liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Zajdel, Joanna
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Sköld, Johan
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Singh, Anand Kumar
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Calcitonin gene related peptide alpha is dispensable for many danger-related motivational responses2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 16204Article in journal (Refereed)
    Abstract [en]

    Calcitonin gene related peptide (CGRP) expressing neurons in the parabrachial nucleus have been shown to encode danger. Through projections to the amygdala and other forebrain structures, they regulate food intake and trigger adaptive behaviors in response to threats like inflammation, intoxication, tumors and pain. Despite the fact that this danger-encoding neuronal population has been defined based on its CGRP expression, it is not clear if CGRP is critical for its function. It is also not clear if CGRP in other neuronal structures is involved in danger-encoding. To examine the role of CGRP in danger-related motivational responses, we used male and female mice lacking alpha CGRP, which is the main form of CGRP in the brain. These mice had no, or only very weak, CGRP expression. Despite this, they did not behave differently compared to wildtype mice when they were tested for a battery of danger-related responses known to be mediated by CGRP neurons in the parabrachial nucleus. Mice lacking alpha CGRP and wildtype mice showed similar inflammation-induced anorexia, conditioned taste aversion, aversion to thermal pain and pain-induced escape behavior, although it should be pointed out that the study was not powered to detect any possible differences that were minor or sex-specific. Collectively, our findings suggest that alpha CGRP is not necessary for many threat-related responses, including some that are known to be mediated by CGRP neurons in the parabrachial nucleus.

    Download full text (pdf)
    fulltext
  • 2.
    Klawonn, Anna
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Stanford Univ, CA 94305 USA.
    Fritz, Michael
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Univ Ulm, Germany.
    Castany Quintana, Silvia
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Pignatelli, Marco
    NIDA, MD 21224 USA; Washington Univ, MO 63110 USA; Washington Univ, MO 63110 USA.
    Canal, Carla
    Autonomous Univ Barcelona, Spain; Autonomous Univ Barcelona, Spain.
    Similä, Fredrik
    Linköping University, Department of Biomedical and Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Tejeda, Hugo A.
    NIDA, MD 21224 USA.
    Levinsson, Julia
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jakobsson, Johan
    Lund Univ, Sweden; Lund Univ, Sweden.
    Hidalgo, Juan
    Autonomous Univ Barcelona, Spain; Autonomous Univ Barcelona, Spain.
    Heilig, Markus
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Psykiatricentrum, Psykiatriska kliniken i Linköping.
    Bonci, Antonello
    Global Inst Addict, FL 33132 USA.
    Engblom, David
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons2021In: Immunity, ISSN 1074-7613, E-ISSN 1097-4180, Vol. 54, no 2, p. 225-234.e6Article in journal (Refereed)
    Abstract [en]

    Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.

  • 3.
    Herman, Jeremy S.
    et al.
    Natl Museums Scotland, Scotland.
    Stojak, Joanna
    Polish Acad Sci, Poland.
    Pauperio, Joana
    Univ Porto, Portugal.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Wojcik, Jan M.
    Polish Acad Sci, Poland.
    Searle, Jeremy B.
    Cornell Univ, NY USA.
    Genetic variation in field voles (Microtus agrestis) from the British Isles: selective sweeps or population bottlenecks?2019In: Biological Journal of the Linnean Society, ISSN 0024-4066, E-ISSN 1095-8312, Vol. 126, no 4, p. 852-865Article in journal (Refereed)
    Abstract [en]

    The Eurasian field vole (Microtus agrestis) comprises three evolutionarily significant units (ESUs). The northern ESU is found at higher latitudes across the western Palaearctic region and includes six, largely allopatric, mitochondrial DNA lineages that were derived from population bottlenecks. One of these lineages is found in southern Britain and nearby areas of continental Europe. A prominent sub-lineage is nested within, and therefore derived from, the part of this lineage occupying southern Britain. The sub-lineage consists of an abundant central haplotype together with a series of closely related haplotypes, a distribution that would result from either a recent population bottleneck or a selective sweep. To distinguish between these, we sequenced a Y-chromosome marker in 167 field voles from Britain and Europe, and analysed a panel of 13 autosomal microsatellite loci in 144 field voles from eight populations in Britain. The Y-chromosome marker showed a continental-scale pattern of variation that was not aligned with that of the mitochondrial marker, while microsatellite variation did not show any evidence for a bottleneck, tentatively favouring selection instead. This implies a role for both stochastic and selective processes in generating phylogeographical patterns at different scales in the field vole.

  • 4.
    Fritz, Michael
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Klawonn, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience.
    Interferon-ɣ mediated signaling in the brain endothelium is critical for inflammation-induced aversion2018In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 67, p. 54-58Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation elicits malaise and a negative affective state. The mechanism underpinning the aversive component of inflammation include cerebral prostaglandin synthesis and modulation of dopaminergic reward circuits, but the messengers that mediate the signaling between the peripheral inflammation and the brain have not been sufficiently characterized. Here we investigated the role of interferon-ɣ (IFN-ɣ) in the aversive response to systemic inflammation induced by a low dose (10μg/kg) of lipopolysaccharide (LPS) in mice. LPS induced IFN-ɣ expression in the blood and deletion of IFN-ɣ or its receptor prevented the development of conditioned place aversion to LPS. LPS induced expression of the chemokine Cxcl10 in the striatum of normal mice, but this induction was absent in mice lacking IFN-ɣ receptors or Myd88 in blood brain barrier endothelial cells. Furthermore, inflammation-induced aversion was blocked in mice lacking Cxcl10 or its receptor Cxcr3. Finally, mice with a selective deletion of the IFN-ɣ receptor in brain endothelial cells did not develop inflammation-induced aversion, demonstrating that the brain endothelium is the critical site of IFN-ɣ action. Collectively, these findings show that circulating IFN-ɣ that binds to receptors on brain endothelial cells and induces Cxcl10, is a central link in the signaling chain eliciting inflammation-induced aversion.

  • 5.
    Klawonn, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bonaventura, Jordi
    NIDA, MD USA.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Granseth, Björn
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Michaelides, Michael
    NIDA, MD USA; Johns Hopkins Sch Med, MD USA.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Motivational valence is determined by striatal melanocortin 4 receptors2018In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 128, no 7, p. 3160-3170Article in journal (Refereed)
    Abstract [en]

    It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and. opioid receptorinduced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.

    Download full text (pdf)
    fulltext
  • 6.
    Klawonn, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Stanford Univ, CA 94305 USA.
    Wilhelms, Daniel
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Lindström, Sarah
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Singh, Anand Kumar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Baylor Coll Med, TX 77030 USA.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Wess, Jurgen
    NIH, MD 20892 USA.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences. Stanford Univ, CA 94305 USA.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity2018In: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 11, article id 139Article in journal (Refereed)
    Abstract [en]

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression (cFos and FosB) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

    Download full text (pdf)
    fulltext
  • 7.
    Nilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wilhelms, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Inflammation-induced anorexia and fever are elicited by distinct prostaglandin dependent mechanisms, whereas conditioned taste aversion is prostaglandin independent.2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 61, p. 236-243, article id S0889-1591(16)30549-9Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation evokes an array of brain-mediated responses including fever, anorexia and taste aversion. Both fever and anorexia are prostaglandin dependent but it has been unclear if the cell-type that synthesizes the critical prostaglandins is the same. Here we show that pharmacological inhibition or genetic deletion of cyclooxygenase (COX)-2, but not of COX-1, attenuates inflammation-induced anorexia. Mice with deletions of COX-2 selectively in brain endothelial cells displayed attenuated fever, as demonstrated previously, but intact anorexia in response to peripherally injected lipopolysaccharide (10μg/kg). Whereas intracerebroventricular injection of a cyclooxygenase inhibitor markedly reduced anorexia, deletion of COX-2 selectively in neural cells, in myeloid cells or in both brain endothelial and neural cells had no effect on LPS-induced anorexia. In addition, COX-2 in myeloid and neural cells was dispensable for the fever response. Inflammation-induced conditioned taste aversion did not involve prostaglandin signaling at all. These findings collectively show that anorexia, fever and taste aversion are triggered by distinct routes of immune-to-brain signaling.

    Download full text (pdf)
    fulltext
  • 8.
    Singh, Anand Kumar
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Almoosawi, Nader
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Frisch, Isabell
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Klawonn, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Prostaglandin-mediated inhibition of serotonin signaling controls the affective component of inflammatory pain2017In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 127, no 4, p. 1370-1374Article in journal (Refereed)
    Abstract [en]

    Pain is fundamentally unpleasant and induces a negative affective state. The affective component of pain is mediated by circuits that are distinct from those mediating the sensory-discriminative component. Here, we have investigated the role of prostaglandins in the affective dimension of pain using a rodent pain assay based on conditioned place aversion to formalin injection, an inflammatory noxious stimulus. We found that place aversion induced by inflammatory pain depends on prostaglandin E-2 that is synthesized by cyclooxygenase 2 in neural cells. Further, mice lacking the prostaglandin E-2 receptor EP3 selectively on serotonergic cells or selectively in the area of the dorsal raphe nucleus failed to form an aversion to formalininduced pain, as did mice lacking the serotonin transporter. Chemogenetic manipulations revealed that EP3 receptor activation elicited conditioned place aversion to pain via inhibition of serotonergic neurons. In contrast to their role in inflammatory pain aversion, EP3 receptors on serotonergic cells were dispensable for acute nociceptive behaviors and for aversion induced by thermal pain or a kappa opioid receptor agonist. Collectively, our findings show that prostaglandin-mediated modulation of serotonergic transmission controls the affective component of inflammatory pain.

