liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 66
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ali, Tahir
    et al.
    Univ Calgary, Canada.
    Klein, Antonia N.
    Univ Calgary, Canada.
    McDonald, Keegan
    Univ Calgary, Canada.
    Johansson, Lovisa
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Mukherjee, Priyanka Ganguli
    Univ Calgary, Canada.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Doh-ura, Katsumi
    Tohoku Univ, Japan.
    Schatzl, Hermann M.
    Univ Calgary, Canada.
    Gilch, Sabine
    Univ Calgary, Canada.
    Cellulose ether treatment inhibits amyloid beta aggregation, neuroinflammation and cognitive deficits in transgenic mouse model of Alzheimers disease2023In: Journal of Neuroinflammation, ISSN 1742-2094, E-ISSN 1742-2094, Vol. 20, no 1, article id 177Article in journal (Refereed)
    Abstract [en]

    Alzheimers disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD is associated with the aggregation and accumulation of amyloid beta (A & beta;), a major neurotoxic mediator that triggers neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have beneficial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replication mechanism with A & beta;. CEs are FDA-approved safe additives in foods and pharmaceuticals. Herein, for the first time we determined the therapeutic effects of the representative CE (TC-5RW) in AD using in vitro and in vivo models. Our in vitro studies showed that TC-5RW inhibits A & beta; aggregation, as well as neurotoxicity and immunoreactivity in A & beta;-exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single and weekly TC-5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model of AD. We further demonstrate that TC-5RW treatment of 5XFAD mice significantly inhibited A & beta; oligomer and plaque burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory mediator glial maturation factor beta (GMF & beta;). Additionally, we determined that TC-5RW reduced lipopolysaccharide-induced activated gliosis and GMF & beta; in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects against A & beta; pathologies and cognitive impairments, and direct, potent anti-inflammatory activity to rescue neuroinflammation. Therefore, these FDA-approved compounds are effective candidates for developing therapeutics for AD and related neurodegenerative diseases associated with protein misfolding.

  • 2.
    Saleh, Muna Atallah
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Medicine Center, Department of Rheumatology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Sjöwall, Christopher
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Medicine Center, Department of Rheumatology.
    A rare case of idiopathic multicentric Castleman disease in a patient with long-standing systemic autoimmunity2022In: Scandinavian Journal of Rheumatology, ISSN 0300-9742, E-ISSN 1502-7732, Vol. 51, no 2, p. 161-163Article in journal (Other academic)
    Download full text (pdf)
    fulltext
  • 3.
    Moudio, Serge
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Rodin, Fredrik
    Linköping University, Department of Biomedical and Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Albargothy, Nazira
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Karlsson, Urban
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Reyes, Juan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Exposure of alpha-Synuclein Aggregates to Organotypic Slice Cultures Recapitulates Key Molecular Features of Parkinsons Disease2022In: Frontiers in Neurology, E-ISSN 1664-2295, Vol. 13, article id 826102Article in journal (Refereed)
    Abstract [en]

    The accumulation of proteinaceous deposits comprised largely of the alpha-synuclein protein is one of the main hallmarks of Parkinsons disease (PD) and related synucleinopathies. Their progressive development coincides with site-specific phosphorylation, oxidative stress and eventually, compromised neuronal function. However, modeling protein aggregate formation in animal or in vitro models has proven notably difficult. Here, we took advantage of a preclinical organotypic brain slice culture model to study alpha-synuclein aggregate formation ex vivo. We monitored the progressive and gradual changes induced by alpha-synuclein such as cellular toxicity, autophagy activation, mitochondrial dysfunction, cellular death as well as alpha-synuclein modification including site-specific phosphorylation. Our results demonstrate that organotypic brain slice cultures can be cultured for long periods of time and when cultured in the presence of aggregated alpha-synuclein, the molecular features of PD are recapitulated. Taken together, this ex vivo model allows for detailed modeling of the molecular features of PD, thus enabling studies on the cumulative effects of alpha-synuclein in a complex environment. This provides a platform to screen potential disease-modifying therapeutic candidates aimed at impeding alpha-synuclein aggregation and/or cellular transmission. Moreover, this model provides a robust replacement for in vivo studies that do not include behavioral experiments, thus providing a way to reduce the number of animals used in an accelerated timescale.

    Download full text (pdf)
    fulltext
  • 4.
    Wahl, Joel
    et al.
    Lulea Univ Technol, Sweden.
    Klint, Elisabeth
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hillman, Jan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Ramser, Kerstin
    Lulea Univ Technol, Sweden.
    Impact of preprocessing methods on the Raman spectra of brain tissue2022In: Biomedical Optics Express, E-ISSN 2156-7085, Vol. 13, no 12, p. 6763-6777Article in journal (Refereed)
    Abstract [en]

    Delineating cancer tissue while leaving functional tissue intact is crucial in brain tumor resection. Despite several available aids, surgeons are limited by preoperative or subjective tools. Raman spectroscopy is a label-free optical technique with promising indications for tumor tissue identification. To allow direct comparisons between measurements preprocessing of the Raman signal is required. There are many recognized methods for preprocessing Raman spectra; however, there is no universal standard. In this paper, six different preprocessing methods were tested on Raman spectra (n > 900) from fresh brain tissue samples (n = 34). The sample cohort included both primary brain tumors, such as adult-type diffuse gliomas and meningiomas, as well as metastases of breast cancer. Each tissue sample was classified according to the CNS WHO 2021 guidelines. The six methods include both direct and iterative polynomial fitting, mathematical morphology, signal derivative, commercial software, and a neural network. Data exploration was performed using principal component analysis, t-distributed stochastic neighbor embedding, and k-means clustering. For each of the six methods, the parameter combination that explained the most variance in the data, i.e., resulting in the highest Gap-statistic, was chosen and compared to the other five methods. Depending on the preprocessing method, the resulting clusters varied in number, size, and associated spectral features. The detected features were associated with hemoglobin, neuroglobin, carotenoid, water, and protoporphyrin, as well as proteins and lipids. However, the spectral features seen in the Raman spectra could not be unambiguously assigned to tissue labels, regardless of preprocessing method. We have illustrated that depending on the chosen preprocessing method, the spectral appearance of Raman features from brain tumor tissue can change. Therefore, we argue both for caution in comparing spectral features from different Raman studies, as well as the importance of transparency of methodology and implementation of the preprocessing. As discussed in this study, Raman spectroscopy for in vivo guidance in neurosurgery requires fast and adaptive preprocessing. On this basis, a pre-trained neural network appears to be a promising approach for the operating room.

    Download full text (pdf)
    fulltext
  • 5.
    Azevedo, Carla
    et al.
    Lund Univ, Sweden.
    Teku, Gabriel
    Lund Univ, Sweden.
    Pomeshchik, Yuriy
    Lund Univ, Sweden.
    Reyes, Juan F.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Chumarina, Margarita
    Lund Univ, Sweden.
    Russ, Kaspar
    H Lundbeck & Co AS, Denmark; Lund Univ, Sweden.
    Savchenko, Ekaterina
    Lund Univ, Sweden.
    Hammarberg, Anna
    Lund Univ, Sweden.
    Lamas, Nuno Jorge
    Univ Minho, Portugal; PT Govt Associate Lab, Portugal; Ctr Hosp & Univ Porto, Portugal.
    Collin, Anna
    Reg Skane Off Med Serv, Sweden.
    Gouras, Gunnar K.
    Lund Univ, Sweden.
    Klementieva, Oxana
    Lund Univ, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Taipa, Ricardo
    Ctr Hosp Univ Porto, Portugal.
    Vihinen, Mauno
    Lund Univ, Sweden.
    Roybon, Laurent
    Lund Univ, Sweden.
    Parkinsons disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties2022In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, no 12, article id e2111405119Article in journal (Refereed)
    Abstract [en]

    Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinsons disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4(+) oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4(+) OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4(+) OLCs, but not in SNCA(trip) O4(+) OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4(+) OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4(+) OLCs with MSA O4(+) OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4(+) OLCs.

    Download full text (pdf)
    fulltext
  • 6.
    Lysiak, Malgorzata
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Trybula, Malgorzata
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Poznan Univ Med Sci, Poland.
    Mudaisi, Munila
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Bratthäll, Charlotte
    Dist Hosp, Sweden.
    Strandeus, Michael
    Ryhov Hosp, Sweden.
    Milos, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Malmström, Annika
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Närvårdskliniken.
    The sex-dependent role of the androgen receptor in glioblastoma: results of molecular analyses2022In: Molecular Oncology, ISSN 1574-7891, E-ISSN 1878-0261, Vol. 16, no 19, p. 3436-3451Article in journal (Refereed)
    Abstract [en]

    We sought to analyse the androgen receptor (AR) in glioblastoma (GBM) due to the location of the AR gene on chromosome X, often reported with shorter survival and higher prevalence of GBM among males. Copy number (CN) and mRNA expression of AR were tested with droplet digital PCR in 91 fresh-frozen GBM samples and 170 formalin-fixed, paraffin-embedded samples collected at Linkoping University Hospital. The fresh-frozen cohort was also subjected to pyrosequencing methylation analysis of 17 CpG sites in the AR promoter. Additionally, the gene expression of AR was analysed in the fresh-frozen cohort and The Cancer Genome Atlas (TCGA) cohort of isocitrate dehydrogenase wild-type primary GBM (135 females and 219 males). The association of AR expression and overall survival (OS) was tested with Kaplan-Meier log rank analysis after dichotomisation by maximally selected rank statistics. We found that AR CN alterations were more common in female GBM. AR gene expression correlated with methylation levels of different CpG sites in males and females but there was no difference in expression between sexes. Survival analysis of TCGA cohort revealed the opposite effect of AR overexpression on OS of males and females, with high AR expression correlating with shorter OS in females and longer OS in males. Additional gene set enrichment analysis showed that AR expression correlated with DNA repair response, especially in the male group. In summary, we found that high AR gene expression in GBM exhibits sex-dependent effects on patient survival, which, for males, is linked to DNA repair response.

    Download full text (pdf)
    fulltext
  • 7.
    Reyes, Juan
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Ekmark-Lewen, Sara
    Uppsala Univ, Sweden.
    Perdiki Grigoriadi, Marina
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Klingstedt, Therése
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hoffmann, Alana
    Friedrich Alexander Univ Erlangen Nurnberg, Germany.
    Wiechec, Emilia
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Per
    Karolinska Inst, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Alafuzoff, Irina
    Uppsala Univ Hosp, Sweden.
    Ingelsson, Martin
    Uppsala Univ, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinsons disease2021In: Acta neuropathologica communications, E-ISSN 2051-5960, Vol. 9, no 1, article id 46Article in journal (Refereed)
    Abstract [en]

    Alpha-synuclein (alpha-syn) aggregation is the hallmark pathological lesion in brains of patients with Parkinsons disease (PD) and related neurological disorders characterized as synucleinopathies. Accumulating evidence now indicates that alpha-syn deposition is also present within the gut and other peripheral organs outside the central nervous system (CNS). In the current study, we demonstrate for the first time that alpha-syn pathology also accumulates within the liver, the main organ responsible for substance clearance and detoxification. We further demonstrate that cultured human hepatocytes readily internalize oligomeric alpha-syn assemblies mediated, at least in part, by the gap junction protein connexin-32 (Cx32). Moreover, we identified a time-dependent accumulation of alpha-syn within the liver of three different transgenic (tg) mouse models expressing human alpha-syn under CNS-specific promoters, despite the lack of alpha-syn mRNA expression within the liver. Such a brain-to-liver transmission route could be further corroborated by detection of alpha-syn pathology within the liver of wild type mice one month after a single striatal alpha-syn injection. In contrast to the synucleinopathy models, aged mice modeling AD rarely show any amyloid-beta (Ass) deposition within the liver. In human post-mortem liver tissue, we identified cases with neuropathologically confirmed alpha-syn pathology containing alpha-syn within hepatocellular structures to a higher degree (75%) than control subjects without alpha-syn accumulation in the brain (57%). Our results reveal that alpha-syn accumulates within the liver and may be derived from the brain or other peripheral sources. Collectively, our findings indicate that the liver may play a role in the clearance and detoxification of pathological proteins in PD and related synucleinopathies.

    Download full text (pdf)
    fulltext
  • 8.
    Lysiak, Malgorzata
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Smits, Anja
    Univ Gothenburg, Sweden; Uppsala Univ, Sweden.
    Roodakker, Kenney Roy
    Uppsala Univ, Sweden.
    Sandberg, Elisabeth
    Uppsala Univ, Sweden.
    Dimberg, Anna
    Uppsala Univ, Sweden.
    Mudaisi, Munila
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Bratthall, Charlotte
    Dist Hosp, Sweden.
    Strandeus, Michael
    Ryhov Hosp, Sweden.
    Milos, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Söderkvist, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Malmström, Annika
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Närvårdskliniken.
    Deletions on Chromosome Y and Downregulation of the SRY Gene in Tumor Tissue Are Associated with Worse Survival of Glioblastoma Patients2021In: Cancers, ISSN 2072-6694, Vol. 13, no 7, article id 1619Article in journal (Refereed)
    Abstract [en]

    Simple Summary Glioblastoma (GBM) is one of the most common and most aggressive brain tumors with higher prevalence among men than women. Loss of chromosome Y (LOY) in the peripheral blood cells has been associated with increased risk of developing cancer. However, there is a lack of data about LOY in GBM tumor tissue and the potential impact on patients prognosis. Through droplet digital PCR (ddPCR) analysis of 10 markers spread throughout chromosome Y in 105 male GBM patients, we were able to identify deletion of SRY gene as a factor strongly correlating with reduced overall survival. This finding was later corroborated by the analysis of GBM gene expression data collected in TCGA, showing correlation between decreased SRY expression and shortened overall survival. Background: Biological causes of sex disparity seen in the prevalence of cancer, including glioblastoma (GBM), remain poorly understood. One of the considered aspects is the involvement of the sex chromosomes, especially loss of chromosome Y (LOY). Methods: Tumors from 105 isocitrate dehydrogenase (IDH) wild type male GBM patients were tested with droplet digital PCR for copy number changes of ten genes on chromosome Y. Decreased gene expression, a proxy of gene loss, was then analyzed in 225 IDH wild type GBM derived from TCGA and overall survival in both cohorts was tested with Kaplan-Meier log-rank analysis and maximally selected rank statistics for cut-off determination. Results: LOY was associated with significantly shorter overall survival (7 vs. 14.6 months, p = 0.0016), and among investigated individual genes survival correlated most prominently with loss of the sex-determining region Y gene (SRY) (10.8 vs. 14.8 months, p = 0.0031). Gene set enrichment analysis revealed that epidermal growth factor receptor, platelet-derived growth factor receptor, and MYC proto-oncogene signaling pathways are associated with low SRY expression. Conclusion: Our data show that deletions and reduced gene expression of chromosome Y genes, especially SRY, are associated with reduced survival of male GBM patients and connected to major susceptibility pathways of gliomagenesis.

    Download full text (pdf)
    fulltext
  • 9.
    Richter, Johan
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Haj-Hosseini, Neda
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Optical Brain Biopsy with a Fluorescence and Vessel Tracing Probe2021In: Operative Neurosurgery, ISSN 2332-4252, E-ISSN 2332-4260, Vol. 21, no 4, p. 217-224Article in journal (Refereed)
    Abstract [en]

    BACKGROUND Accurate stereotactic biopsies of brain tumors are imperative for diagnosis and tailoring of the therapy. Repetitive needle insertions enhance risks of brain lesioning, hemorrhage, and complications due to prolonged procedure.

    OBJECTIVE To investigate clinical benefits of a combined 5-aminolaevulinic acid (5-ALA) fluorescence and laser Doppler flowmetry system for the detection of malignant brain tumor and blood vessels in stereotactic biopsies.

    METHODS Planning of targets and trajectories was followed by optical measurements in 20 patients, using the Leksell Stereotactic System and a manual insertion device. Fluorescence spectra, microvascular blood flow, and tissue grayness were recorded each millimeter along the paths. Biopsies were taken at preplanned positions. The diagnoses were compared with the fluorescence signals. The recordings were plotted against measurement positions and compared. Sites indicating a risk of hemorrhage were counted as well as the time for the procedures.

    RESULTS Signals were recorded along 28 trajectories, and 78 biopsies were collected. The final diagnosis showed 17 glioblastomas, 2 lymphomas, and 1 astrocytoma grade III. Fluorescence was seen along 23 of the paths with 4 having the peak of 5-ALA fluorescence 3 mm or more from the precalculated target. There was increased microcirculation in 40 of 905 measured positions. The measurement time for each trajectory was 5 to 10 min.

    CONCLUSION The probe provided direct feedback of increased blood flow along the trajectory and of malignant tissue in the vicinity of the target. The method can increase the precision and the safety of the biopsy procedure and reduce time.

    Download full text (pdf)
    fulltext
  • 10.
    Wahl, Joel
    et al.
    Lulea Univ Technol, Sweden.
    Klint, Elisabeth
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hillman, Jan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Ramser, Kerstin
    Lulea Univ Technol, Sweden.
    Raman spectroscopic analysis of fresh tissue samples from brain tumors2021In: DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII, SPIE-INT SOC OPTICAL ENGINEERING , 2021, Vol. 11920, article id 119201FConference paper (Refereed)
    Abstract [en]

    We have applied a CNN to preprocess Raman spectra from fresh tissue samples from brain tumors. The neural network can handle the variations that occur naturally, which enables explorative data analysis methods such as PCA.

  • 11.
    Malmström, Annika
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Närvårdskliniken.
    Lysiak, Malgorzata
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Åkesson, Lisa
    Linköping University, Department of Biomedical and Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Regionledningskontoret, Regional Cancer Center.
    Jakobsen Falk, Ingrid
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Mudaisi, Munila
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Milos, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Fomichov Casaballe, Victoria
    Linköping University, Department of Medical and Health Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Regionledningskontoret, Enheten för folkhälsa.
    Broholm, Helle
    Copenhagen Univ Hosp, Denmark.
    Grunnet, Kirsten
    Copenhagen Univ Hosp, Denmark.
    Poulsen, Hans Skovgaard
    Copenhagen Univ Hosp, Denmark; Copenhagen Univ Hosp, Denmark.
    Bratthall, Charlotte
    Cty Hosp, Sweden.
    Strandeus, Michael
    Ryhov Hosp, Sweden.
    Papagiannopoulou, Angeliki
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Stenmark-Askmalm, Marie
    Lund Univ, Sweden.
    Green, Henrik
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. Natl Board Forens Med, Dept Forens Genet and Forens Toxicol, Linkoping, Sweden.
    Söderkvist, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    ABCB1 single-nucleotide variants and survival in patients with glioblastoma treated with radiotherapy concomitant with temozolomide2020In: The Pharmacogenomics Journal, ISSN 1470-269X, E-ISSN 1473-1150, Vol. 20, no 2, p. 213-219Article in journal (Refereed)
    Abstract [en]

    Standard treatment for glioblastoma (GBM) patients is surgery and radiochemotherapy (RCT) with temozolomide (TMZ). TMZ is a substrate for ABCB1, a transmembrane drug transporter. It has been suggested that survival for GBM patients receiving TMZ is influenced by different single-nucleotide variants (SNV) of ABCB1. We therefore examined SNV:s of ABCB1, namely 1199Gamp;gt;A, 1236Camp;gt;T, 2677Gamp;gt;T/A, and 3435Camp;gt;T and correlated to survival for GBM patients receiving RCT. In a pilot cohort (97 patients) a significant correlation to survival was found for SNV 1199Gamp;gt;A, with median OS for variant G/G patients being 18.2 months versus 11.5 months for A/G (p = 0.012). We found no correlation to survival for the other SNV:s. We then expanded the cohort to 179 patients (expanded cohort) and also included a confirmatory cohort (49 patients) focusing on SNV 1199Gamp;gt;A. Median OS for G/G versus A/G plus A/A was 15.7 and 11.5 months, respectively (p = 0.085) for the expanded cohort and 13.8 versus 16.8 months (p = 0.19) for the confirmatory. In conclusion, in patients with GBM receiving RCT with TMZ, no correlation with survival was found for the SNV:s 1236Camp;gt;T, 2677Gamp;gt;T/A, and 3435Camp;gt;T of ABCB1. Although the SNV 1199Gamp;gt;A might have some impact, a clinically significant role could not be confirmed.

  • 12.
    Sackmann, Christopher
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Oligomeric amyloid-beta induces early and widespread changes to the proteome in human iPSC-derived neurons2020In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1, article id 6538Article in journal (Refereed)
    Abstract [en]

    Alzheimer’s disease (AD) is the most common form of dementia globally and is characterized by aberrant accumulations of amyloid-beta (Aβ) and tau proteins. Oligomeric forms of these proteins are believed to be most relevant to disease progression, with oligomeric amyloid-β (oAβ) particularly implicated in AD. oAβ pathology spreads among interconnected brain regions, but how oAβ induces pathology in these previously unaffected neurons requires further study. Here, we use well characterized iPSC-derived human neurons to study the early changes to the proteome and phosphoproteome after 24 h exposure to oAβ 1-42. Using nLC-MS/MS and label-free quantification, we identified several proteins that are differentially regulated in response to acute oAβ challenge. At this early timepoint, oAβ induced the decrease of TDP-43, heterogeneous nuclear ribonucleoproteins (hnRNPs), and coatomer complex I (COPI) proteins. Conversely, increases were observed in 20 S proteasome subunits and vesicle associated proteins VAMP1/2, as well as the differential phosphorylation of tau at serine 208. These changes show that there are widespread alterations to the neuronal proteome within 24 h of oAβ uptake, including proteins previously not shown to be related to neurodegeneration. This study provides new targets for the further study of early mediators of AD pathogenesis.

    Download full text (pdf)
    fulltext
  • 13.
    Sackmann, Christopher
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Sackmann, Valerie
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    TDP-43 Is Efficiently Transferred Between Neuron-Like Cells in a Manner Enhanced by Preservation of Its N-Terminus but Independent of Extracellular Vesicles2020In: Frontiers in Neuroscience, ISSN 1662-4548, E-ISSN 1662-453X, FRONTIERS IN NEUROSCIENCE, Vol. 14, article id 540Article in journal (Refereed)
    Abstract [en]

    The misfolding of transactive response DNA-binding protein (TDP-43) is a major contributor to the pathogenesis of TDP-43 proteinopathies, including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions, but also plays a role in other neurodegenerative diseases including Alzheimer disease. It is thought that different truncations at the N- and C-termini of TDP-43 contribute to its misfolding and aggregation in the brain, and that these aberrant TDP-43 fragments contribute to disease. Despite this, little is known about whether different truncation events influence the proteins transmissibility between cells and how this cell-to-cell transfer occurs. In this study, we use a well-established cellular model to study the efficiency by which full-length and truncated TDP-43 fragments are transferred between neuron-like cells. We demonstrate that preservation of the N-terminus of TDP-43 enhances its transmissibility between cells and that this protein transmission occurs in a manner exclusive of extracellular vesicles, instead requiring cellular proximity for efficient propagation. These data indicate that the N-terminus of TDP-43 might be a useful target in the generation of therapeutics to limit the spread of TDP-43 pathology.

  • 14.
    Reyes, Juan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Sackmann, Christopher
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Hoffmann, Alana
    Univ Hosp Erlangen, Germany.
    Svenningsson, Per
    Karolinska Inst, Sweden.
    Winkler, Juergen
    Univ Hosp Erlangen, Germany.
    Ingelsson, Martin
    Uppsala Univ, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes2019In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 138, no 1, p. 23-47Article in journal (Refereed)
    Abstract [en]

    The intercellular transfer of alpha-synuclein (-syn) has been implicated in the progression of Parkinsons disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of -syn oligomeric assemblies (o-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and o-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked o-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with -syn accumulation. Notably, we could alsodemonstrate a direct interaction between -syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related -synucleinopathies.

    Download full text (pdf)
    fulltext
  • 15.
    Sackmann, Valerie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Sardar Sinha, Maitrayee
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Sackmann, Christopher
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Civitelli, Livia
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Bergstrom, Joakim
    Uppsala Univ, Sweden.
    Ansell - Schultz, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Inhibition of nSMase2 Reduces the Transfer of Oligomeric alpha-Synuclein Irrespective of Hypoxia2019In: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 12, article id 200Article in journal (Refereed)
    Abstract [en]

    Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of alpha-synuclein (alpha-syn). However, the regulation of EV biogenesis and its relation to Parkinsons disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of alpha-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight alpha-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of alpha-syn. These data show that altering sphingolipids can mitigate the spread of alpha-syn, even under hypoxic conditions, potentially suppressing PD progression.

    Download full text (pdf)
    fulltext
  • 16.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Optical guidance during stereotactic brain tumor biopsy2019Conference paper (Other academic)
  • 17.
    Wårdell, Karin
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Haj-Hosseini, Neda
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hillman, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Optical measurements with 5-ALA during surgical resection of brain tumors in children2019Conference paper (Other academic)
  • 18.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Milos, Peter
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    5-ALA fluorescence and laser Doppler flowmetry for guidance in a stereotactic brain tumor biopsy2018In: Biomedical Optics Express, E-ISSN 2156-7085, Vol. 9, no 5, p. 2284-2296Article in journal (Refereed)
    Abstract [en]

    A fiber optic probe was developed for guidance during stereotactic brain biopsy procedures to target tumor tissue and reduce the risk of hemorrhage. The probe was connected to a setup for the measurement of 5-aminolevulinic acid (5-ALA) induced fluorescence and microvascular blood flow. Along three stereotactic trajectories, fluorescence (n = 109) and laser Doppler flowmetry (LDF) (n = 144) measurements were done in millimeter increments. The recorded signals were compared to histopathology and radiology images. The median ratio of protoporphyrin IX (PpIX) fluorescence and autofluorescence (AF) in the tumor was considerably higher than the marginal zone (17.3 vs 0.9). The blood flow showed two high spots (3%) in total. The proposed setup allows simultaneous and real-time detection of tumor tissue and microvascular blood flow for tracking the vessels.

    Download full text (pdf)
    fulltext
  • 19.
    Sardar Sinha, Maitrayee
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Ansell - Schultz, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Civitelli, Livia
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Larsson, Max
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Lannfelt, Lars
    Uppsala Univ, Sweden; BioArctic AB, Sweden.
    Ingelsson, Martin
    Uppsala Univ, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Alzheimers disease pathology propagation by exosomes containing toxic amyloid-beta oligomers2018In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 136, no 1, p. 41-56Article in journal (Refereed)
    Abstract [en]

    The gradual deterioration of cognitive functions in Alzheimers disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimers disease and that they could serve as targets for development of new diagnostic and therapeutic principles.

    Download full text (pdf)
    fulltext
  • 20.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Kobayashi Frisk, Lisa
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Fluorescence Guidance for Brain Tumor Biopsies2018Conference paper (Refereed)
    Abstract [en]

    To provide guidance during stereotactic biopsy in brain tumors, fluorescence spectroscopy was used in ten patients. It was shown that the fiber optical probe could provide real-time guidance with clear fluorescence in all patients.

  • 21.
    Bruhn, H.
    et al.
    Cty Hosp Ryhov, Sweden.
    Strandeus, M.
    Cty Hosp Ryhov, Sweden.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Vrethem, Magnus
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Neurology.
    Lind, Jonas
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Cty Hosp Ryhov, Sweden.
    Improved survival of Swedish glioblastoma patients treated according to Stupp2018In: Acta Neurologica Scandinavica, ISSN 0001-6314, E-ISSN 1600-0404, Vol. 138, no 4, p. 332-337Article in journal (Refereed)
    Abstract [en]

    ObjectivesThe median survival in glioblastoma (GBM) patients used to be less than 1year. Surgical removal of the tumor with subsequent concomitant radiation/temozolomide (the Stupp regimen) has been shown to prolong survival. The Stupp protocol was implemented in the county of Jonkoping in 2006. The purpose of this study was to examine if the Stupp treatment has prolonged overall survival, in an unselected patient cohort with histologically verified GBM. Material and MethodThis study includes all patients from the county of Jonkoping, with a diagnosis of GBM from January 2001 to December 2012. Patients were divided into 2 cohorts, 2001-2005 and 2006-2012, that is before and after implementation of the Stupp regimen. By reviewing the medical case notes, the dates of the histological diagnosis and of death were identified. The median and mean overall survival and Kaplan-Meier survival analysis were calculated and compared between the 2 cohorts. ResultsThe mean survival was 110days longer in the cohort treated according to the Stupp regimen. Four patients in the 2006-2012 cohort and 1 patient in the 2001-2005 cohort are still alive. When comparing survival in patients with radical surgery vs biopsy, those that underwent radical surgery survived longer. The significance was slightly greater in the 2001-2005 cohort (mean 163 vs 344days, Pamp;lt;.001) than in the 2006-2012 cohort (mean 220 vs 397days, P=.02). ConclusionSurvival significantly improved after the implementation of the Stupp regimen in the study region of Sweden.

  • 22.
    Sardar Sinha, Maitrayee
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Villamil Giraldo, Ana Maria
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Öllinger, Karin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Civitelli, Livia
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Lipid vesicles affect the aggregation of 4-hydroxy-2-nonenal-modified alpha-synuclein oligomers2018In: Biochimica et Biophysica Acta - Molecular Basis of Disease, ISSN 0925-4439, E-ISSN 1879-260X, Vol. 1864, no 9, p. 3060-3068Article in journal (Refereed)
    Abstract [en]

    Parkinsons disease (PD) and other synucleinopathies are characterized by accumulation of misfolded aggregates of alpha-synuclein (alpha-syn). The normal function of alpha-syn is still under investigation, but it has been generally linked to synaptic plasticity, neurotransmitter release and the maintenance of the synaptic pool. alpha-Syn localizes at synaptic terminals where it can bind to synaptic vesicles as well as to other cellular membranes. It has become clear that these interactions have an impact on both alpha-syn functional role and its propensity to aggregate. In this study, we investigated the aggregation process of alpha-syn covalently modified with 4-hydroxy-2-nonenal (HNE). HNE is a product of lipid peroxidation and has been implicated in the pathogenesis of different neurodegenerative diseases by modifying the kinetics of soluble toxic oligomers. Although HNE-modified alpha-syn has been reported to assemble into stable oligomers, we found that slightly acidic conditions promoted further protein aggregation. Lipid vesicles delayed the aggregation process in a concentration-dependent manner, an effect that was observed only when they were added at the beginning of the aggregation process. Co-aggregation of lipid vesicles with HNE-modified alpha-syn also induced cytotoxic effects on differentiated SHSY-SY cells. Under conditions in which the aggregation process was delayed cell viability was reduced. By exploring the behavior and potential cytotoxic effects of HNE-alpha-syn under acidic conditions in relation to protein-lipid interactions our study gives a framework to examine a possible pathway leading from a physiological setting to the pathological outcome of PD.

  • 23.
    Ansell - Schultz, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Reyes, Juan
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Samuelsson, My
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Reduced retromer function results in the accumulation of amyloid-beta oligomers2018In: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 93, p. 18-26Article in journal (Refereed)
    Abstract [en]

    Alzheimers disease (AD) is a neurodegenerative disorder characterized by a progressive loss of multiple cognitive functions. Accumulation of amyloid beta oligomers (oA beta) play a major role in the neurotoxicity associated with the disease process. One of the early affected brain regions is the hippocampus, wherein a reduction of the vacuolar protein sorting-associated protein 35 (VPS35), the core protein comprising the retromer complex involved in cellular cargo sorting, has been identified. To investigate the role of the retromer function on the accumulation and clearance of oA beta, we reduced retromer function by selectively inhibiting VPS35 gene expression using siRNA in differentiated neuronal SH-SY5Y cells. As cell-to-cell transfer of oA beta to new brain regions is believed to be important for disease progression we investigated the effect of VPS35 reduction both in cells with direct uptake of oA beta and in cells receiving oA beta from donor cells. We demonstrate that reduced retromer function increases oA beta accumulation in both cell systems, both the number of cells containing intracellular oA beta and the amount within them. This effect was shown at different time points and regardless if the AD originated from the extracellular milieu or via a direct neuronal cell-to-cell transfer. Interestingly, not only did reduced VPS35 cause oA beta accumulation, but oA beta treatment alone also lead to a reduction of VPS35 protein content. The accumulated oA beta seems to co-localize with VPS35 and early endosome markers. Together, these findings provide evidence that reduced retromer function decreases the ability for neurons to transport and clear neurotoxic oA beta received through different routes resulting in the accumulation of oA beta. Thus, enhancing retromer function may be a potential therapeutic strategy to slow down the pathophysiology associated with the progression of AD.

  • 24.
    Gustafsson, Gabriel
    et al.
    Uppsala Univ, Sweden.
    Loov, Camilla
    Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Persson, Emma
    Uppsala Univ, Sweden.
    Lazaro, Diana F.
    Univ Med Ctr Gottingen, Germany.
    Takeda, Shuko
    Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Bergstrom, Joakim
    Uppsala Univ, Sweden.
    Erlandsson, Anna
    Uppsala Univ, Sweden.
    Sehlin, Dag
    Uppsala Univ, Sweden.
    Balaj, Leonora
    Massachusetts Gen Hosp, MA 02129 USA; Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Gyorgy, Bence
    Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Outeiro, Tiago F.
    Univ Med Ctr Gottingen, Germany; Max Planck Inst Expt Med, Germany; Newcastle Univ, England.
    Breakefield, Xandra O.
    Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Hyman, Bradley T.
    Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Ingelsson, Martin
    Uppsala Univ, Sweden; Massachusetts Gen Hosp, MA 02129 USA; Massachusetts Gen Hosp, MA 02129 USA; Harvard Med Sch, MA 02115 USA.
    Secretion and Uptake of -Synuclein Via Extracellular Vesicles in Cultured Cells2018In: Cellular and molecular neurobiology, ISSN 0272-4340, E-ISSN 1573-6830, Vol. 38, no 8, p. 1539-1550Article in journal (Refereed)
    Abstract [en]

    In Parkinsons disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular -synuclein (-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of -syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of -syn can influence the distribution and secretion of -syn in human neuroblastoma cells. Different -syn variants, including -syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted -syn, 0.1-2% was associated with vesicles. The major part of EV -syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For -syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT -syn. Moreover, such EV-associated -syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T -syn displayed an increased association with EVs. Taken together, our data suggest that -syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful -syn species and thereby contribute to the pathology in -synucleinopathies.

  • 25.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Stereotactic Brain Tumor Optical Biopsy2018Conference paper (Other academic)
    Abstract [en]

    To provide guidance for targeting diagnostic tumor tissue and to avoid vessel rupture during the biopsy procedure an application specific fiber optic probe was devel-oped. The setup incorporated an in-house developed fluorescence spectroscopy system for 5-aminolevulinic acid (5-ALA) induced protopophyrin IX (PpIX) for detection in the tumor, and laser Doppler flowmeter (LDF) system for measurement of blood perfusion. Fluorescence and blood flow were recorded millimeter-wise towards the pre-calculated target. In conclusion, the optical probe made real-time detection of tumor possible and has a potential for vessel detection during the biopsy procedures. Moreover, the PpIX fluorescence, autofluorescence and blood flow in the tumor could be studied at precise positions in the brain and the tumor. In the next step, further anal-ysis will be added.

  • 26.
    Sackmann, Valerie
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Ansell - Schultz, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Sackmann, Christopher
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Lund, Harald
    Karolinska Hospital Solna, Sweden.
    Harris, Robert A.
    Karolinska Hospital Solna, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Nilsberth, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Acute Internal Medicine and Geriatrics.
    Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells2017In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 60, p. 173-182Article in journal (Refereed)
    Abstract [en]

    Neuroinflammation plays an influential role in Alzheimers disease (AD), although the mechanisms underlying this phenomenon remain largely unknown. Microglia are thought to be responsible for the majority of these effects and can be characterized into resting (M0), proinflammatory (M1), or anti-inflammatory (M2) functional phenotypes. We investigated the effects of conditioned macrophage media, as an analogue to microglia, on the transfer of oligomeric amyloid beta (oA beta) between differentiated SH-SY5Y cells. We also investigated how the different inflammatory environments related to intercellular and intracellular changes. We demonstrate that M2 products decrease interneuronal transfer of oA beta, while recombinant interleukin (IL)-4, IL-10, and IL-13 increase transfer. There were no alterations to the mRNA of a number of AD-related genes in response to the combination of oA beta and M0, M1, or M2, but several intracellular proteins, some relating to protein trafficking and the endosomal/lysosomal system, were altered. Stimulating microglia to an M2 phenotype may thus slow down the progression of AD and could be a target for future therapies. (C) 2017 Elsevier Inc. All rights reserved.

  • 27.
    Richter, Johan
    et al.
    Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Haj Hosseini, Neda
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Combination of Hand-Held Probe and Microscopy for Fluorescence Guided Surgery in the Brain Tumor Marginal Zone2017In: Photodiagnosis and Photodynamic Therapy, ISSN 1572-1000, Vol. 18, p. 185-192Article in journal (Refereed)
    Abstract [en]

    Background

    Visualization of the tumor is crucial for differentiating malignant tissue from healthy brain during surgery, especially in the tumor marginal zone. The aim of the study was to introduce a fluorescence spectroscopy-based hand-held probe (HHF-probe) for tumor identification in combination with the fluorescence guided resection surgical microscope (FGR-microscope), and evaluate them in terms of diagnostic performance and practical aspects of fluorescence detection.

    Material and Methods

    Eighteen operations were performed on 16 patients with suspected high-grade glioma. The HHF-probe and the FGR-microscope were used for detection of protoporphyrin (PpIX) fluorescence induced by 5-aminolevulinic acid (5-ALA) and evaluated against histopathological analysis and visual grading done through the FGR-microscope by the surgeon. A ratio of PpIX fluorescence intensity to the autofluorescence intensity (fluorescence ratio) was used to quantify the spectra detected by the probe.

    Results

    Fluorescence ratio medians (range 0 – 40) measured by the probe were related to the intensity of the fluorescence in the FGR-microscope, categorized as “none” (0.3, n = 131), “weak” (1.6, n = 34) and “strong” (5.4, n = 28). Of 131 “none” points in the FGR-microscope, 88 (67%) exhibited fluorescence with the HHF-probe. For the tumor marginal zone, the area under the receiver operator characteristics (ROC) curve was 0.49 for the FGR-microscope and 0.65 for the HHF-probe.

    Conclusions

    The probe was integrated in the established routine of tumor resection using the FGR-microscope. The HHF-probe was superior to the FGR-microscope in sensitivity; it detected tumor remnants after debulking under the FGR-microscope. The combination of the HHF-probe and the FGR-microscope was beneficial especially in the tumor marginal zone.

    Download full text (pdf)
    fulltext
  • 28.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering.
    Richter, Johan
    Östergötlands Läns Landsting, Reconstruction Centre, Department of Neurosurgery UHL. Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Medicine and Health Sciences.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Optical Guidance for Brain Tumor Stereotactic Biopsy2017Conference paper (Refereed)
  • 29.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Medicine and Health Sciences.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Optical guidance for stereotactic brain tumor biopsy procedures-preliminary clinical evaluation2017Conference paper (Refereed)
    Abstract [en]

    During stereotactic biopsy on suspected tumors in the brain, tissue samples are harvested to determine the malignancy. To provide guidance for finding the diagnostic tumor sites and to avoid vessel rupture, an application specific probe was developed. The setup incorporated spectroscopy for detection of 5-aminolevulinic acid induced protoporphyrin (PpIX) fluorescence and blood flow using laser Doppler flowmetry. The PpIX fluorescence was significantly different in the tumor compared to the gliotic marginal zone (p < 0.05). In conclusion, the systems made real-time tumor detection and vessel tracking possible. Moreover, the autofluorescence and blood perfusion could be studied in the tumor.

  • 30.
    Nilsson, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Elander, Louise
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Örtegren (Kugelberg), Unn
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    The involvement of prostaglandin E2 in interleukin-1β evoked anorexia is strain dependent2017In: Brain, behavior, and immunity, ISSN 0889-1591, E-ISSN 1090-2139, Vol. 60, p. 27-31Article in journal (Refereed)
    Abstract [en]

    From experiments in mice in which the prostaglandin E2 (PGE2) synthesizing enzyme mPGES-1 was genetically deleted, as well as from experiments in which PGE2 was injected directly into the brain, PGE2 has been implicated as a mediator of inflammatory induced anorexia. Here we aimed at examining which PGE2 receptor (EP1–4) that was critical for the anorexic response to peripherally injected interleukin-1β (IL-1β). However, deletion of neither EP receptor in mice, either globally (for EP1, EP2, and EP3) or selectively in the nervous system (EP4), had any effect on the IL-1β induced anorexia. Because these mice were all on a C57BL/6 background, whereas previous observations demonstrating a role for induced PGE2 in IL-1β evoked anorexia had been carried out on mice on a DBA/1 background, we examined the anorexic response to IL-1β in mice with deletion of mPGES-1 on a C57BL/6 background and a DBA/1 background, respectively. We confirmed previous findings that mPGES-1 knock-out mice on a DBA/1 background displayed attenuated anorexia to IL-1β; however, mice on a C57BL/6 background showed the same profound anorexia as wild type mice when carrying deletion of mPGES-1, while displaying almost normal food intake after pretreatment with a cyclooxygenase-2 inhibitor. We conclude that the involvement of induced PGE2 in IL-1β evoked anorexia is strain dependent and we suggest that different routes that probably involve distinct prostanoids exist by which inflammatory stimuli may evoke an anorexic response and that these routes may be of different importance in different strains of mice.

  • 31.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Faculty of Science & Engineering.
    Hallbeck, Martin
    Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    A Multipurpose Guidance Probe for Stereotactic Biopsy Procedures2016Conference paper (Refereed)
  • 32.
    Domert, Jakob
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Sackmann, Christopher
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Severinsson, Emelie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Agholme, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. University of Gothenburg, Sweden.
    Bergstrom, Joakim
    Uppsala University, Sweden.
    Ingelsson, Martin
    Uppsala University, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Aggregated Alpha-Synuclein Transfer Efficiently between Cultured Human Neuron-Like Cells and Localize to Lysosomes2016In: PLOS ONE, ISSN 1932-6203, Vol. 11, no 12, article id e0168700Article in journal (Refereed)
    Abstract [en]

    Parkinsons disease and other alpha-synucleinopathies are progressive neurodegenerative diseases characterized by aggregates of misfolded alpha-synuclein spreading throughout the brain. Recent evidence suggests that the pathological progression is likely due to neuron-to-neuron transfer of these aggregates between neuroanatomically connected areas of the brain. As the impact of this pathological spreading mechanism is currently debated, we aimed to investigate the transfer and subcellular location of alpha-synuclein species in a novel 3D co-culture human cell model based on highly differentiated SH-SY5Y cells. Fluorescently-labeled monomeric, oligomeric and fibrillar species of alpha-synuclein were introduced into a donor cell population and co-cultured with an EGFP-expressing acceptor-cell population of differentiated neuron-like cells. Subsequent transfer and colocalization of the different species were determined with confocal microscopy. We could confirm cell-to-cell transfer of all three alpha-synuclein species investigated. Interestingly the level of transferred oligomers and fibrils and oligomers were significantly higher than monomers, which could affect the probability of seeding and pathology in the recipient cells. Most alpha-synuclein colocalized with the lysosomal/endosomal system, both pre- and postsynaptically, suggesting its importance in the processing and spreading of alpha-synuclein.

    Download full text (pdf)
    fulltext
  • 33.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Fluorescence spectroscopy and optical coherence tomography for brain tumor detection2016Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. Recently, neurosurgical microscopes have been modified to incorporate fluorescence modules for detection of tumor when 5-aminolevulinic acid (5-ALA) is used as a contrast. We have in combination with the fluorescence microscopes implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) in the gliomas in 50 patients intraoperatively. The results show a significantly high sensitivity for differentiating tumor from the healthy tissue and distinguished fluorescence intensity levels in the tumor cell infiltration zone around the tumor. However, knowledge on association of the quantified fluorescence signals specifically in the intermediate inflammatory zone with the infiltrative tumor cells can be complemented with volumetric tissue imaging and a higher precision histopathological analysis. In this work, a spectral domain optical coherence tomography (OCT) system with central wavelength of 1325nm has been used to image the tissue volume that the fluorescence is collected from and is evaluated against histopathological analysis for a higher precision slicing. The results show that although healthy brain has a homogenous microstructure in the OCT images, the brain tumor shows a distinguished texture in the images correlated with the PpIX fluorescence intensity and histopathology.

  • 34.
    Lilledahl, Magnus B.
    et al.
    Norwegian University of Science and Technoogy, Norway.
    Gustafsson, Håkan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Diagnostics, Department of Biomedical Engineering.
    Gunnar Ellingsen, Pal
    Norwegian University of Science and Technoogy, Norway.
    Zachrisson, Helene
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Stenhjem Hagen, Vegard
    Norwegian University of Science and Technoogy, Norway.
    Kildemo, Morten
    Norwegian University of Science and Technoogy, Norway.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology. Norwegian University of Science and Technoogy, Norway.
    Combined imaging of oxidative stress and microscopic structure reveals new features in human atherosclerotic plaques2015In: Journal of Biomedical Optics, ISSN 1083-3668, E-ISSN 1560-2281, Vol. 20, no 2, p. 020503-Article in journal (Refereed)
    Abstract [en]

    Human atherosclerotic samples collected by carotid endarterectomy were investigated using electronic paramagnetic resonance imaging (EPRI) for visualization of reactive oxygen species, and nonlinear optical microscopy (NLOM) to study structural features. Regions of strong EPRI signal, indicating a higher concentration of reactive oxygen species and increased inflammation, were found to colocalize with regions dense in cholesterol crystals as revealed by NLOM.

  • 35.
    Haj-Hosseini, Neda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Milos, Peter
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hildesjö, Camilla
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering.
    Detection of brain tumor using fluorescence and optical coherence tomography2015Conference paper (Refereed)
    Abstract [en]

    Resection of brain tumor is a challenging task as the tumor does not have clear borders and the malignant types specifically have often a diffuse and infiltrative pattern of growth. We have previously implemented and evaluated a fluorescence spectroscopy based handheld probe for detecting the 5-aminolevulinic acid induced protoporphyrin IX (PpIX) in the gliomas. To add another dimension to the brain tumor detection and volumetric analysis of the tissue that exhibits fluorescence, optical coherence tomography was investigated on tumor specimens.

    Material and Methods:

    A fluorescence microscopy and a spectroscopy system as reported previously were used for detecting the fluorescence signals [1, 2]. A total of 50 patients have been included for intraoperative assessment of the tumor borders using the fluorescence techniques. A spectral domain OCT imaging system (TELESTO II, Thorlabs, Inc., NJ, USA) with central wavelength of 1325 nm was used to study the tissue microstructure post operatively. The system has a resolution of 13 and 5.5 μm in the lateral and axial directions, respectively. Tissue specimens from three patients undergoing brain tumor surgery were studied using the OCT system.

    Results and Conclusion:

    Using fluorescence spectroscopy the tumor could be detected with a sensitivity of 0.84 which was significantly higher than that of the surgical microscope (0.30). Brain tissue appeared rather homogeneous in the OCT images however the highly malignant tissue showed a clear structural difference from the non-malignant or low malignant brain tumor tissue which could be related to the fluorescence signal intensities.

  • 36.
    van Thuijl, Hinke F.
    et al.
    University of Calif San Francisco, CA 94143 USA; Vrije University of Amsterdam Medical Centre, Netherlands; Vrije University of Amsterdam Medical Centre, Netherlands.
    Mazor, Tali
    University of Calif San Francisco, CA 94143 USA.
    Johnson, Brett E.
    University of Calif San Francisco, CA 94143 USA.
    Fouse, Shaun D.
    University of Calif San Francisco, CA 94143 USA.
    Aihara, Koki
    University of Tokyo, Japan; University of Tokyo, Japan.
    Hong, Chibo
    University of Calif San Francisco, CA 94143 USA.
    Malmström, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Advanced Home Care in Linköping.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Heimans, Jan J.
    Vrije University of Amsterdam Medical Centre, Netherlands.
    Kloezeman, Jenneke J.
    Erasmus MC, Netherlands.
    Stenmark Askmalm, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lamfers, Martine L. M.
    Erasmus MC, Netherlands.
    Saito, Nobuhito
    University of Tokyo, Japan.
    Aburatani, Hiroyuki
    University of Tokyo, Japan.
    Mukasa, Akitake
    University of Tokyo, Japan.
    Berger, Mitchell S.
    University of Calif San Francisco, CA 94143 USA.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Taylor, Barry S.
    Mem Sloan Kettering Cancer Centre, NY 10021 USA; Mem Sloan Kettering Cancer Centre, NY 10021 USA.
    Molinaro, Annette M.
    University of Calif San Francisco, CA 94143 USA; University of Calif San Francisco, CA 94143 USA.
    Wesseling, Pieter
    Vrije University of Amsterdam Medical Centre, Netherlands; Radboud University of Nijmegen, Netherlands.
    Reijneveld, Jaap C.
    Vrije University of Amsterdam Medical Centre, Netherlands; University of Amsterdam, Netherlands.
    Chang, Susan M.
    University of Calif San Francisco, CA 94143 USA.
    Ylstra, Bauke
    Vrije University of Amsterdam Medical Centre, Netherlands.
    Costello, Joseph F.
    University of Calif San Francisco, CA 94143 USA.
    Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment2015In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 129, no 4, p. 597-607Article in journal (Refereed)
    Abstract [en]

    Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA hypermethylation of the O (6) -methylguanine-DNA methyltransferase (MGMT) promoter is associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a cohort of 34 treatment-na less than ve LGGs and their recurrences. Recurrences with TMZ-associated hypermutation had increased MGMT methylation compared to their untreated initial tumors and higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ-treated hypermutated recurrences. In two cases, pre-existing heterozygous deletions encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo positive selection during TMZ treatment in the context of MMR deficiency.

  • 37.
    Sjöwall, Christoffer
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Rheumatology.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Sandström, Per
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Surgery in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Letter: Clinically suspected recurrence of gastric carcinoid proved to be hypocomplementaemic urticarial vasculitis syndrome with pulmonary involvement2015In: Scandinavian Journal of Rheumatology, ISSN 0300-9742, E-ISSN 1502-7732, Vol. 44, no 4, p. 337-339Article in journal (Other academic)
    Abstract [en]

    n/a

    Download full text (pdf)
    fulltext
  • 38.
    Haj-Hosseini, Neda
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Low dose 5-aminolevulinic acid: Implications in spectroscopic measurements during brain tumor surgery2015In: Photodiagnosis and Photodynamic Therapy, ISSN 1572-1000, E-ISSN 1873-1597, Vol. 12, no 2, p. 209-214Article in journal (Refereed)
    Abstract [en]

    Background

    Using 5-aminolevulinic acid (ALA) as an intraoperative fluorescence contrast has been proven to improve the resection of glioblastoma and contribute to prolonged patient survival. ALA accumulates as protoporphyrin IX (PpIX) in the tumor cells and is administered in an advised dose of 20 mg/kg body weight (b.w.) for brain tumor resection using fluorescence surgical microscopes. PpIX fluorescence availability and intensities of a four folds lower ALA dose (5 mg/kg b.w.) has been investigated in glioblastomas and skin using a spectroscopy system adapted for surgical guidance.

    Methods

    A total of 30 adult patients diagnosed with high grade gliomas were included in the analysis. ALA was orally administered in doses of 5 mg/kg b.w. (n = 15) dissolved in orange juice or 20 mg/kg b.w. (n = 15) dissolved in water. A fluorescence spectroscopy system with a handheld fiber-optical probe was used for performing the quantitative fluorescence measurements.

    Results

    The binominal comparison of the diagnostic performance parameters showed no significant statistical difference (p > 0.05). The median fluorescence values in tumor were 2-3 times higher for the high ALA dose group. No PpIX was detected in the skin of the patients in the low dose group (0/4) while PpIX was detected in the skin of the majority of the patients in the high ALA dose group (13/14).

    Conclusions

    Application of 5 mg/kg ALA was evaluated as equally reliable as the higher dose regarding the diagnostic performance when guidance was performed using a spectroscopic system. Moreover, no PpIX was detected in the skin of the patients.

    Download full text (pdf)
    fulltext
  • 39.
    Mosrati, Mohamed Ali
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Malmström, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Region Östergötland, Local Health Care Services in Central Östergötland, Department of Advanced Home Care in Linköping. Linköping University, Faculty of Medicine and Health Sciences.
    Lysiak, Malgorzata
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Krysztofiak, Adam
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Milos, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery. Linköping University, Faculty of Medicine and Health Sciences.
    Hallbeck, Anna-Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Bratthall, Charlotte
    Dist Hospital, Sweden.
    Strandeus, Michael
    Ryhov Hospital, Sweden.
    Stenmark Askmalm, Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Söderkvist, Peter
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma2015In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 6, no 18, p. 16663-16673Article in journal (Refereed)
    Abstract [en]

    Telomerase reverse transcriptase (TERT) activity is up-regulated in several types of tumors including glioblastoma (GBM). In the present study, 128 primary glioblastoma patients were examined for single nucleotide polymorphisms of TERT in blood and in 92 cases for TERT promoter mutations in tumors. TERT promoter mutations were observed in 86% of the tumors and of these, C228T (-124 bp upstream start codon) was detected in 75% and C250T (-146 bp) in 25% of cases. TERT promoter mutations were associated with shorter overall survival (11 vs. 20 months p = 0.002 and 12 vs. 20, p = 0.04 for C228T and C250T, respectively). The minor alleles of rs2736100 and rs10069690 SNPs, located in intron 2 and the promotor regions, respectively, were associated with an increased risk of developing GBM (p = 0.004 and 0.001). GBM patients having both TERT promoter mutations and being homozygous carriers of the rs2853669 C-allele displayed significantly shorter overall survival than those with the wild type allele. The rs2853669 SNP is located in a putative Ets2 binding site in the promoter (-246 bp upstream start codon) close to the C228T and C250T mutation hot spots. Interleukin-6 (IL-6) expression regulated by TERT promoter status and polymorphism, what leads us to think that TERT and IL-6 plays a significant role in GBM, where specific SNPs increase the risk of developing GBM while the rs2853669 SNP and specific mutations in the TERT promoter of the tumor lead to shorter survival.

    Download full text (pdf)
    fulltext
  • 40.
    Gustafsson, Håkan
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Biomedical Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology. Norwegian University of Science and Technology, Norway.
    Kolbun, Natallia
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jonson, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    de Muinck, Ebo
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Zachrisson, Helene
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Visualization of oxidative stress in ex vivo biopsies using electron paramagnetic resonance imaging2015In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 73, no 4, p. 1682-1691Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The purpose of this study was to develop an X-Band electron paramagnetic resonance imaging protocol for visualization of oxidative stress in biopsies.

    METHODS: The developed electron paramagnetic resonance imaging protocol was based on spin trapping with the cyclic hydroxylamine spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine and X-Band EPR imaging. Computer software was developed for deconvolution and back-projection of the EPR image. A phantom containing radicals of known spatial characteristic was used for evaluation of the developed protocol. As a demonstration of the technique electron paramagnetic resonance imaging of oxidative stress was performed in six sections of atherosclerotic plaques. Histopathological analyses were performed on adjoining sections.

    RESULTS: The developed computer software for deconvolution and back-projection of the EPR images could accurately reproduce the shape of a phantom of known spatial distribution of radicals. The developed protocol could successfully be used to image oxidative stress in six sections of the three ex vivo atherosclerotic plaques.

    CONCLUSIONS: We have shown that oxidative stress can be imaged using a combination of spin trapping with the cyclic hydroxylamine spin probe cyclic hydroxylamine spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine and X-Band EPR imaging. A thorough and systematic evaluation on different types of biopsies must be performed in the future to validate the proposed technique. Magn Reson Med, 2014.

    Download full text (pdf)
    fulltext
  • 41.
    Gustafsson, Håkan
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Norell, M.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences.
    Lindgren, Mikael
    Norwegian University of Science and Technology, Trondheim, Norway.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Rosén, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Zachrisson, Helene
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Fe(III) distribution varies substantially within and between atherosclerotic plaques2014In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 2, no 71, p. 885-892Article in journal (Refereed)
    Abstract [en]

    PURPOSE:

    Vulnerable atherosclerotic plaques are structurally weak and prone to rupture, presumably due to local oxidative stress. Redox active iron is linked to oxidative stress and the aim of this study was to investigate the distribution of Fe(III) in carotid plaques and its relation to vulnerability for rupture.

    METHODS:

    Atherosclerotic plaques from 10 patients (three asymptomatic and seven symptomatic) were investigated. Plaque vulnerability was classified using ultrasound and immunohistochemistry and correlated to Fe(III) measured by electron paramagnetic resonance spectroscopy.

    RESULTS:

    Large intra-plaque Fe(III) variations were found. Plaques from symptomatic patients had a higher Fe(III) concentration as compared with asymptomatic plaques (0.36 ± 0.21 vs. 0.06 ± 0.04 nmol Fe(III)/mg tissue, P < 0.05, in sections adjoining narrowest part of the plaques). All but one plaque from symptomatic patients showed signs of cap rupture. No plaque from asymptomatic patients showed signs of cap rupture. There was a significant increase in cap macrophages in plaques from symptomatic patients compared with asymptomatic patients (31 ± 11% vs. 2.3 ± 2.3%, P < 0.01).

    CONCLUSION:

    Fe(III) distribution varies substantially within atherosclerotic plaques. Plaques from symptomatic patients had significantly higher concentrations of Fe(III), signs of cap rupture and increased cap macrophage activity.

    Download full text (pdf)
    fulltext
  • 42.
    Agholme, Lotta
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Getting rid of intracellular Aβ- loss of cellular degradation leads to transfer between connected neurons2014In: Current pharmaceutical design, ISSN 1381-6128, E-ISSN 1873-4286, Vol. 20, no 15, p. 2458-2468Article in journal (Refereed)
    Abstract [en]

    The sporadic, late onset form of Alzheimers disease (AD) shares pathological hallmarks with the familial form; however, no clear reason for increased beta-amyloid (A beta) generation has been found in the former. It has long been speculated that the late onset form of AD is caused by reduced degradation and/or clearance of A beta. Indeed, both intracellular degradation systems, the proteasomal and lysosomal systems, have been shown to be defective in AD. Reduced proteasome activity increases levels of intracellular and secreted A beta. Furthermore, accumulation of improperly degraded A beta in the lysosomes causes lysosomal disruption and cell death. We recently showed that oligomeric A beta can be transmitted from one neuron to another, which causes neurotoxicity. In both the donating and receiving cells, A beta accumulates in the endo-lysosomal compartment. It is possible that ineffective degradation of A beta causes its transfer to neighboring neurons, thereby spreading AD pathology. This review summarizes the data underlying the idea of reduced A beta clearance and subsequent A beta spread in AD, and also suggests new therapeutic methods, which are aimed at targeting the degradation systems and synaptic transfer. By enhancing degradation of intracellular accumulated A beta, it can be possible to remove it and avoid A beta-induced neurodegeneration without disturbing the endogenously important pool of secreted A beta. Additionally, drugs targeted to inhibit the spread of intracellular toxic A beta aggregates may also be useful in stopping the progression of pathology, without affecting the level of A beta that normally occurs in the brain.

  • 43.
    Agholme, Lotta
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in East Östergötland, Department of Geriatric Medicine in Norrköping.
    Nath, Sangeeta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences.
    Domert, Jakob
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine in Linköping.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Proteasome Inhibition Induces Stress Kinase Dependent Transport Deficits – Implications for Alzheimer’s Disease2014In: Molecular and Cellular Neuroscience, ISSN 1044-7431, E-ISSN 1095-9327, Vol. 58, p. 29-39Article in journal (Refereed)
    Abstract [en]

    Alzheimer’s disease (AD) is characterized by accumulation of two misfolded and aggregated proteins, β-amyloid and hyperphosphorylated tau. Both cellular systems responsible for clearance of misfolded and aggregated proteins, the lysosomal and the proteasomal, have been shown to be malfunctioning in the aged brain and more so in AD patients. This malfunction could be the cause of β-amyloid and tau accumulation, eventually aggregating in plaques and tangles. We have investigated how decreased proteasome activity affects AD related pathophysiological changes of microtubule transport and stability, as well as tau phosphorylation. To do this, we used our recently developed neuronal model where human SH-SY5Y cells obtain neuronal morphology and function through differentiation. We found that exposure to low doses of the proteasome inhibitor MG-115 caused disturbed neuritic transport, together with microtubule destabilization and tau phosphorylation. Furthermore, reduced proteasome activity activated several kinases implicated in AD pathology, including JNK, c-Jun and ERK 1/2. Restoration of the microtubule transport was achieved by inhibiting ERK 1/2 activation, and simultaneous inhibition of both ERK 1/2 and c-Jun reversed the proteasome inhibition-induced tau phosphorylation. Taken together, this study suggests that a decrease in proteasome activity can, through activation of c-Jun and ERK 1/2, result in several events contributing to AD pathology. Restoring proteasome function or inhibiting ERK 1/2 and c-Jun could therefore be used as novel treatments against AD.

  • 44.
    Domert, Jakob
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Rao, Sahana Bhima
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Agholme, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Brorsson, Ann-Christin
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Nath, Sangeeta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.
    Spreading of Amyloid-β Peptides via Neuritic Cell-to-cell Transfer Is Dependent on Insufficient Cellular Clearance2014In: Neurobiology of Disease, ISSN 0969-9961, E-ISSN 1095-953X, Vol. 65, p. 82-92Article in journal (Refereed)
    Abstract [en]

    The spreading of pathology through neuronal pathways is likely to be the cause of the progressive cognitive loss observed in Alzheimer's disease (AD) and other neurodegenerative diseases. We have recently shown the propagation of AD pathology via cell-to-cell transfer of oligomeric amyloid beta (Aβ) residues 1-42 (oAβ1-42) using our donor-acceptor 3-D co-culture model. We now show that different Aβ-isoforms (fluorescently labeled 1-42, 3(pE)-40, 1-40 and 11-42 oligomers) can transfer from one cell to another. Thus, transfer is not restricted to a specific Aβ-isoform. Although different Aβ isoforms can transfer, differences in the capacity to clear and/or degrade these aggregated isoforms result in vast differences in the net amounts ending up in the receiving cells and the net remaining Aβ can cause seeding and pathology in the receiving cells. This insufficient clearance and/or degradation by cells creates sizable intracellular accumulations of the aggregation-prone Aβ1-42 isoform, which further promotes cell-to-cell transfer; thus, oAβ1-42 is a potentially toxic isoform. Furthermore, cell-to-cell transfer is shown to be an early event that is seemingly independent of later appearances of cellular toxicity. This phenomenon could explain how seeds for the AD pathology could pass on to new brain areas and gradually induce AD pathology, even before the first cell starts to deteriorate, and how cell-to-cell transfer can act together with the factors that influence cellular clearance and/or degradation in the development of AD.

    Download full text (pdf)
    fulltext
  • 45.
    Haj-Hosseini, Neda
    et al.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Richter, Johan
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Olivecrona, Magnus
    Department of Neurosurgery, Umeå University.
    Hillman, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Neurosurgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Wårdell, Karin
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Fluorescence guided spectroscopy versus fluorescence microscopy for brain tumor resection2013Conference paper (Other academic)
  • 46.
    Zheng, Lin
    et al.
    Karolinska Inst, NVS, KI Alzheimers Dis Res Ctr, S-14186 Stockholm, Sweden.
    Cedazo-Minguez, Angel
    KI-AlzheimerDisease Research Center, NVS, Novum, Karolinska Institutet, SE-141 57, Stockholm,Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Jerhammar, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Oto-Rhiono-Laryngology and Head & Neck Surgery. Linköping University, Faculty of Health Sciences.
    Hultenby, Kjell
    Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, SE-141 86 Stockholm, Sweden.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine in Linköping.
    Terman, Alexi
    Department of Clinical Pathology and Cytology, Karolinska University Hospital, Huddinge, SE-141 86 Stockholm, Sweden.
    Intracellular localization of amyloid beta peptide in SH-SY5Y neuroblastoma cells2013In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 37, no 4, p. 713-733Article in journal (Refereed)
    Abstract [en]

    Amyloid-beta peptide (A beta), the main component of Alzheimer's disease (AD) senile plaques, has been found to accumulate within the lysosomal compartment of AD neurons. We have previously shown that in differentiated SH-SY5Y neuroblastoma cells cultured under normal conditions, the majority of A beta is localized extralysosomally, while oxidative stress significantly increases intralysosomal A beta content through activation of macroautophagy. It is, however, not clear which cellular compartments contain extralysosomal A beta in intact SH-SY5Y cells, and how oxidative stress influences the distribution of extralysosomal A beta. Using confocal laser scanning microscopy and immunoelectron microscopy, we showed that in differentiated neuroblastoma cells cultured under normal conditions A beta (A beta(40), A beta(42), and A beta oligomers) is colocalized with both membrane-bound organelles (endoplasmic reticulum, Golgi complexes, multivesicular bodies/late endosomes, lysosomes, exocytotic vesicles and mitochondria) and non-membrane-bound cytosolic structures. Neuroblastoma cells stably transfected with A beta PP Swedish KM670/671NL double mutation showed enlarged amount of A beta colocalized with membrane compartments. Suppression of exocytosis by 5 nM tetanus toxin resulted in a significant increase of the amount of cytosolic A beta as well as A beta colocalized with exocytotic vesicles, endoplasmic reticulum, Golgi complexes, and lysosomes. Hyperoxia increased A beta localization in the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes, but not in the secretory vesicles. These results indicate that in SH-SY5Y neuroblastoma cells intracellular A beta is not preferentially localized to any particular organelle and, to a large extent, is secreted from the cells. Challenging cells to hyperoxia, exocytosis inhibition, or A beta overproduction increased intracellular A beta levels but did not dramatically changed its localization pattern.

  • 47.
    Hallbeck, Martin
    et al.
    Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics. Linköping University, Department of Clinical and Experimental Medicine, Division of Inflammation Medicine. Linköping University, Faculty of Health Sciences.
    Nath, Sangeeta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuroscience. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine in Linköping.
    Neuron-to-Neuron Transmission of Neurodegenerative Pathology2013In: The Neuroscientist, ISSN 1073-8584, E-ISSN 1089-4098, Vol. 19, no 6, p. 560-566Article, review/survey (Refereed)
    Abstract [en]

    One of the hallmarks of neurodegenerative dementia diseases is the progressive loss of mental functions and the ability to manage activities of daily life. This progression is caused by the spread of the disease to more and more brain areas via anatomical connections. The pathophysiological process responsible for this spread of disease has long been sought after. There has been an increased understanding that the driving force of these neurodegenerative diseases could be the small, soluble intraneuronal accumulations of neurodegenerative proteins rather than the large, extracellular accumulations. Recently we have shown that the mechanism of spread of Alzheimer's disease most likely depends on the neuron-to-neuron spread of such soluble intraneuronal accumulations of -amyloid through neuritic connections. Similar transmissions have been shown for several other neurodegenerative proteins but little is known about the cellular mechanisms and about any potential strategies that might stop this spread. Resolving these questions requires good cellular models. We have established a unique model of synaptic transmission between human neuronal-like cells, something that has previously been difficult to target. This opens the possibility of developing potential inhibitors of progression of these devastating diseases.

  • 48.
    Agholme, Lotta
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Benedikz, Eirikur
    Department of Neurobiology, Division of Neurodegeneration, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine.
    Kågedal, Katarina
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Amyloid-β Secretion, Generation, and Lysosomal Sequestration in Response to Proteasome Inhibition: Involvement of Autophagy2012In: Journal of Alzheimer's Disease, ISSN 1387-2877, E-ISSN 1875-8908, Vol. 31, no 2, p. 343-358Article in journal (Refereed)
    Abstract [en]

    The proteasome is important for degradation of worn out and misfolded proteins. Decreased proteasome activity has been implicated in Alzheimer's disease (AD). Proteasome inhibition induces autophagy, but it is still unknown whether autophagy is beneficial or deleterious to AD neurons, as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPPSwe transfected SH-SY5Y neuroblastoma cells. We show that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome makes C99 available for γ-secretase cleavage, leading to Aβ generation. Inhibition of autophagy after proteasome inhibition led to reduced levels of intracellular, but not secreted Aβ, and tended to further increase the C99 to AβPP ratio, supporting involvement of the autophagosome in Aβ generation. Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease in cellular viability was also detected, it is possible that upregulation of autophagy is an unsuccessful rescue mechanism, which instead of being protective, contributes to AD pathogenesis.

  • 49.
    Zheng, Lin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric.
    Cedazo-Minguez, Angel
    KI-AlzheimerDisease Research Center, NVS, Novum, Karolinska Institutet, Stockholm, Sweden.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Jerhammar, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences.
    Terman, Alexei
    Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
    Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system.2012In: Translational Neurodegeneration, ISSN 2047-9158, Vol. 1, no 1, p. 19-Article in journal (Refereed)
    Abstract [en]

    Background

    Amyloid beta peptide (Aβ) is the main component of extraneuronal senile plaques typical of Alzheimer’s disease (AD) brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and how this distribution is effected when Aβ secretion is inhibited.

    Methods

    Using retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular distribution of Aβ.

    Results

    Under normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya. Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of intralysosomal Aβ although the majority of Aβ still remained extralysosomally.

    Conclusion

    Our results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and extralysosomal Aβ.

    Download full text (pdf)
    fulltext
  • 50.
    Nath, Sangeeta
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Agholme, Lotta
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences.
    Roshan, Firoz
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Granseth, Björn
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Marcusson, Jan
    Linköping University, Department of Clinical and Experimental Medicine, Geriatric. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine.
    Hallbeck, Martin
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Spreading of Neurodegenerative Pathology via Neuron-to-Neuron Transmission of beta-Amyloid2012In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 32, no 26, p. 8767-8777Article in journal (Refereed)
    Abstract [en]

    Alzheimers disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of beta-amyloid (A beta) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble A beta oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric A beta. Additional studies conducted in a human donor-acceptor cell model show that this A beta transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular A beta oligomers play a role in neurodegeneration, and they explain the manner in which A beta can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.

12 1 - 50 of 66
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf