liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Johnsson, Simon
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    En ljus framtid: Energieffektivisering inom industriell belysning ochdess mervärden, hinder och drivkrafter2024Report (Other academic)
    Abstract [sv]

    Denna rapport är ett försök att sammanfatta den forskning som har gjorts inom området energieffektivisering av industriell belysning med fokus på teknik, hinder, drivkrafter och mervärden. Rapporten har skrivits inom ramen för projektet Mervärden vid energieffektivisering – för en ökad energieffektivisering inom industriell belysning, som finansierats av Energimyndigheten. Målgruppen är vetenskapssamhället i Sverige, universitetsstudenter med energi- och miljöinriktning och industriföretag.

    Resultaten från litteraturstudien visar att den forskning som har gjorts inom området energieffektivisering av industriell belysning och dess potentiella mervärden är förhållandevis begränsad. Vad författarna kan se så saknas exempelvis studier som tar ett helhetsgrepp på mervärden. Det saknas även forskning om metoder för kvantifiering av mervärdens ekonomiska betydelse.

    När det gäller forskning som relaterar till styrning och optimering av belysning så finns en del studier med fokus på bostäder, offentliga lokaler och gatubelysning. Forskning som studerar styrning och optimering av industriell belysning lyser med sin frånvaro. Det ska sägas att studierna av bostäder, offentliga lokaler och gatubelysning innehåller metoder som skulle kunna vara användbara även för industriell belysning. Några exempel på områden är prediktivt underhåll för industriell belysning samt optimering och styrning av belysning tillsammans med andra stödprocesser såsom luftkonditionering.

    Styrning och optimering av belysning underlättas om det finns infrastruktur för digital teknik, det vill säga en infrastruktur som tillhandahåller sensorer, datakommunikation, datalagring och dataanalys. Om denna infrastruktur inte finns tillgänglig i tillräcklig utsträckning kan ett alternativ vara att använda ett koncept likt ”Ljus som tjänst”. Dock är det inte säkert att det är lika kostnadseffektivt som en lokalt optimerad lösning.

    Det finns hinder som försvårar energieffektivisering av industriell belysning. Litteraturstudien indikerar att de mest nämnda hindren är finansiella och informativa. Informativa hinder kan överkommas genom styrmedel såsom energikartläggningsstöd för små och medelstora företag samt energinätverksprogram. Om mervärden kan inkluderas i ett investeringsunderlag så skulle det kunna bidra till att finansiella hinder minskar. För att kunna göra detta behöver mervärdeskonceptet bli mer allmänt känt.

    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 2.
    Stenqvist, Christian
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering. Evalpart AB .
    Johnsson, Simon
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Nehler, Therese
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energieffektivisering och mervärdesbedömning för en hållbar utveckling2021Report (Other academic)
    Abstract [sv]

    Förbättrad industriell energieffektivitet i östgötska företag är ett projekt (med kortnamnet Excen-e) som har bedrivits av avdelningen för Energisystem vid Linköpings universitet under 2018–2021 med finansiering från europeiska regionalfonden. Via samverkan mellan akademi, offentlig sektor och näringsliv, har syftet med projektet varit att bidra till en mer koldioxidsnål och energieffektiv industriell produktion genom kunskapsspridning om mervärden av energieffektivisering och hållbarhetsaspekter, samt att utveckla och använda ett beslutsstödsverktyg kring mervärden vid energirelaterade investeringsbedömningar. Projektet har byggt på kunskaps- och erfarenhetsutbyte mellan projektmedarbetande forskare och ett nätverk av åtta regionala tillverkningsföretag inom vilket projektet har introducerat mervärdeskonceptet och involverat deltagande företag i arbetet med att ta fram verktyget. Denna rapport syftar till att sätta projektet och dess arbete i ett större sammanhang, d.v.s. visa på möjliga samband och synergieffekter mellan övergripande ramverk och begrepp, t.ex. energieffektivisering och mervärden, hållbarhetsaspekterna i det regionala utvecklingsarbetet samt de globala hållbarhetsmålen. Rapporten visar att mervärdesbedömningar av energieffektivisering via projektets framtagna verktyg ökar kunskapen om och användningen av mervärden vilket kan stödja såväl förberedande beslutfattande arbete som uppföljande och utvärderande arbete som rör energieffektiviseringsåtgärder, samt även bidra till och demonstrera samhällsnytta och hållbarhetsvinster på lokal till global nivå.

    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 3.
    Thollander, Patrik
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Wallén, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Björk, Curt
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johnsson, Simon
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Haraldsson, Joakim
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johansson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Malik Kanchiralla, Fayas
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Jalo, Noor
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energinyckeltal och växthusgasutsläpp baserade på industrins energianvändande processer2021Report (Refereed)
    Abstract [en]

    Swedish industry should strategically work towards improved energy and resource efficiency. In this context, decision making and key performance indicators (KPIs) play a central role in achieving improved efficiency. Even for regulation authorities, fair KPIs of energy end-use are very important to be able to perform excellent, preventive and proactive work towards Swedish companies. KPIs at international and national levels are based on energy supplied, normally related to an economic output, such as value added. However, there are no key figures about the energy end-use in Swedish industry, distributed on energy carriers such as electricity and oil, and in turn allocated on energy end-using processes such as furnaces, air compressors, etc. The existing figures regarding this are based on rough estimates. The goal of the project has therefore been to generate a process tree for several of the largest, energy end-using Swedish manufacturing industries, as regards how energy end-use is distributed at the process level and for different energy carriers, and in turn allocate greenhouse gas emissions for these different processes. The results indicate that energy KPIs based on energy use and indirect carbon greenhouse gas emissions at process level can contribute to better knowledge of the industrial energy end-use processes that have the greatest potential for energy efficiency improvements as well as greenhouse gas abatement. In order to continuously know the processes with the greatest potential for improvement, energy end-use data should be collected regularly and follow a standardized categorization of energy end-use processes. The project has been limited to Swedish industry, but the results can be useful for other EU member states as well as globally.