    Download full text (pdf)
    fulltext
  • 9.
    Fritz, Michael
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Klawonn, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Kumar Singh, Anand
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Zajdel, Joanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wilhelms, Daniel
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Emergency Medicine.
    Lazarus, Michael
    University of Tsukuba, Japan.
    Löfberg, Andreas
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Örtegren Kugelberg, Unn
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Billiar, Timothy R.
    University of Pittsburgh, PA USA.
    Hackam, David J.
    Johns Hopkins University, MD USA.
    Sodhi, Chhinder P.
    Johns Hopkins University, MD USA.
    Breyer, Matthew D.
    Lilly Research Labs, IN USA.
    Jakobsson, Johan
    Lund University, Sweden; Lund University, Sweden.
    Schwaninger, Markus
    University of Lubeck, Germany.
    Schuetz, Gunther
    German Cancer Research Centre, Germany.
    Rodriguez Parkitna, Jan
    Polish Academic Science, Poland.
    Saper, Clifford B.
    Beth Israel Deaconess Medical Centre, MA 02215 USA; Harvard University, MA USA.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice2016In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 126, no 2, p. 695-705Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type-specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E-2 (PGE(2)) synthesis. Further, we showed that inflammation-induced PGE(2) targeted EP1 receptors on striatal dopamine D1 receptor-expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE(2)-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation.

  • 10.
    Herman, Jeremy S.
    et al.
    National Museums Scotland, Scotland .
    McDevitt, Allan D.
    Polish Academic Science, Poland .
    Kawalko, Agata
    Polish Academic Science, Poland Centre Forestry and Preservat Nat, Poland .
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Wojcik, Jan M.
    Polish Academic Science, Poland .
    Searle, Jeremy B.
    Cornell University, NY USA .
    Land-Bridge Calibration of Molecular Clocks and the Post-Glacial Colonization of Scandinavia by the Eurasian Field Vole Microtus agrestis2014In: PLOS ONE, E-ISSN 1932-6203, Vol. 9, no 8, p. e103949-Article in journal (Refereed)
    Abstract [en]

    Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole ( Microtus agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south, however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate estimated here and those obtained by sampling heterochronous (ancient) DNA ( including that of a congeneric species) suggest that there is little disparity between the measured genetic divergence and the population divergence that is implicit in our land-bridge calibration.

    Download full text (pdf)
    fulltext
  • 11.
    Beysard, M
    et al.
    University of Bern.
    Perrin, N
    University of Lausanne.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Heckel, G
    University of Bern.
    Vogel, P
    University of Lausanne.
    Asymmetric and differential gene introgression at a contact zone between two highly divergent lineages of field voles (Microtus agrestis)2012In: Journal of Evolutionary Biology, ISSN 1010-061X, E-ISSN 1420-9101, Vol. 25, no 2, p. 400-408Article in journal (Refereed)
    Abstract [en]

    Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldanes effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.

  • 12.
    Pauperio, J
    et al.
    University of Porto, Portugal University of York, England University of Porto, Portugal .
    Herman, J S
    University of York, England National Museums Scotland, Scotland .
    Melo-Ferreira, J
    University of Porto, Portugal .
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Alves, P C
    University of Porto, Portugal University of Porto, Portugal University of Montana, MT 59801 USA .
    Searle, J B
    University of York, England Cornell University, NY 14853 USA .
    Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in Eurasia2012In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 21, no 24, p. 6015-6032Article in journal (Refereed)
    Abstract [en]

    Species are generally described from morphological features, but there is growing recognition of sister forms that show substantial genetic differentiation without obvious morphological variation and may therefore be considered cryptic species. Here, we investigate the field vole (Microtus agrestis), a Eurasian mammal with little apparent morphological differentiation but which, on the basis of previous sex-linked nuclear and mitochondrial DNA (mtDNA) analyses, is subdivided into a Northern and a Southern lineage, sufficiently divergent that they may represent two cryptic species. These earlier studies also provided limited evidence for two major mtDNA lineages within Iberia. In our present study, we extend these findings through a multilocus approach. We sampled 163 individuals from 46 localities, mainly in Iberia, and sequenced seven loci, maternally, paternally and biparentally inherited. Our results show that the mtDNA lineage identified in Portugal is indeed a distinct third lineage on the basis of other markers as well. In fact, multilocus coalescent-based methods clearly support three separate evolutionary units that may represent cryptic species: Northern, Southern and Portuguese. Divergence among these units was inferred to have occurred during the last glacial period; the Portuguese lineage split occurred first (estimated at c. 70 000 bp), and the Northern and Southern lineages separated at around the last glacial maximum (estimated at c. 18 500 bp). Such recent formation of evolutionary units that might be considered species has repercussions in terms of understanding evolutionary processes and the diversity of small mammals in a European context.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf