhein Westfal TH Aachen, Germany.
    Control over the Phase Formation in Metastable Transition Metal Nitride Thin Films by Tuning the Al+ Subplantation Depth2019In: Coatings, ISSN 2079-6412, Vol. 9, no 1, article id 17Article in journal (Refereed)
    Abstract [en]

    The performance of transition metal nitride based coatings deposited by magnetron sputtering, in a broad range of applications including wear-protective coatings on cutting tools and components in automotive engines, is determined by their phase content. The classical example is the precipitation of thermodynamically-favored wurtzite-AlN while alloying TiN with Al to obtain ternary single phase NaCl-structure films with improved high-temperature oxidation resistance. Here, we report on reactive high-power impulse and direct current magnetron co-sputtering (HiPIMS/DCMS) growth of Ti0.31Al0.69N and Zr0.48Al0.52N thin films. The Al concentrations are intentionally chosen to be higher than theoretically predicted solubility limits for the rock salt structure. The goal is to investigate the effect of the incident Al+ energy E-Al(+), controlled by varying the amplitude of the substrate bias applied synchronously with the Al+-rich portion of the ion flux from the Al-HiPIMS source, on the crystalline phase formation. For EAl+ amp;lt;= 60 eV, films contain predominantly the wurtzite phase. With increasing E-Al(+), and thus, the Al subplantation depth, the relative fraction of the NaCl structure increases and eventually for E-Al(+) amp;gt; 250 eV, Ti0.31Al0.69N and Zr0.48Al0.52N layers contain more than 95% of the rock salt phase. Thus, the separation of the film forming species in time and energy domains determines the phase formation of Ti0.31Al0.69N and Zr0.48Al0.52N layers and enables the growth of the cubic phase outside of the predicted Al concentration range. The new film growth concept can be applied to the entire family of multinary transition metal aluminum nitrides, where one of the metallic film constituents is available in the ionized form while the other arrives as neutral.

    Download full text (pdf)
    fulltext
  • 37.
    Yu, Hongling
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Heyong
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhang, Jiangbin
    Univ Cambridge, England; Imperial Coll London, England.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Yuan, Zhongcheng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Xu, Weidong
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Nanjing Tech Univ, Peoples R China.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Bakulin, Artem A.
    Imperial Coll London, England.
    Friend, Richard H.
    Univ Cambridge, England.
    Wang, Jianpu
    Nanjing Tech Univ, Peoples R China.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Univ Cambridge, England.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots2019In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 15, no 8, article id 1804947Article in journal (Refereed)
    Abstract [en]

    Semiconductor quantum dots (QDs) are among the most promising next-generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution-processed high-performance optoelectronic devices such as light-emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one-step spin-coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size-dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow-bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state-of-the-art LED systems and other optoelectronic devices.

    Download full text (pdf)
    fulltext
  • 38.
    Li, Mian
    et al.
    Chinese Acad Sci, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Luo, Kan
    Chinese Acad Sci, Peoples R China.
    Li, Youbing
    Chinese Acad Sci, Peoples R China.
    Chang, Keke
    Chinese Acad Sci, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China.
    Zhou, Jie
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China.
    Huang, Zhengren
    Chinese Acad Sci, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China.
    Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes2019In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, no 11, p. 4730-4737Article in journal (Refereed)
    Abstract [en]

    Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.

    Download full text (pdf)
    fulltext
  • 39.
    Malmros, Anna
    et al.
    Chalmers Univ Technol, Sweden.
    Chen, Jr-Tai
    SweGaN, SE-58330 Linkoping, Sweden.
    Hjelmgren, Hans
    Chalmers Univ Technol, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Kordina, Olof
    SweGaN, SE-58330 Linkoping, Sweden.
    Sveinbjörnsson, Einar
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering. Univ Iceland, Iceland.
    Zirath, Herbert
    Chalmers Univ Technol, Sweden.
    Rorsman, Niklas
    Chalmers Univ Technol, Sweden.
    Enhanced Mobility in InAlN/AlN/GaN HEMTs Using a GaN Interlayer2019In: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 66, no 7, p. 2910-2915Article in journal (Refereed)
    Abstract [en]

    An enhancement of the electron mobility (mu) in InAlN/AlN/GaN heterostructures is demonstrated by the incorporation of a thin GaN interlayer (IL) between the InAlN and AlN. The introduction of a GaN IL increases mu at room temperature (RT) from 1600 to 1930 cm(2)/Vs. The effect is further enhanced at cryogenic temperature (5 K), where the GaN IL sample exhibits a mu of 16 000 cm(2)/Vs, compared to 6900cm(2)/Vs without IL. The results indicate the reduction of one or more scattering mechanisms normally present in InAlN/AlN/GaN heterostructures. We propose that the improvement in mu is either due to the suppression of fluctuations in the quantum well subband energies or to reduced Coulomb scattering, both related to compositional variations in the InAlN. HEMTs fabricated on the GaN IL sample demonstrate larger improvement in dc- and high-frequency performance at 5 K; f(max) increases by 25 GHz to 153 GHz, compared to an increase of 6 GHz to 133 GHz without IL. The difference in improvement was associated mainly with the drop in the access resistances.

  • 40.
    Champagne, A.
    et al.
    UCLouvain, Belgium.
    Chaix-Pluchery, O.
    Univ Grenoble Alpes, France.
    Ouisse, T.
    Univ Grenoble Alpes, France.
    Pinek, D.
    Univ Grenoble Alpes, France.
    Gelard, I
    Univ Grenoble Alpes, France.
    Jouffret, L.
    Univ Clermont Auvergne, France.
    Barbier, M.
    Univ Grenoble Alpes, France; European Synchrotron Radiat Facil, France.
    Wilhelm, F.
    European Synchrotron Radiat Facil, France.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Barsoum, M. W.
    Drexel Univ, PA 19104 USA.
    Charlier, J-C
    UCLouvain, Belgium.
    First-order Raman scattering of rare-earth containing i-MAX single crystals (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er)2019In: Physical Review Materials, E-ISSN 2475-9953, Vol. 3, no 5, article id 053609Article in journal (Refereed)
    Abstract [en]

    Herein, we report on the growth of single crystals of various (Mo2/3RE1/3)(2)AlC (RE = Nd, Gd, Dy, Ho, Er) i-MAX phases and their Raman characterization. Using first principles, the wave numbers of the various phonon modes and their relative atomic displacements are calculated and compared to experimental results. Twelve high-intensity Raman peaks are identified as the fingerprint of this new family of rare-earth containing i-MAX phases, thus being a useful tool to investigate their corresponding composition and structural properties. Indeed, while a redshift is observed in the low-wave-number range due to an increase of the rare-earth atomic mass when moving from left to right on the lanthanide row, a blueshift is observed for most of the high-wave-number modes due to a strengthening of the bonds. A complete classification of bond stiffnesses is achieved based on the direct dependence of a phonon mode wave number with respect to the bond stiffness. Finally, STEM images are used to confirm the crystal structure.

    Download full text (pdf)
    fulltext
  • 41.
    Ekström, Erik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Le Febvrier, Arnaud
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Fournier, Daniele
    Sorbonne Univ, France.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ene, Vladimir-Lucian
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Univ Politehn Bucuresti, Romania.
    Van Nong, Ngo
    Tech Univ Denmark, Denmark.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Paul, Biplab
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Formation mechanism and thermoelectric properties of CaMnO3 thin films synthesized by annealing of Ca0.5Mn0.5O films2019In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 54, no 11, p. 8482-8491Article in journal (Refereed)
    Abstract [en]

    A two-step synthesis approach was utilized to grow CaMnO3 on M-, R- and C-plane sapphire substrates. Radio-frequency reactive magnetron sputtering was used to grow rock-salt-structured (Ca, Mn)O followed by a 3-h annealing step at 800 degrees C in oxygen flow to form the distorted perovskite phase CaMnO3. The effect of temperature in the post-annealing step was investigated using x-ray diffraction. The phase transformation to CaMnO3 started at 450 degrees C and was completed at 550 degrees C. Films grown on R- and C-plane sapphire showed similar structure with a mixed orientation, whereas the film grown on M-plane sapphire was epitaxially grown with an out-of-plane orientation in the [202] direction. The thermoelectric characterization showed that the film grown on M-plane sapphire has about 3.5 times lower resistivity compared to the other films with a resistivity of 0.077cm at 500 degrees C. The difference in resistivity is a result from difference in crystal structure, single orientation for M-plane sapphire compared to mixed for R- and C-plane sapphire. The highest absolute Seebeck coefficient value is -350 mu VK-1 for all films and is decreasing with temperature.

    Download full text (pdf)
    fulltext
  • 42.
    Paul, Biplab
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Growth of CaxCoO2 Thin Films by A Two-Stage Phase Transformation from CaO-CoO Thin Films Deposited by Rf-Magnetron Reactive Cosputtering2019In: Nanomaterials, E-ISSN 2079-4991, Vol. 9, no 3, article id 443Article in journal (Refereed)
    Abstract [en]

    The layered cobaltates A(x)CoO(2) (A: alkali metals and alkaline earth metals) are of interest in the area of energy harvesting and electronic applications, due to their good electronic and thermoelectric properties. However, their future widespread applicability depends on the simplicity and cost of the growth technique. Here, we have investigated the sputtering/annealing technique for the growth of CaxCoO2 (x = 0.33) thin films. In this approach, CaO-CoO film is first deposited by rf-magnetron reactive cosputtering from metallic targets of Ca and Co. Second, the as-deposited film is reactively annealed under O-2 gas flow to form the final phase of CaxCoO2. The advantage of the present technique is that, unlike conventional sputtering from oxide targets, the sputtering is done from the metallic targets of Ca and Co; thus, the deposition rate is high. Furthermore, the composition of the film is controllable by controlling the power at the targets.

    Download full text (pdf)
    fulltext
  • 43.
    Landälv, Ludvig
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Sandvik Coromant AB, Sweden.
    Gothelid, Emmanuelle
    Sandvik Coromant AB, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ahlgren, Mats
    Sandvik Coromant AB, Sweden.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Influence of Si doping and O-2 flow on arc-deposited (Al,Cr)(2)O-3 coatings2019In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 6, article id 061516Article in journal (Refereed)
    Abstract [en]

    (Al,Cr)(2)O-3 coatings with Al/( Al + Cr) = 0.5 or Al = 70 at. %, doped with 0, 5, or 10 at. % Si, were deposited on hard metal and Si(100) substrates to elucidate the influence of Si on the resulting coatings. The chemical analysis of the coatings showed between 3.3 and 7.4 at. % metal fraction Si incorporated into all studied coatings depending on cathode Si composition. The incorporated Si content does not change significantly with different oxygen flows covering a wide range of deposition conditions from low to high O-2 flow during growth. The addition of Si promotes the metastable B1-like cubic structure over the thermodynamically stable corundum structure. The hardness determined by nanoindentation of the as-deposited coatings is slightly reduced upon Si incorporation as well as upon increased Al content. Si is found enriched in droplets but can also be found at a lower content, evenly spread, without visible segregation at the similar to 5 nm scale, in the actual oxide coating. The positive effect of improved cathode erosion upon Si incorporation has to be balanced against the promotion of the metastable B1-like structure, having lower room temperature hardness and inferior thermal stability compared to the corundum structure. Published by the AVS.

    Download full text (pdf)
    fulltext
  • 44.
    Mockuté, Aurelija
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Oak Ridge Natl Lab, TN 37831 USA.
    Tao, Quanzheng
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Dahlqvist, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Calder, S.
    Oak Ridge Natl Lab, TN 37831 USA.
    Caspi, E. N.
    Nucl Res Ctr Negev, Israel.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1-x)(2)AlC i-MAX phase used as parent material for MXene derivation2019In: Physical Review Materials, E-ISSN 2475-9953, Vol. 3, no 11, article id 113607Article in journal (Refereed)
    Abstract [en]

    Research on low-dimensional materials has increased drastically in the last decade, with the discovery of two-dimensional transition metal carbides and nitrides (MXenes) produced by atom-selective chemical etching of laminated parent M(n+1)AX(n) (MAX) phases. Here, we apply density functional theory and subsequent materials synthesis and analysis to explore the phase stability and Mo/Sc intermixing on the M site in the chemically ordered quaternary i-MAX phase (MoxSc1-x)(2)AlC. Transmission electron microscopy confirms the theoretical predictions of preferential in-plane ordering of Mo and Sc, with the highest crystal quality obtained for the ideal Mo:Sc ratio of 2:1 (predicted as the most stable), as well as a retained i-MAX structure even for an increased relative Sc content, with Sc partially occupying Mo sites. The results are supported by refined neutron diffraction data, which show space group C2/c (no. 15), and a C occupancy of 1. Subsequent chemical etching produces MXene for x = 0.66, while for x = 0.33 and 0.5 no MXene is observed. These results demonstrate that a precise control of the i-MAX composition is crucial for derivation of MXene, with a MXene quality optimized for a Mo:Sc ratio of 2:1 with minimal intermixing between Mo and Sc.

  • 45.
    Landälv, Ludvig
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Sandvik Coromant AB, Stockholm, Sweden.
    Carlström, C-F
    Sandvik Coromant AB, Stockholm, Sweden.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Primetzhofer, D.
    Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden.
    Jöesaar, M. J.
    SECO Tools AB, Fagersta, Sweden.
    Ahlgren, M.
    Sandvik Coromant AB, Stockholm, Sweden.
    Göthelid, E.
    Sandvik Coromant AB, Stockholm, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Phase composition and transformations in magnetron-sputtered (Al,V)2O3 coatings2019In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 688, article id 137369Article in journal (Refereed)
    Abstract [en]

    Coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited by pulsed DC reactive sputter deposition on Si(100) at a temperature of 550 °C. XRD showed three different crystal structures depending on V-metal fraction in the coating: α-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, 63–42 at.% V. At lower V-content, 18 and 7 at.%, a gamma-alumina-like solid solution was observed, shifted to larger d-spacing compared to pure γ-Al2O3. The microstructure changes from large columnar faceted grains for α-V2O3 to smaller equiaxed grains when lowering the vanadium content towards pure γ-Al2O3. Annealing in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 °C for 42 at.% V and 700 °C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure γ-Al2O3-coating, which transformed to α-Al2O3 after annealing to 1100 °C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The latter decreased with increasing V-content, larger than 7 at.% V metal fraction. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings.

    Download full text (pdf)
    fulltext
  • 46.
    Landälv, Ludvig
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Sandvik Coromant AB, Sweden.
    Rogström, Lina
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ostach, Daniel
    Helmholtz Zentrum Geesthacht, Germany.
    Eriksson, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Junaid, Muhammad
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ekström, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hsiao, Ching-Lien
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Leiste, Harald
    Karlsruhe Inst Technol, Germany.
    Ahlgren, Mats
    Sandvik Coromant AB, Sweden.
    Gothelid, Emmanuelle
    Sandvik Coromant AB, Sweden.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Stuber, Michael
    Karlsruhe Inst Technol, Germany.
    Schell, Norbert
    Helmholtz Zentrum Geesthacht, Germany.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Phase evolution of radio frequency magnetron sputtered Cr-rich (Cr,Zr)(2)O-3 coatings studied by in situ synchrotron X-ray diffraction during annealing in air or vacuum2019In: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 34, no 22, p. 3735-3746Article in journal (Refereed)
    Abstract [en]

    The phase evolution of reactive radio frequency (RF) magnetron sputtered Cr0.28Zr0.10O0.61 coatings has been studied by in situ synchrotron X-ray diffraction during annealing under air atmosphere and vacuum. The annealing in vacuum shows t-ZrO2 formation starting at similar to 750-800 degrees C, followed by decomposition of the alpha-Cr2O3 structure in conjunction with bcc-Cr formation, starting at similar to 950 degrees C. The resulting coating after annealing to 1140 degrees C is a mixture of t-ZrO2, m-ZrO2, and bcc-Cr. The air-annealed sample shows t-ZrO2 formation starting at similar to 750 degrees C. The resulting coating after annealing to 975 degrees C is a mixture of t-ZrO2 and alpha-Cr2O3 (with dissolved Zr). The microstructure coarsened slightly during annealing, but the mechanical properties are maintained, with no detectable bcc-Cr formation. A larger t-ZrO2 fraction compared with alpha-Cr2O3 is observed in the vacuum-annealed coating compared with the air-annealed coating at 975 degrees C. The results indicate that the studied pseudo-binary oxide is more stable in air atmosphere than in vacuum.

    Download full text (pdf)
    fulltext
  • 47.
    Li, Youbing
    et al.
    Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
    Li, Mian
    Chinese Acad Sci, Peoples R China.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Ma, Baokai
    Chinese Acad Sci, Peoples R China; Ningbo Univ, Peoples R China.
    Wang, Zhipan
    Ningbo Univ, Peoples R China.
    Cheong, Ling-Zhi
    Ningbo Univ, Peoples R China.
    Luo, Kan
    Chinese Acad Sci, Peoples R China.
    Zha, Xianhu
    Chinese Acad Sci, Peoples R China.
    Chen, Ke
    Chinese Acad Sci, Peoples R China.
    Persson, Per O A
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Eklund, Per
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Shen, Cai
    Chinese Acad Sci, Peoples R China.
    Wang, Qigang
    Tongji Univ, Peoples R China.
    Xue, Jianming
    Peking Univ, Peoples R China.
    Du, Shiyu
    Chinese Acad Sci, Peoples R China.
    Huang, Zhengren
    Chinese Acad Sci, Peoples R China.
    Chai, Zhifang
    Chinese Acad Sci, Peoples R China.
    Huang, Qing
    Chinese Acad Sci, Peoples R China.
    Single-Atom-Thick Active Layers Realized in Nanolaminated Ti-3(AlxCu1-x)C-2 and Its Artificial Enzyme Behavior2019In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 13, no 8, p. 9198-9205Article in journal (Refereed)
    Abstract [en]

    A Ti-3(AlxCu1-x)C-2 phase with Cu atoms with a degree of ordering in the A plane is synthesized through the A site replacement reaction in CuCl2 molten salt. The weakly bonded single -atom -thick Cu layers in a Ti-3(AlxCu1-x)C-2 MAX phase provide actives sites for catalysis chemistry. As -synthesized Ti-3(AlxCu1-x)C-2 presents unusual peroxidase-like catalytic activity similar to that of natural enzymes. A fabricated Ti-3(AlxCu1-x)C-2/chitosan/glassy carbon electrode biosensor prototype also exhibits a low detection limit in the electrochemical sensing of H2O2. These results have broad implications for property tailoring in a nanolaminated MAX phase by replacing the A site with late transition elements.

    Download full text (pdf)
    fulltext
  • 48.
    Bakhit, Babak
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Engberg, David
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Rosén, Johanna
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Högberg, Hans
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Petrov, Ivan
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greene, Joseph E
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
    Greczynski, Grzegorz
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Strategy for simultaneously increasing both hardness and toughness in ZrB2-rich Zr1-xTaxBy thin films2019In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 37, no 3, article id 031506Article in journal (Refereed)
    Abstract [en]

    Refractory transition-metal diborides exhibit inherent hardness. However, this is not always sufficient to prevent failure in applications involving high mechanical and thermal stress, since hardness is typically accompanied by brittleness leading to crack formation and propagation. Toughness, the combination of hardness and ductility, is required to avoid brittle fracture. Here, the authors demonstrate a strategy for simultaneously enhancing both hardness and ductility of ZrB2-rich thin films grown in pure Ar on Al2O3(0001) and Si(001) substrates at 475 degrees C. ZrB2.4 layers are deposited by dc magnetron sputtering (DCMS) from a ZrB2 target, while Zr1-xTaxBy alloy films are grown, thus varying the B/metal ratio as a function of x, by adding pulsed high-power impulse magnetron sputtering (HiPIMS) from a Ta target to deposit Zr1-xTaxBy alloy films using hybrid Ta-HiPIMS/ZrB2-DCMS sputtering with a substrate bias synchronized to the metal-rich portion of each HiPIMS pulse. The average power P-Ta (and pulse frequency) applied to the HiPIMS Ta target is varied from 0 to 1800W (0 to 300 Hz) in increments of 600W (100 Hz). The resulting boron-to-metal ratio, y = B/(Zr+Ta), in as-deposited Zr1-xTaxBy films decreases from 2.4 to 1.5 as P-Ta is increased from 0 to 1800W, while x increases from 0 to 0.3. A combination of x-ray diffraction (XRD), glancing-angle XRD, transmission electron microscopy (TEM), analytical Z-contrast scanning TEM, electron energy-loss spectroscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and atom-probe tomography reveals that all films have the hexagonal AlB2 crystal structure with a columnar nanostructure, in which the column boundaries of layers with 0 amp;lt;= x amp;lt; 0.2 are B-rich, whereas those with x amp;gt;= 0.2 are Ta-rich. The nanostructural transition, combined with changes in average column widths, results in an similar to 20% increase in hardness, from 35 to 42 GPa, with a simultaneous increase of similar to 30% in nanoindentation toughness, from 4.0 to 5.2MPa root m. Published by the AVS.