    Download (png)
    presentationsbild
  • 4.
    Kanchiralla, Fayas Malik
    et al.
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Jalo, Noor
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johnsson, Simon
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy use categorization with performance indicators for the food industry and a conceptual energy planning framework2021In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 304, article id 117788Article in journal (Refereed)
    Abstract [en]

    Energy efficiency improvements can enhance industrys decarbonization. A major challenge however is that the energy efficiency potential often remains untapped, due, among other things, to the lack of information on energy end-use and available energy efficiency measures. Further, this lack of information also makes the deployment of energy efficiency difficult to monitor and evaluate. The creation of a standard or taxonomy on how to categorize energy end-use for major industries would help to close this knowledge gap. This paper presents a novel taxonomy for energy end-use in the food industry, with four hierarchical levels. Further, results show that the production process utilizes two-thirds of the total energy used in the food industry and only onethird is used for support processes. Another result is that heat processing and space heating are the most intensive unit processes in terms of energy and carbon dioxide emissions for production and support processes, respectively. The paper also presents an array of energy performance indicators for the identified energy-intensive processes. The case study was carried out in the Swedish food industry. However, taxonomy and energy performance indicators can be generalized internationally. In addition to the above results, this research presents a novel concept of the energy planning framework, which helps with simple and effective planning of energy improvement activities in an industrial context. The energy planning framework can help in benchmarking, setting targets, and monitoring energy performance in the industry.

    Download full text (pdf)
    fulltext
  • 5.
    Haraldsson, Joakim
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johnsson, Simon
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Wallén, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries2021In: Energies, E-ISSN 1996-1073, Vol. 14, no 12, article id 3571Article in journal (Refereed)
    Abstract [en]

    Increasing energy efficiency within the industrial sector is one of the main approachesin order to reduce global greenhouse gas emissions. The production and processing of aluminiumis energy and greenhouse gas intensive. To make well-founded decisions regarding energy effi-ciency and greenhouse gas mitigating investments, it is necessary to have relevant key performanceindicators and information about energy end-use. This paper develops a taxonomy and key perfor-mance indicators for energy end-use and greenhouse gas emissions in the aluminium industry andaluminium casting foundries. This taxonomy is applied to the Swedish aluminium industry andtwo foundries. Potentials for energy saving and greenhouse gas mitigation are estimated regardingstatic facility operation. Electrolysis in primary production is by far the largest energy using andgreenhouse gas emitting process within the Swedish aluminium industry. Notably, almost half of thetotal greenhouse gas emissions from electrolysis comes from process-related emissions, while theother half comes from the use of electricity. In total, about 236 GWh/year (or 9.2% of the total energyuse) and 5588–202,475 tonnes CO2eq/year can be saved in the Swedish aluminium industry and twoaluminium casting foundries. The most important key performance indicators identified for energyend-use and greenhouse gas emissions are MWh/tonne product and tonne CO2-eq/tonne product.The most beneficial option would be to allocate energy use and greenhouse gas emissions to boththe process or machine level and the product level, as this would give a more detailed picture of thecompany’s energy use and greenhouse gas emissions.

    Download full text (pdf)
    fulltext
  • 6.
    Kanchiralla, Fayas Malik
    et al.
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Jalo, Noor
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Johnsson, Simon
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Maria
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy End-Use Categorization and Performance Indicators for Energy Management in the Engineering Industry2020In: Energies, E-ISSN 1996-1073, ENERGIES, Vol. 13, no 2, article id 369Article in journal (Refereed)
    Abstract [en]

    Energy efficiency (EE) improvement is one of the most crucial elements in the decarbonization of industry. EE potential within industries largely remains untapped due to the lack of information regarding potential EE measures (EEM), knowledge regarding energy use, and due to the existence of some inconsistencies in the evaluation of energy use. Classification of energy end-using processes would increase the understanding of energy use, which in turn would increase the detection and deployment of EEMs. The study presents a novel taxonomy with hierarchical levels for energy end-use in manufacturing operations for the engineering industry, analyzes processes in terms of energy end-use (EEU) and CO2 emissions, and scrutinizes energy performance indicators (EnPIs), as well as proposing potential new EnPIs that are suitable for the engineering industry. Even though the study has been conducted with a focus on the Swedish engineering industry, the study may be generalizable to the engineering industry beyond Sweden.

    Download full text (pdf)
    fulltext
  • 7.
    Johnsson, Simon
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy savings and greenhouse gas mitigation potential in the Swedish wood industry2019In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 187, article id 115919Article in journal (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most crucial actions for mitigating climate change. The lack of knowledge regarding energy end-use makes it difficult for companies to know in which processes the highest energy efficiency potential is located. Using a case study design, the paper provides a taxonomy for energy end-use and greenhouse gas (GHG) emissions on a process and energy carrier level. It can be seen that drying of wood is the largest energy using and GHG emitting process in the studied companies. The paper also investigates applied and potentially viable energy key performance indicators (KPIs). Suggestions for improving energy KPIs within the wood industry include separating figures for different wood varieties and different end-products and distinguishing between different drying kiln technologies. Finally, the paper presents the major energy saving and carbon mitigating measures by constructing conservation supply curves and marginal abatement cost curves. The energy saving potential found in the studied companies indicates that significant improvements might be achieved throughout the Swedish wood industry. Even though the scope of this paper is the Swedish wood industry, several of the findings are likely to be relevant in other countries with a prominent wood industry.

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf