liu.seSearch for publications in DiVA
Change search
Refine search result
12 1 - 50 of 81
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ballem, Mohamed Ali
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Nordblad, Per
    Uppsala Unversity, Sweden.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Growth of Gd2O3 nanoparticles inside mesoporous silica frameworks2013In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 168, p. 221-224Article in journal (Refereed)
    Abstract [en]

    Gadolinium oxide (Gd2O3) nanoparticles with very small size, and narrow size distribution were synthesized by infiltration of Gd(NO3)3.6H2O as an oxide precursor into the pores of SBA-15 mesoporous silica using a wet-impregnation technique. High resolution transmission electron microscopy and X-ray diffraction show that during the hydrothermal treatment of the precursor at 550 °C, gadolinium oxide nanoparticles inside the silica pores are formed. Subsequent dissolution of the silica template by NaOH resulted in well dispersed nanoparticles with an average diameter of 3.6 ± 0.9 nm.

    Download full text (pdf)
    fulltext
  • 2.
    Khan, Yagoob
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Tajammul Hussain, Syed
    National Centre for Physics, Quaid-e-Azam University Campus, Islamabad, Pakistan.
    Abbasi, Mazhar Ali
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    On the decoration of 3D nickel foam with single crystal ZnO nanorod arrays and their cathodoluminescence study2013In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 90, p. 126-130Article in journal (Refereed)
    Abstract [en]

    Starting with an ammonical solution of zinc acetate, dense single crystal ZnO nanorod arrays were grown directly on high surface area porous 3D nickel foam substrates using a low temperature hydrothermal route. Heterogeneous nucleation of the nanorods with diameters around 100 nm can be conveniently and reproducibly Controlled by adjusting the amount of ammonia added to the growth solution. X-ray diffraction and HRTEM analysis confirmed the single phase wurtzite structure and c-axis orientation of the as grown ZnO nanorod arrays. Cathodoluminescence measurements indicate that the as-grown nanorod arrays were rich in atomic defects and gave strong orange emissions in the visible region. The nanorod arrays on unique 3D substrate are expected to improve the sensitivity and efficiency of ZnO based electrochemical sensors and heterogeneous catalysts.

  • 3.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Bhattacharyya, P.
    Dept. of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, India.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Kanungo, Jayita
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Basu, Sukumar
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry.
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    SiC-FET methanol sensors for process control and leakage detection2013In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 187, no SI, p. 553-562Article in journal (Refereed)
    Abstract [en]

    Two types of SiC based field effect transistor sensors, with Pt or Ir gate, were tested to detect methanol in the concentration range of 0–1600 ppm for both process control and leak detection applications. The methanol response was investigated both with and without oxygen, since the process control might be considered as oxygen free application, while the sensor is operated in air during leak detection. Pt sensors offered very fast response with appreciably high response magnitude at 200 °C, while Ir sensors showed both higher response and response time up to 300 °C, but this decreased considerably at 350 °C. Cross sensitivity effect in presence of oxygen, hydrogen, propene and water vapor was also investigated. The presence of oxygen improved the response of both sensors, which is favorable for the leak detection application. Hydrogen had a large influence on the methanol response of both sensors, propene had a negligible influence, while water vapor changed direction of the methanol response for the Pt sensor. The detection mechanism and different sensing behavior of Pt and Ir gate sensors were discussed in the light of model reaction mechanisms derived from hybrid density-functional theory quantum-chemical calculations.

    Download full text (pdf)
    fulltext
  • 4.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Kauczor, Joanna
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study2012In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 14, no 8Article in journal (Refereed)
    Abstract [en]

    Chelated gadolinium ions, e. g., GdDTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r(1) and r(2) values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

    Download full text (pdf)
    fulltext
  • 5.
    Khan, Yaqoob
    et al.
    National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering, PIEAS, P.O. Nilore, Islamabad.
    Hussain, Sajjad
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Abbasi, Mazhar Ali
    Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
    Durrani, Shahid Khan
    Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad.
    Honeycomb β-Ni(OH)2 films grown on 3D nickel foam substrates at low temperature2012In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 69, p. 37-40Article in journal (Refereed)
    Abstract [en]

    A simple method is presented to grow thick honeycomb β-Ni(OH)2 films on 3D nickel foam substrates at80 °C using nickel sulfate and ammonia as the starting materials. The porous honeycomb network structureof the films with pore openings about 0.5–1 μm wide is built from seamlessly connected polycrystallinenanowalls, approximately 10–20 nm thick. The amount of ammonia added to the growth solution and thegrowth time were found to be critical parameters in determining the morphology and pore structure ofthe films. Air annealing of the as-prepared films resulted in polycrystalline NiO films with morphologiessimilar to those of their hydroxide precursors.

  • 6.
    Darmastuti, Zhafira
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    Bhattacharyya, Partha
    Bengal Engineering and Science University, India.
    Basu, Sukumar
    Jadavpur University, India.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, The Institute of Technology.
    SiC - FET Sensors for methanol leakage detection2012In: Proceeding of the 14th International Meeting on Chemical Sensors (IMCS 2012), 2012, p. 1579-1582Conference paper (Other academic)
    Abstract [en]

    Pt and Ir SiC based Field Effect Transistor sensors were tested to detect low concentration of methanol (<200 ppm) for both process control and leak detection applications. Pt sensors gave good and very fast response at 200°C, while Ir sensors gave larger but much slower response. The presence of oxygen improved the response of the sensor which was favorable for the leak detection application. The influence of hydrogen and propene to the sensor response was also studied. Beside the experimental work, the detection mechanism and different sensing behavior of Pt and Ir were studied by quantum chemical calculations.

  • 7.
    Kanungo, Jayita
    et al.
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Darmastuti, Zhafira
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Basu, Sukumar
    IC Design & Fabrication Centre, Dept. of Electronics & Telecommunications Engineering, Jadavpur University, Kolkata, India.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Development of SiC-FET methanol sensor2011In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 160, no 1, p. 72-78Article in journal (Refereed)
    Abstract [en]

    A silicon carbide based field effect transistor (SiC-FET) structure was used for methanol sensing. Due to the chemical stability and wide band gap of SiC, these sensors are suitable for applications over a wide temperature range. Two different catalytic metals, Pt and Ir, were tested as gate contacts for detection of methanol. The sensing properties of both Ir gate and Pt gate SiC-FET sensors were investigated in the concentration range 0.3–5% of methanol in air and in the temperature range 150–350 °C. It was observed that compared to the Ir gate sensor, the Pt gate sensor showed higher sensitivity, faster response and recovery to methanol vapour at comparatively lower temperature, with an optimum around 200 °C. Quantum-chemical calculations were used to investigate the MeOH adsorption and to rationalize the observed non-Langmuir behavior of the response functions. The methanol sensing mechanism of the SiC-FET is discussed.

    Download full text (pdf)
    fulltext
  • 8.
    Gustafsson, Håkan
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Córdoba Gallego, José M.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Nordblad, Per
    Uppsala Universitet.
    Westlund, Per-Olof
    Umeå Universitet.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Magnetic and Electron Spin Relaxation Properties of (GdxY1-x)2O3 (0 ≤ x ≤ 1) Nanoparticles Synthesized by the Combustion Method. Increased Electron Spin Relaxation Times with Increasing Yttrium Content2011In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 13, p. 5469-5477Article in journal (Refereed)
    Abstract [en]

    The performance of a magnetic resonance imaging contrast agent (CA) depends on several factors, including the relaxation times of the unpaired electrons in the CA. The electron spin relaxation time may be a key factor for the performance of new CAs, such as nanosized Gd2O3 particles. The aim of this work is, therefore, to study changes in the magnetic susceptibility and the electron spin relaxation time of paramagnetic Gd2O3 nanoparticles diluted with increasing amounts of diamagnetic Y2O3. Nanoparticles of (GdxY1-x)2O3 (0 e x e 1) were prepared by the combustion method and thoroughly characterized (by X-ray di.raction, transmission electron microscopy, thermogravimetry coupled with mass spectroscopy, photoelectron spectroscopy, Fourier transform infrared spectroscopy, and magnetic susceptibility measurements). Changes in the electron spin relaxation time were estimated by observations of the signal line width in electron paramagnetic resonance spectroscopy, and it was found that the line width was dependent on the concentration of yttrium, indicating that diamagnetic Y2O3 may increase the electron spin relaxation time of Gd2O3 nanoparticles.

  • 9.
    Selegård, Linnéa
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Vahlberg, Cecilia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Biotinylation of ZnO Nanoparticles and Thin Films: A Two-Step Surface Functionalization Study2010In: ACS APPLIED MATERIALS and INTERFACES, ISSN 1944-8244, Vol. 2, no 7, p. 2128-2135Article in journal (Refereed)
    Abstract [en]

    This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. lodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy. X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.

  • 10.
    Becker, Richard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry . Linköping University, The Institute of Technology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry . Linköping University, The Institute of Technology.
    CTAB promoted synthesis of Au nanorods - Temperature effects and stability consideration2010In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 343, no 1, p. 25-30Article in journal (Refereed)
    Abstract [en]

    A systematic study is performed of the influence of surfactant and temperature on the aspect ratio and monodispersity of Au nanorods, synthesized by a seed-mediated growth technique in water using cetyltrimethylammonium bromide (CTAB) as surfactant. The changes in aspect ratio with temperature show an "anomalous" behaviour, where the aspect ratio first decreases with increasing temperature, reaching a minimum at about 55oC, and after that increases again reaching a maximum at about 80oC. A physical explanation of the observed behaviour is proposed. It has also been studied how the CTAB concentration in the cleansing water used in the post-synthesis treatment of the samples affected the stability of the gold suspension. It was found that without the presence of a surfactant such as CTAB in the washing medium, only very few centrifugations can be carried out without considerable loss of product. Characterization of prepared samples was performed with UV-Vis and TEM.

  • 11.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, p. 5753-5762Article in journal (Refereed)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 12.
    Becker, Richard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Synthesis of silver nanowires in aqueous solutions2010In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 64, no 8, p. 956-958Article in journal (Refereed)
    Abstract [en]

    Silver nanowires with a diameter of 30 nm and typical lengths of 5–10 μm have been synthesized in an aqueous medium. To initiate the reaction, citrate ions were used, and during the reaction the aromatic organicmolecules polymerize forming “straight” chain surfactants which support the formation of nanowires. Characterization by TEM and HRETM revealed the nanowires to be highly crystalline with a growth along the [110] direction.

  • 13.
    Pearce, Ruth
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Becker, Elin
    Chalmers Göteborg.
    Haglin, A
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Skoglundh, Magnus
    Chalmers, Göteborg.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Understanding the gas sensor response of ZnO and Ga:ZnO2010In: IMCS13, 2010, p. 376-Conference paper (Refereed)
  • 14.
    Pearce, Ruth
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Hagelin, Alexander
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Becker, Elin
    Competence Centre for Catalysis Chalmers University of Technology, Göteborg, Sweden.
    Skoglundh, Magnus
    Competence Centre for Catalysis Chalmers University of Technology, Göteborg, Sweden.
    Effect of Water vapour on Gallium doped Zinc Oxide nanoparticle sensor gas response2009In: IEEE Sensors, 2009, Piscataway, NJ, United States: IEEE , 2009, p. 2039-2043Conference paper (Refereed)
    Abstract [en]

    Zinc oxide is a wide band gap (similar to 3.4ev) semiconductor material, making it a promising material for high temperature applications, such as exhaust and flue environments where NO and NO2 monitoring is increasingly required due to stricter emission controls[1]. In these environments water vapour and background levels of oxygen are present and, as such, the effect of humidity on the sensing characteristics of these materials requires further study. The reaction mechanisms in the presence of water vapour are poorly understood and there is a need for deeper understanding of the principles and mechanisms of gas response of these materials. An investigation of the influence of changing water vapour (H2O) and oxygen (O-2) backgrounds on the response of nanoparticulate Ga-doped ZnO resistive sensors is presented.

  • 15.
    Lloyd Spetz, Anita
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Pearce, Ruth
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Hedin, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    New transducer material concepts for biosensors and surface functionalization2009In: Smart Sensors, Actuators,and MEMS IV / [ed] Ulrich Schmid, Carles Cané, Herbert Shea, Bellingham, WA United States: SPIE - International Society for Optical Engineering, 2009, Vol. 7362, p. 736206-Conference paper (Refereed)
    Abstract [en]

    Wide bandgap materials like SiC, ZnO, AlN form a strong platform as transducers for biosensors realized as e.g. ISFET (ion selective field effect transistor) devices or resonators. We have taken two main steps towards a multifunctional biosensor transducer. First we have successfully functionalized ZnO and SiC surfaces with e.g. APTES. For example ZnO is interesting since it may be functionalized with biomolecules without any oxidation of the surface and several sensing principles are possible. Second, ISFET devises with a porous metal gate as a semi-reference electrode are being developed. Nitric oxide, NO, is a gas which participates in the metabolism. Resistivity changes in Ga doped ZnO was demonstrated as promising for NO sensing also in humid atmosphere, in order to simulate breath.

    Download full text (pdf)
    FULLTEXT01
  • 16.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Nordblad, Per
    Uppsala University.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Sol-gel synthesis and characterization of polycrystalline GdFeO3 and Gd3Fe5O12 thin films2009In: Journal of Sol-Gel Science and Technology, ISSN 0928-0707, E-ISSN 1573-4846, Vol. 49, no 2, p. 253-259Article in journal (Refereed)
    Abstract [en]

    Thin films of the perovskite and garnet structured gadolinium ferrites GdFeO3 and Gd3Fe5O12 have been synthesized by a sol-gel method, based on stoichiometric mixtures of acetyl acetone chelated Gd3+ and Fe3+ dissolved in 2-methoxy ethanol. After spin coating onto Si wafers, and heating in air at 700 degrees C for 20 h, neatly grown essentially single phase films were obtained. From X-ray photoelectron spectroscopy an iron deficiency is observed in the uppermost layer of both films, implying that the crystallites preferably end in planes rich in Gd and O but not in Fe. The films were also characterized by X-ray powder diffraction, scanning electron microscopy, infrared spectroscopy, and magnetic measurements.

  • 17.
    Petoral, Rodrigo M
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Suska, Anke
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Fortin, Marc-André
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegard, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 17, p. 6913-6920Article in journal (Refereed)
    Abstract [en]

    Ultrasmall gadolinium oxide nanoparticles doped with terbium ions were synthesized by the polyol route and characterized as a potentially bifunctional material with both fluorescent and magnetic contrast agent properties. The structural, optical, and magnetic properties of the organic-acid-capped and PEGylated Gd2O3:Tb3+ nanocrystals were studied by HR-TEM, XPS, EDX, IR, PL, and SQUID. The luminescent/fluorescent property of the particles is attributable to the Tb3+ ion located on the crystal lattice of the Gd2O3 host. The paramagnetic behavior of the particles is discussed. Pilot studies investigating the capability of the nanoparticles for fluorescent labeling of living cells and as a MRI contrast agent were also performed. Cells of two cell lines (THP-1 cells and fibroblasts) were incubated with the particles, and intracellular particle distribution was visualized by confocal microscopy. The MRI relaxivity of the PEGylated nanoparticles in water at low Gd concentration was assessed showing a higher T-1 relaxation rate compared to conventional Gd-DTPA chelates and comparable to that of undoped Gd2O3 nanoparticles.

  • 18.
    Lenz, Annika
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Selegård, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, Faculty of Science & Engineering.
    Larsson, Arvid
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Holtz, Per-Olof
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    ZnO Nanoparticles Functionalized with Organic Acids: An Experimental and Quantum-Chemical Study2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 40, p. 17332-17341Article in journal (Refereed)
    Abstract [en]

    Electrochemical synthesis and physical characterization of ZnO nanoparticles functionalized with four different organic acids, three aromatic (benzoic, nicotinic, and trans-cinnamic acid) and one nonaromatic (formic acid), are reported. The functionalized nanoparticles have been characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV−vis, and photoluminescence spectroscopy. The adsorption of the organic acids at ZnO nanoparticles was further analyzed and interpreted using quantum-chemical density-functional theory computations. Successful functionalization of the nanoparticles was confirmed experimentally by the measured splitting of the carboxylic group stretching vibrations as well as by the N(1s) and C(1s) peaks from XPS. From a comparison between computed and experimental IR spectra, a bridging mode adsorption geometry was inferred. PL spectra exhibited a remarkably stronger near band edge emission for nanoparticles functionalized with formic acid as compared to the larger aromatic acids. From the quantum-chemical computations, this was interpreted to be due to the absence of aromatic adsorbate or surface states in the band gap of ZnO, caused by the formation of a complete monolayer of HCOOH. In the UV−vis spectra, strong charge-transfer transitions were observed.

  • 19.
    Eriksson, Jens
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Khranovskyy, Volodymyr
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Yakimova, Rositsa
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Lloyd-Spets, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities2009In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 137, no 1, p. 94-102Article in journal (Refereed)
    Abstract [en]

    Zinc oxide is an interesting material for bio and chemical sensors. it is a semiconducting metal oxide with potential as an integrated multisensing sensor platform, which simultaneously detects Parameters like change in field effect, mass and Surface resistivity. in this investigation we have used resistive sensor measurements regarding the oxygen gas sensitivity in order to characterize sensing layers based on electrochemically produced ZnO nanoparticles and PE-MOCVD grown ZnO films. Proper annealing procedures were developed in order to get stable sensing properties and the oxygen sensitivity towards operation temperature was investigated. The ZnO nanoparticles showed a considerably increased response to oxygen as compared to the films. Preliminary investigations were also performed regarding the selectivity to other gases present in car exhausts or flue gases.

    Download full text (pdf)
    FULLTEXT01
  • 20.
    Ieva, Eliana
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Buchholt, Kristina
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Colaianni, L
    University of Bari.
    Cioffi, N
    University of Bari.
    Sabbatini, L
    University of Bari.
    Capitani, G C
    University of Bari.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry.
    Torsi, L
    University of Bari.
    Au Nanoparticles as Gate Material for NOx Field Effect Capacitive Sensors2008In: Sensor letters, ISSN 1546-198X, Vol. 6, no 4, p. 577-584Article in journal (Refereed)
    Abstract [en]

    Gold nanoparticles (Au-NPs) are electrochemically synthesized in the presence of tetra-alkylammonium stabilizers and used as active element in Field Effect capacitive gas sensors. Before use, the sensing area is treated by a relatively mild annealing procedure aimed to partially remove the organic stabilizer without loosing the nano-structured character of the particles. Both pristine and annealed materials have been subjected to a spectroscopic and morphological characterization (by means of UV-Vis, XPS, TEM, SEM techniques). Preliminary results on the application of AuNPs as gate material for NO, sensing are reported. The sensor is able to detect NO, with appreciable selectivity and low response towards the other tested gases (C3H6, CO, H-2, NH3).

  • 21.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Fortin, Marc A.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Petoral, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Klasson, Anna
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Veres, Teodor
    National Research Council of Canada .
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Colloidal synthesis and characterization of ultrasmall perovskite GdFeO3 nanocrystals2008In: Nanotechnology, ISSN 0957-4484, Vol. 19, no 8, p. 085608-Article in journal (Refereed)
    Abstract [en]

    Synthesis of very small (about 4 nm) perovskite structured gadolinium orthoferrite nanoparticles (GdFeO3) was performed by the polyol method. The material shows promising relaxivity properties and potential as a contrast agent in magnetic resonance imaging. The perovskite nanoparticles were characterized by x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, magnetic resonance, and magnetization measurements. Upon heating in air at 800 °C for 3 h the size of the crystals increased to about 40 nm. The crystalline structure of the heat treated compound is in good agreement with perovskite GdFeO3 as the primary product. Contributions from various secondary phases were also identified, including one hitherto unknown phase with the suggested composition 'Gd3FeO6' and isostructural with Gd3GaO6. The novel 'Gd3FeO6' phase appears to be kinetically stabilized in the nano state.

  • 22.
    Buchholt, Kristina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Leva, E
    Dipartimento di Chimica, Università degli Studi di Bari, Bari, Italy.
    Torsi, L
    Dipartimento di Chimica, Università degli Studi di Bari, Bari, Italy.
    Cioffi, N
    Dipartimento di Chimica, Università degli Studi di Bari, Bari, Italy.
    Colaianni, L
    Dipartimento di Chimica, Università degli Studi di Bari, Bari, Italy.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Electrochemically Synthesised Pd- and Au-nanoparticles as sensing layers in NOx-sensitive field effect devices2008In: Smart Sensors and Sensing Technology / [ed] Subhas Chandra Mukhopadhyay and Gourab Sen Gupta, Berlin, Heidelberg: Springer , 2008, p. 63-75Conference paper (Other academic)
    Abstract [en]

    An environmental pollutant of great concern is NOx (nitrogen monoxide and nitrogen dioxide). Here we report the utilisation of electrochemically synthesised gold and palladium nanoparticles as catalytically active gate material on gas sensitive field effect sensor devices. The synthesised nanoparticles have been characterised by TEM and XPS, and the morphology of the thermally treated nanostructured sensing layers has been investigated using SEM and XPS. Measurements on the gas response of the palladium as well as the gold nanoparticle sensors towards a number of analytes found in automotive gas exhausts were performed and their response patterns were compared. The initial gas response measurements show interesting sensing properties for both the gold and the palladium nanoparticle sensors towards NOx detection.

  • 23.
    Uvdal, Kajsa
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ahrén, Maria
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Selegård, Linnéa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Abrikossova, Natalia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Functionalized Gd2O3 Nanoparticles to Be used for MRI Contrast Enhancement2008In: AVS,2008, 2008Conference paper (Other academic)
  • 24.
    Lloyd Spetz, Anita
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Eriksson, Jens
    Ehrler, S
    Khranovskyy, Volodymyr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Gas sensors based on ZnO nanopraticels or film: A comparison2008In: IMCS 12,2008, 2008, p. 89-Conference paper (Refereed)
    Abstract [en]

       

  • 25.
    Klasson, Anna
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Hellqvist, Eva
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Rosén, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles2008In: Contrast Media and Molecular Imaging, ISSN 1555-4309, Vol. 3, no 3, p. 106-111Article in journal (Refereed)
    Abstract [en]

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.

  • 26.
    Buchholt, Kristina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Ieva, Eliana
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Torsi, L
    Dipartimento di Chimica, Universita degli Studi di Bari, Italy.
    Cioffi, N
    Dipartimento di Chimica, Universita degli Studi di Bari, Italy.
    Colaianni, L
    Dipartimento di Chimica, Universita degli Studi di Bari, Italy.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Lloyd Spetz, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics.
    A comparison between the use of Pd- and Au-nanoparticles as sensing layers in a field effect NOx-sensitive sensor2007In: The 2nd Conference on Sensing Technology ICST,2007, 2007, p. 87-92Conference paper (Refereed)
  • 27.
    Lutic, Doina
    et al.
    Lunds universitet.
    Strand, Michael
    Dept. of Chemistry, Växjö University.
    Lloyd-Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Buchholt, Kristina
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Ieva, Eliana
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Sanati, Mehri
    Dept. of Chemistry, Växjö University.
    Catalytic properties of oxide nanoparticles applied in gas sensors2007In: Topics in catalysis, ISSN 1022-5528, E-ISSN 1572-9028, Vol. 45, no 1-4, p. 105-109Article in journal (Refereed)
    Abstract [en]

    A series of gas sensing layers based on indium oxide doped with gold were prepared by using the aerosol technology fordeposition as the active contact layer in a metal oxide semiconductor capacitive device. The interaction between the measuredspecies and the insulator surface was quantified as the voltage changes at a constant capacitance of the device. The sensor propertieswere investigated in the presence of H2, CO, NH3, NO, NO2 and C3H6 at temperatures between 100–400 oC. Significant differencesin the morphology of the layer and its sensitivity were noted for different preparation methods and different gas environments.

  • 28.
    Ieva, Eliana
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Buchholt, Kristina
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Colaianni, L
    Dipartimento di Chimica, Università degli Studi di Bari, Italy .
    van der Werf, I.D.
    Dipartimento di Chimica, Università degli Studi di Bari, Italy .
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Torsi, L
    Dipartimento di Chimica, Università degli Studi di Bari, Bari, Italy .
    Gold Nanoparticle Sensors For Environmental Pollutant Monitoring2007In: Proceedings of the 2007 2nd IEEE International Workshop on Advances in Sensors and Interfaces, June 26-27, 2007 Bari, Italy, IEEE , 2007, p. 1-4Conference paper (Other academic)
    Abstract [en]

         Gold nanoparticles (Au-NPs) have been synthesised using a sacrificial anode electrolysis in the presence of tetra-alkyl-ammonium halides, employed as cationic stabilizers. Catalytic NPs have been then deposited on top of Field Effect (FE) gas sensing devices and subjected to mild annealing procedures. Transmission Electron Microscopy (TEM) shows that the NP average core diameter is around 5 nm. X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) have been applied to the surface characterization of the annealed NP films used as active sensing layers. Morphological and spectroscopic results demonstrate that the annealed inorganic nano-clusters are finely dispersed and maintain a metallic oxidation state. Au-NPs can be proficiently employed as gate material in Si-Field Effect Gas Sensors. Preliminary results show interesting selectivity and sensitivity sensing features towards NOx detection.

  • 29.
    Lloyd Spetz, Anita
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Buchholt, Kristina
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lutic, Doina
    Lunds universitet.
    Strand, M
    Växjö universitet.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Sanati, Mehri
    Lunds universitet.
    Yakimova, Rositsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Multifunctional chemical sensors based on wide band gap materials2007In: MRS Spring Meeting,2007, 2007Conference paper (Refereed)
    Abstract [en]

       

  • 30.
    Fortin, Marc-André
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Petoral Jr, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Veres, Teodor
    National Research Council of Canada (CNRC-IMI) 75, Boucherville, QC, Canada.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Polyethylene glycol-cover ultra-small Gd2O3 nanoparticles for positive contras at 1.5 T magnetic resonance clinical scanning2007In: Nanotechnology, ISSN 0957-4484, Vol. 18, no 39, p. 395501-Article in journal (Refereed)
    Abstract [en]

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG–Gd2O3 and PEG-silane–SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane–US-Gd2O3 relaxation parameters were twice as high as for Gd–DTPA and the r2/r1 ratio was 1.4. PEG-silane–SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG–Gd2O3. Treatment of DEG–US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  • 31.
    Ahrén, Maria
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Olsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rare earth nanoparticles as contrast agent in MRI: Nanomaterial design and biofunctionalization2007In: IVC-17/ICSS-13 ICNT,2007, 2007Conference paper (Other academic)
  • 32.
    Klasson, Anna
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Hellqvist, Eva
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Rosén, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Cell tracking with positive contrast using Gd2O3 nanoparticles2006In: ESMRMB,2006, 2006Conference paper (Other academic)
  • 33.
    Buchholt, Kristina
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    Ieva, E.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Torsi, L
    Universita degli Studi di Bari, Italy.
    Lutic, D.
    Växjö universitet.
    Strand, M
    Växjö universitet.
    Sanati, M.
    Växjö universitet.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, The Institute of Technology.
    FET devices with gold nanoparticle gate material as nitrogen oxide gas sensors2006In: Proceedings from E-MRS 2006, Nice France, May 29- June 1, 2006, 2006, p. 87-92Conference paper (Refereed)
    Abstract [en]

       

  • 34.
    Uvdal, Kajsa
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ahrén, Maria
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Vahlberg, Cecilia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Functionalized rare earth nanocrystals for MRI contrast enhancement2006In: e-MRS,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

  • 35.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Klasson, Anna
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Vahlberg, Cecillia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    High Proton Relaxivity for Gadolinium Oxide Nanoparticles2006In: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 19, no 4, p. 180-186Article in journal (Refereed)
    Abstract [en]

    Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

    Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

    Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T 1 and T 2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

    Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T 1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

  • 36.
    Ojamäe, Lars
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Aulin, Christian
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles2006In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 296, no 1, p. 71-78Article in journal (Refereed)
    Abstract [en]

      Nanocrystalline TiO2 powders of the rutile polymorph, synthesized by a sol–gel method, were treated with water solutions containing, respectively, formic, acetic, and citric acid and glycine in order to study the adsorption properties of these organic species. The samples were characterized by FTIR, Raman, powder XRD, and TEM. It was found that HCOOH, CH3COOH and HOC(COOH)(CH2COOH)2—but not NH2CH2COOH—adsorbed onto TiO2. The adsorption of HCOOH, CH3COOH and NH2CH2COOH onto the (110) surface of rutile was also studied by quantum-chemical periodic density functional theory (DFT) calculations. The organic molecules were from the computations found to adsorb strongly to the surfaces in a bridge-coordinating mode, where the two oxygens of the deprotonated carboxylic acid bind to two surface titanium ions. Surface relaxation is found to influence adsorption geometries and energies significantly. The results from DFT calculations and ab initio molecular-dynamics simulations of formic acid adsorption onto TiO2 are compared and match well with the experimental IR measurements, supporting the bridge-binding geometry of carboxylic-acid adsorption on the TiO2 nanoparticles.

  • 37. Roy, S
    et al.
    Salomonsson, Anette
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Aulin, C
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Strand, M
    Sanati, M
    Metal oxide nanoparticles as novel gate materials for field-effect gas sensors2006In: Materials and Manufacturing Processes, ISSN 1042-6914, E-ISSN 1532-2475, Vol. 21, p. 275-278Article in journal (Refereed)
    Abstract [en]

      

  • 38.
    Salomonsson, Anette
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Petoral Jr., Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Aulin, Christian
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Strand, Michael
    School of Technology and Design/Chemistry, Växjö University, Växjö, Sweden.
    Sanati, Mehri
    School of Technology and Design/Chemistry, Växjö University, Växjö, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Nanocrystalline Ruthenium oxide and Ruthenium in sensing applications -an experimental and theoretical study2006In: Journal of Nanoparticle Research, ISSN 1388-0764, Vol. 8, no 6, p. 899-910Article in journal (Refereed)
    Abstract [en]

    In this project, we have explored RuO2 and Ru nanoparticles (∼ ∼10 and ∼ ∼5 nm, respectively, estimated from XRD data) to be used as gate material in field effect sensor devices. The particles were synthesized by wet chemical procedure. The capacitance versus voltage characteristics of the studied capacitance shifts to a lower voltage while exposed to reducing gases. The main objectives are to improve the selectivity of the FET sensors by tailoring the dimension and surface chemistry of the nanoparticles and to improve the high temperature stability. The sensors were characterized using capacitance versus voltage measurements, at different frequencies, 500 Hz to 1 MHz, and temperatures at 100–400°C. The sensor response patterns have been found to depend on operating temperature. X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the oxidation state due to gas exposure. Quantum-chemical computations suggest that heterolytic dissociative adsorption is favored and preliminary computations regarding water formation from adsorbed hydrogen and oxygen was also performed.

  • 39.
    Lloyd-Spets, Anita
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Ieva, Eliana
    IFM .
    Cioffi, N.
    Torsi, L.
    Sabbatini, L.
    Zambonin, P.G.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Nanoparticelle di oro come materiali attivi in capacitori impiegati come sensori di gas2006In: Conf. on Chemical Sensors,2006, 2006Conference paper (Refereed)
  • 40.
    Lloyd-Spets, Anita
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Salomonsson, Anette
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Strand, M.
    Einvall, J.
    Aulin, C.
    Nanoparticles as sensing material for selective and stable SiC-FET gas sensor2006In: Proc. European Aerosol Conference 2005,2006, 2006, p. 735-735Conference paper (Refereed)
  • 41.
    Fortin, Marc-Andre
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Synthesis of gadolinium oxide nanoparticles as a contrast agent in MRI2006In: Trends in Nanotechnology,2006, 2006Conference paper (Other academic)
    Abstract [en]

           

  • 42.
    Klasson, Anna
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Cell tracking with novel contrast agents fromed by gadolinium oxide nanoparticels2005In: ESMRMB,2005, 2005Conference paper (Refereed)
  • 43.
    Lutic, D.
    et al.
    Växjö universitet.
    Strand, M.
    Växjö universitet.
    Salomonsson, Anette
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Sanati, M.
    Växjö universitet.
    In2O3 particle films as gate material for MISiC-capacitor sensors2005In: NOSA 2005,2005, 2005Conference paper (Refereed)
  • 44.
    Strand, M.
    et al.
    Växjö universitet.
    Salomonsson, Anette
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Einvall, J.
    Aulin, C.
    Kemi LiU.
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Sanati, M.
    Växjö universitet.
    Nanoparticles as sensing material for selective and stable SiC-FET gas sensor2005In: European Aerosol Conference 2005,2005, 2005, p. 735-Conference paper (Refereed)
  • 45.
    Salomonsson, Anette
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Roy, Somenath
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Aulin, Christian
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Cerdà, Judith
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Strand, Michael
    Division of Chemistry, Växjö University, Växjö, Sweden.
    Sanati, Mehri
    Division of Chemistry, Växjö University, Växjö, Sweden.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Nanoparticles for long-term stable, more selective MISiCFET gas sensors2005In: Sensors and Actuators B, ISSN 0925-4005, Vol. 107, no 2, p. 831-838Article in journal (Refereed)
    Abstract [en]

    Synthesis of metal-oxide nanoparticles and utilization of these particles as gate materials for field-effect sensor devices is reported. Improved selectivity to specific gases is expected by modulating the size of the oxide nanoparticles or impregnating them with catalytic metals. Another objective is to improve the long-term thermal stability of the sensors, since the metal loaded nanoparticles may prevent thermally induced restructuring of the gate layer, which is often a problematic issue for the catalytic metal layers. Because of its reasonably high electrical conductivity, which is especially important for the capacitive gas sensors, ruthenium dioxide has been identified to be one of the potential candidates as gate material for the field-effect sensor devices. Interestingly, this material has been found to change its resistivity in different gaseous ambients. When used as a gate material, sensitivity to reducing gases has been observed for the RuO2/SiO2/4H-SiC capacitors. Changes in the resistivity of the films due to various gas exposures have also been recorded. Morphological studies of nanoparticles (SiO2 and Al2O3), loaded or impregnated with catalytic metals (e.g. Pt), have been performed.

  • 46.
    Salomonsson, Anette
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Roy, S
    Aulin, C
    Ojamäe, Lars
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Strand, M
    Sanati, M
    Lloyd-Spets, Anita
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    RuO2 and Ru nanoparticles for MISiCFET gas sensors2005In: Nanotech NSTI 2005,2005, 2005, p. 269-Conference paper (Refereed)
  • 47.
    Salomonsson, Anette
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Roy, Somenath
    Aulin, Christian
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry . Linköping University, The Institute of Technology.
    Strand, Michael
    Växjö university.
    Sanati, Mehri
    Växjö university.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
    Ruthenium dioxide & Ru Nanoparticles for MISiCFET gas sensors2005In: Nanotech 2005 (NSTI) Anaheim, USA, 8-12 May, 2005, Vol. 2, no Chapter 4, p. 269–272-Conference paper (Refereed)
    Abstract [en]

    Catalytically active nanoparticles used as gate material on SiC-FET gas sensors. The goal is to improve the selsectivity and senstitivty.The sensors are sensitive towards oxidising and reducing gases (H2, NH3, C3H6).

  • 48.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Sol–gel synthesis and characterization of Na0.5K0.5NbO3 thin films2005In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 281, no 2-4, p. 468-474Article in journal (Refereed)
    Abstract [en]

    Thin films of the perovskite structured Na0.5K0.5NbO3 (NKN) have been synthesized with three different sol–gel methods, viz. the alkoxide method, a modified Pechini method and a somewhat novel oxalate method, based on 2-methoxy ethanol as solvent with oxalic acid and ethylene glycol as chelating ligand and stabilizer. Only one method (the modified Pechini method) gave pure NKN phase while the other two methods gave extra peaks in the X-ray diffraction patterns, indicating that other, unidentified, phases were present. SEM images revealed grain sizes ranging from 100 to 300 nm.

  • 49.
    Pedersen, Henrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Petoral, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Ojamäe, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Surface interactions between Y2O3 nanocrystals and organic molecules—an experimental and quantum-chemical study2005In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 592, no 1-3, p. 124-140Article in journal (Refereed)
    Abstract [en]

    The surface interactions between Y2O3 nanocrystals and the organic molecules formic acid, diethylene glycol (DEG), and tetramethoxy silane (TMOS), have been studied experimentally and by quantum chemical calculations with the intent to elucidate the chemisorption characteristics such as adsorbate vibrational spectra and adsorption structures. Nanocrystal synthesis was performed by a colloidal method based on polyols and by a rapid combustion method. The products were experimentally characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS).

    In the quantum chemical calculations, the B3LYP hybrid density functional ab initio method was used to study the chemisorption of formic acid, DEG and TMOS at the surface of Y12O18 clusters. From a comparison of calculated and experimental vibrational spectra, the binding mode for formic acid on Y2O3 was inferred to be of bridge or bidentate type. The XPS and FT-IR experiments showed that DEG is chemisorbed on the particle surface. The experimental IR spectra of DEG chemisorbed on Y2O3 were consistent with an adsorption mode where the hydroxyl groups are deprotonated according to the quantum-chemical computations. The adsorption energy is of the order of 370 kJ mol−1 for formic acid, 550 kJ mol−1 for DEG, and 60 kJ mol−1 for TMOS, according to the quantum chemical calculations.

  • 50.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Inorganic Chemistry. Linköping University, The Institute of Technology.
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Petoral, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids2005In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 288, no 1, p. 140-148Article in journal (Refereed)
    Abstract [en]

    Nanocrystals of Gd2O3 have been prepared by various methods, using, e.g., trioctylphosphine oxide (TOPO), diethylene glycol (DEG) or glycine. The crystalline particles were of sizes 5 to 15 nm. Different carboxylic acids, e.g., oleic acid or citric acid, were adsorbed onto the surface of the particles made with DEG. IR measurements show that the molecules coordinate to the Gd2O3 surface via the carboxylate group in a bidentate or bridging manner. The organic-acid/particle complexes were characterised by XRPD, TEM, FTIR, Raman, and XPS.

12 1 - 50 of 81
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf