liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Barazanji, Nawroz
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Mag- tarmmedicinska kliniken.
    Hamilton, Paul J.
    Linköping University, Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Icenhour, Adriane
    Ruhr University Bochum, Bochum, Germany.
    Simon, Rozalyn
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Bednarska, Olga
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Mag- tarmmedicinska kliniken.
    Tapper, Sofie
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Tisell, Anders
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine.
    Lundberg, Peter
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Engström, Maria
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Walter, Susanna
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Mag- tarmmedicinska kliniken.
    Irritable bowel syndrome in women: Association between decreased insular subregion volumes and gastrointestinal symptoms2022In: NeuroImage: Clinical, ISSN 0353-8842, E-ISSN 2213-1582, Vol. 35, article id 103128Article in journal (Refereed)
    Abstract [en]

    Irritable bowel syndrome (IBS) is a chronic pain disorder characterized by disturbed interactions between the gut and the brain with depression as a common comorbidity. In both IBS and depression, structural brain alterations of the insular cortices, key structures for pain processing and interoception, have been demonstrated but the specificity of these findings remains unclear. We compared the gray matter volume (GMV) of insular cortex (IC) subregions in IBS women and healthy controls (HC) and examined relations to gastrointestinal (GI) symptoms and glutamate + glutamine (Glx) concentrations. We further analyzed GMV of IC subregions in women with major depression (MDD) compared to HC and addressed possible differences between depression, IBS, IBS with depression and HC.

    Download full text (pdf)
    fulltext
  • 2.
    Tapper, Sofie
    et al.
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Göransson, Nathanael
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    Lundberg, Peter
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tisell, Anders
    Linköping University, Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Zsigmond, Peter
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Neurosurgery.
    A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity2020In: Cerebellum & ataxias, E-ISSN 2053-8871, Vol. 7Article in journal (Refereed)
    Abstract [en]

    Essential tremor is a common movement disorder with an unclear origin. Emerging evidence suggests the role of the cerebellum and the thalamus in tremor pathophysiology. We examined the two main neurotransmitters acting inhibitory (GABA+) and excitatory (Glx) respectively, in the thalamus and cerebellum, in patients diagnosed with severe essential tremor. Furthermore, we also investigated the relationship between determined neurotransmitter concentrations and tremor severity in the essential tremor patients.

    Download full text (pdf)
    fulltext
  • 3.
    Icenhour, Adriane
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Bednarska, Olga
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Witt, Suzanne Tyson
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Elsenbruch, Sigrid
    Univ Duisburg Essen, Germany.
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Elucidating the putative link between prefrontal neurotransmission, functional connectivity, and affective symptoms in irritable bowel syndrome2019In: Scientific Reports, E-ISSN 2045-2322, Vol. 9, article id 13590Article in journal (Refereed)
    Abstract [en]

    Altered neural mechanisms are well-acknowledged in irritable bowel syndrome (IBS), a disorder of brain-gut-communication highly comorbid with anxiety and depression. As a key hub in corticolimbic inhibition, medial prefrontal cortex (mPFC) may be involved in disturbed emotion regulation in IBS. However, aberrant mPFC excitatory and inhibitory neurotransmission potentially contributing to psychological symptoms in IBS remains unknown. Using quantitative magnetic resonance spectroscopy (qMRS), we compared mPFC glutamate + glutamine (Glx) and gamma-aminobutyric acid (GABA+) concentrations in 64 women with IBS and 32 age-matched healthy women (HCs) and investigated their association with anxiety and depression in correlational and subgroup analyses. Applying functional magnetic resonance imaging (fMRI), we explored whether altered neurotransmission was paralleled by aberrant mPFC resting-state functional connectivity (FC). IBS patients did not differ from HCs with respect to mPFC GABA+ or Glx levels. Anxiety was positively associated with mPFC GABA+ concentrations in IBS, whereas Glx was unrelated to psychological or gastrointestinal symptoms. Subgroup comparisons of patients with high or low anxiety symptom severity and HCs revealed increased GABA+ in patients with high symptom severity, and lower mPFC FC with adjacent anterior cingulate cortex (ACC), a crucial region of emotion modulation. Our findings provide novel evidence that altered prefrontal inhibitory neurotransmission may be linked to anxiety in IBS.

    Download full text (pdf)
    fulltext
  • 4.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Neurotransmitter Imaging of the Human Brain: Detecting γ-Aminobutyric Acid (GABA) Using Magnetic Resonance Spectroscopy2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Introduction: In this thesis, MEGA-edited Magnetic Resonance Spectroscopy (MRS) has been used for the purpose of non-invasive detection of !- aminobutyric acid (GABA) within the brain. GABA is the main inhibitory neurotransmitter in the human central nervous system, and glutamate is the corresponding main excitatory neurotransmitter. A balance between GABA and glutamate is crucial for healthy neurotransmission within the brain, and regional altered concentrations have been linked to certain neurological disorders. However, it is challenging to measure GABA, and special editing approaches are needed in order to allow reliable quantification. In addition, the GABA measurement is further complicated due to disturbances such as movements during the acquisition that may lead to artifacts in the resulting spectrum. This thesis can be divided into two sections, where the first section focuses on three clinical applications (narcolepsy, irritable bowel syndrome (IBS), and essential tremor (ET)), which were all investigated using MEGA-edited single- voxel spectroscopy (SVS). The second section focuses on method development, where two statistical retrospective approaches were investigated for the purpose of improving MEGA-edited data. In addition, a new MRS imaging (MRSI) pulse sequence with the purpose of GABA detection using a high spatial resolution, short acquisition time, and full brain coverage was also investigated.

    Materials and Methods: In total, 164 participants were included and 272 MRS measurements were performed with the voxel placed in the medial prefrontal cortex (mPFC, 136), thalamus (32), and cerebellum (104) using two different but “identical” MR systems. Nineteen narcolepsy patients and 21 matched healthy controls performed an fMRI working memory task using a simultaneous EEG followed by an mPFC GABA-edited MRS measurement. Sixty-four IBS patients and 32 matched healthy controls underwent an mPFC GABA-edited MRS measurement followed by resting state fMRI. In addition, psychological symptoms were assessed using questionnaires. Ten ET patients and six matched healthy controls underwent four GABA-edited MRS measurements with the voxels placed in the thalamus and cerebellum. In this study, the symptom severity was investigated using the essential tremor rating scale (ETRS). All clinical MRS datasets were analyzed using conventional methods for post-processing and quantification. Furthermore, 12 volunteers were recruited for the purpose of investigating statistical retrospective approaches for artifact detection and elimination of MRS data. Each participant underwent three reference measurements and three measurements with induced head movements conducted according to a movement paradigm. Order statistic filtering (OSF) and jackknife correlation (JKC) were investigated as regards to the elimination of artifact-influenced spectra and reliability of the resulting concentrations. Finally, phantom measurements were performed for the purpose of investigating MEGA-edited MRSI.

    Results: In narcolepsy, a trend-level association was observed between the mPFC MRS concentrations and increased deactivation within the default mode network during the working memory task. A significantly higher mPFC GABA+ concentration was observed in IBS patients with a high severity of comorbid anxiety. In ET, a positive correlation was observed between cerebellar GABA+/Glx ratios and tremor severity. Moreover, movements during the measurement decreased the concentration estimates due to signal loss in the spectra. Both OSF and JKC resulted in trend-level improvement of the signal- intense metabolites in spectrum when artifacts were present in the data, while performing equally as well as conventional analysis methodology when no intentional movements were present in the data. Finally, using the fast MEGA- edited multi-voxel sequence developed for a conventional clinical scanner, our phantom measurements showed that GABA was detectable using a 1:45 min acquisition time and an MRSI voxel size of 1 mL.

    Discussion: Several challenges such as time constraints, large voxel sizes, and protocol design were encountered when performing SVS MEGA-PRESS in the clinical research settings. In addition, artifacts in the MRS data originating for example, from motions, negatively impacted the resulting averaged spectra, which was evident in both data from clinical populations and healthy controls. In the presence of artifacts in the data, both OSF and JKC improved the SVS MEGA-edited spectra. In addition, the implemented JKC method can be used not only for artifact detection, but also as a generally applicable retrospective technique for the quality control of a dataset, or as an indication of whether a shift in voxel placement occurred during the measurement. Using the MEGA-edited MRSI pulse sequence, there are many technical challenges, including detrimental effects from eddy currents, spurious echoes, and field inhomogeneities. Even though there are many technical challenges when using MEGA-edited MRSI, an optimized version of the MRSI sequence would be extremely valuable in clinical research applications where high spatial resolution and short acquisition times are highly desired.

    Conclusions: OSF and JKC improved the metabolite quantification when artifacts were present in the data, and JKC was preferable. Although there are many technical challenges, MEGA-edited MRSI with full brain coverage in combination with a minimal voxel size for the purpose of GABA detection, would be extremely useful in clinical research applications where disorders such as narcolepsy, IBS, or ET, are investigated.

    List of papers
    1. Evidence for cognitive resource imbalance in adolescents with narcolepsy
    Open this publication in new window or tab >>Evidence for cognitive resource imbalance in adolescents with narcolepsy
    Show others...
    2018 (English)In: Brain Imaging and Behavior, ISSN 1931-7557, E-ISSN 1931-7565, Vol. 12, no 2, p. 411-424Article in journal (Refereed) Published
    Abstract [en]

    The study investigated brain activity changes during performance of a verbal working memory task in a population of adolescents with narcolepsy. Seventeen narcolepsy patients and twenty healthy controls performed a verbal working memory task during simultaneous fMRI and EEG acquisition. All subjects also underwent MRS to measure GABA and Glutamate concentrations in the medial prefrontal cortex. Activation levels in the default mode network and left middle frontal gyrus were examined to investigate whether narcolepsy is characterized by an imbalance in cognitive resources. Significantly increased deactivation within the default mode network during task performance was observed for the narcolepsy patients for both the encoding and recognition phases of the task. No evidence for task performance deficits or reduced activation within the left middle frontal gyrus was noted for the narcolepsy patients. Correlation analyses between the spectroscopy and fMRI data indicated that deactivation of the anterior aspect of the default mode in narcolepsy patients correlated more with increased concentrations of Glutamate and decreased concentrations of GABA. In contrast, deactivation in the default mode was correlated with increased concentrations of GABA and decreased concentrations of Glutamate in controls. The results suggested that narcolepsy is not characterized by a deficit in working memory but rather an imbalance of cognitive resources in favor of monitoring and maintaining attention over actual task performance. This points towards dysregulation within the sustained attention system being the origin behind self-reported cognitive difficulties in narcolepsy.

    Place, publisher, year, edition, pages
    Springer-Verlag New York, 2018
    Keywords
    EEG, GABA, MRS, Narcolepsy, Working memory, fMRI
    National Category
    Radiology, Nuclear Medicine and Medical Imaging
    Identifiers
    urn:nbn:se:liu:diva-145535 (URN)10.1007/s11682-017-9706-y (DOI)000429029000011 ()28321606 (PubMedID)2-s2.0-85015625386 (Scopus ID)
    Available from: 2018-03-05 Created: 2018-03-05 Last updated: 2020-11-10Bibliographically approved
    2. How does motion affect GABA-measurements? Order statistic filtering compared to conventional analysis of MEGA-PRESS MRS
    Open this publication in new window or tab >>How does motion affect GABA-measurements? Order statistic filtering compared to conventional analysis of MEGA-PRESS MRS
    2017 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 12, no 5, article id e0177795Article in journal (Refereed) Published
    Abstract [en]

    Purpose The aim of this study was to evaluate two post-processing techniques applied to MRS MEGA-PRESS data influenced by motion-induced artifacts. In contrast to the conventional averaging technique, order statistic filtering (OSF) is a known method for artifact reduction. Therefore, this method may be suitable to incorporate in the GABA quantification. Methods Twelve healthy volunteers were scanned three times using a 3 T MR system. One measurement protocol consisted of two MEGA-PRESS measurements, one reference measurement and one measurement including head motions. The resulting datasets were analyzed with the standard averaging technique and with the OSF-technique in two schemes; filtering phase cycles RAW PC and filtering dynamics RAW Dyn. Results The datasets containing artifacts resulted in an underestimation of the concentrations. There was a trend for the OSF-technique to compensate for this reduction when quantifying SNR-intense signals. However, there was no indication that OSF improved the estimated GABA concentrations. Moreover, when only considering the reference measurements, the OSF technique was equally as effective as averaging, which suggests that the techniques are interchangeable. Conclusion OSF performed equally well as the conventional averaging technique for low-SNR signals. For high-SNR signals, OSF performed better and thus could be considered for routine usage.

    Place, publisher, year, edition, pages
    Public Library of Science, 2017
    National Category
    Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-138250 (URN)10.1371/journal.pone.0177795 (DOI)000401485500071 ()28520793 (PubMedID)2-s2.0-85019539851 (Scopus ID)
    Note

    Funding Agencies|Knut and Alice Wallenberg Foundation [KAW 2013.0076]; NIH [P41 015909, R01 016089]

    Available from: 2017-06-14 Created: 2017-06-14 Last updated: 2021-06-14Bibliographically approved
    3. Retrospective artifact elimination in MEGA-PRESS using a correlation approach
    Open this publication in new window or tab >>Retrospective artifact elimination in MEGA-PRESS using a correlation approach
    2019 (English)In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 81, no 4, p. 2223-2237Article in journal (Refereed) Published
    Abstract [en]

    Purpose

    To develop a method for retrospective artifact elimination of MRS data. This retrospective method was based on an approach that combines jackknife analyses with the correlation of spectral windows, and therefore termed “JKC.”

    Methods

    Twelve healthy volunteers performed 3 separate measurement protocols using a 3T MR system. One protocol consisted of 2 cerebellar MEGA‐PRESS measurements: 1 reference and 1 measurement including head movements. One‐third of the artifact‐influenced datasets were treated as training data for the implementation the JKC method, and the rest were used for validation.

    Results

    The implemented JKC method correctly characterized most of the validation data. Additionally, after elimination of the detected artifacts, the resulting concentrations were much closer to those computed for the reference datasets. Moreover, when the JKC method was applied to the reference data, the estimated concentrations were not affected, compared with standard averaging.

    Conclusion

    The implemented JKC method can be applied without any extra cost to MRS data, regardless of whether the dataset has been contaminated by artifacts. Furthermore, the results indicate that the JKC method could be used as a quality control of a dataset, or as an indication of whether a shift in voxel placement has occurred during the measurement.

    Place, publisher, year, edition, pages
    John Wiley & Sons, 2019
    National Category
    Radiology, Nuclear Medicine and Medical Imaging Medical Image Processing
    Identifiers
    urn:nbn:se:liu:diva-154902 (URN)10.1002/mrm.27590 (DOI)000462092100002 ()30417930 (PubMedID)2-s2.0-85056358584 (Scopus ID)
    Available from: 2019-03-04 Created: 2019-03-04 Last updated: 2020-11-10Bibliographically approved
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 5.
    Bednarska, Olga
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Icenhour, Adriane
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Witt, Suzanne Tyson
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Elsenbruch, Sigrid
    Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Reduced excitatory neurotransmitter levels in anterior insulae are associated with abdominal pain in irritable bowel syndrome2019In: Pain, ISSN 0304-3959, E-ISSN 1872-6623, Vol. 160, no 9, p. 2004-2012Article in journal (Refereed)
    Abstract [en]

    Irritable bowel syndrome (IBS) is a visceral pain condition with psychological comorbidity. Brain imaging studies in IBS demonstratealtered function in anterior insula (aINS), a key hub for integration of interoceptive, affective, and cognitive processes. However,alterations in aINS excitatory and inhibitory neurotransmission as putative biochemical underpinnings of these functional changesremain elusive. Using quantitative magnetic resonance spectroscopy, we compared women with IBS and healthy women (healthycontrols [HC]) with respect to aINS glutamate 1 glutamine (Glx) and g-aminobutyric acid (GABA1) concentrations and addressedpossible associations with symptoms. Thirty-nine women with IBS and 21 HC underwent quantitative magnetic resonancespectroscopy of bilateral aINS to assess Glx and GABA1 concentrations. Questionnaire data from all participants and prospectivesymptom-diary data from patients were obtained for regression analyses of neurotransmitter concentrations with IBS-related andpsychological parameters. Concentrations of Glx were lower in IBS compared with HC (left aINS P , 0.05, right aINS P , 0.001),whereas no group differences were detected for GABA1concentrations. Lower right-lateralized Glx concentrations in patients weresubstantially predicted by longer pain duration, while less frequent use of adaptive pain‐coping predicted lower Glx in left aINS. Ourfindings provide first evidence for reduced excitatory but unaltered inhibitory neurotransmitter levels in aINS in IBS. The results alsoindicate a functional lateralization of aINS with a stronger involvement of the right hemisphere in perception of abdominal pain and ofthe left aINS in cognitive pain regulation. Our findings suggest that glutaminergic deficiency may play a role in pain processing in IBS.

    Download full text (pdf)
    Reduced excitatory neurotransmitter levels in anterior insulae are associated with abdominal pain in irritable bowel syndrome
  • 6.
    Tapper, Sofie
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Helms, Gunther
    Lund University, Lund, Sweden.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Retrospective artifact elimination in MEGA-PRESS using a correlation approach2019In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 81, no 4, p. 2223-2237Article in journal (Refereed)
    Abstract [en]

    Purpose

    To develop a method for retrospective artifact elimination of MRS data. This retrospective method was based on an approach that combines jackknife analyses with the correlation of spectral windows, and therefore termed “JKC.”

    Methods

    Twelve healthy volunteers performed 3 separate measurement protocols using a 3T MR system. One protocol consisted of 2 cerebellar MEGA‐PRESS measurements: 1 reference and 1 measurement including head movements. One‐third of the artifact‐influenced datasets were treated as training data for the implementation the JKC method, and the rest were used for validation.

    Results

    The implemented JKC method correctly characterized most of the validation data. Additionally, after elimination of the detected artifacts, the resulting concentrations were much closer to those computed for the reference datasets. Moreover, when the JKC method was applied to the reference data, the estimated concentrations were not affected, compared with standard averaging.

    Conclusion

    The implemented JKC method can be applied without any extra cost to MRS data, regardless of whether the dataset has been contaminated by artifacts. Furthermore, the results indicate that the JKC method could be used as a quality control of a dataset, or as an indication of whether a shift in voxel placement has occurred during the measurement.

    Download full text (pdf)
    fulltext
  • 7.
    Witt, Suzanne T.
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Drissi, Natasha Morales
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Wretman, Anna
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Szakács, Attila
    Sahlgrenska Academy, University of Gothenburg, Sweden.
    Hallböök, Tove
    Sahlgrenska Academy, University of Gothenburg, Sweden.
    Landtblom, Anne-Marie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Local Health Care Services in Central Östergötland, Department of Neurology in Linköping. Uppsala University, Uppsala, Sweden.
    Karlsson, Thomas
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping. Region Östergötland, Center for Diagnostics, Medical radiation physics.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Evidence for cognitive resource imbalance in adolescents with narcolepsy2018In: Brain Imaging and Behavior, ISSN 1931-7557, E-ISSN 1931-7565, Vol. 12, no 2, p. 411-424Article in journal (Refereed)
    Abstract [en]

    The study investigated brain activity changes during performance of a verbal working memory task in a population of adolescents with narcolepsy. Seventeen narcolepsy patients and twenty healthy controls performed a verbal working memory task during simultaneous fMRI and EEG acquisition. All subjects also underwent MRS to measure GABA and Glutamate concentrations in the medial prefrontal cortex. Activation levels in the default mode network and left middle frontal gyrus were examined to investigate whether narcolepsy is characterized by an imbalance in cognitive resources. Significantly increased deactivation within the default mode network during task performance was observed for the narcolepsy patients for both the encoding and recognition phases of the task. No evidence for task performance deficits or reduced activation within the left middle frontal gyrus was noted for the narcolepsy patients. Correlation analyses between the spectroscopy and fMRI data indicated that deactivation of the anterior aspect of the default mode in narcolepsy patients correlated more with increased concentrations of Glutamate and decreased concentrations of GABA. In contrast, deactivation in the default mode was correlated with increased concentrations of GABA and decreased concentrations of Glutamate in controls. The results suggested that narcolepsy is not characterized by a deficit in working memory but rather an imbalance of cognitive resources in favor of monitoring and maintaining attention over actual task performance. This points towards dysregulation within the sustained attention system being the origin behind self-reported cognitive difficulties in narcolepsy.

    Download full text (pdf)
    fulltext
  • 8.
    Tapper, Sofie
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Lundberg, Peter
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    How does motion affect GABA-measurements? Order statistic filtering compared to conventional analysis of MEGA-PRESS MRS2017In: PLOS ONE, E-ISSN 1932-6203, Vol. 12, no 5, article id e0177795Article in journal (Refereed)
    Abstract [en]

    Purpose The aim of this study was to evaluate two post-processing techniques applied to MRS MEGA-PRESS data influenced by motion-induced artifacts. In contrast to the conventional averaging technique, order statistic filtering (OSF) is a known method for artifact reduction. Therefore, this method may be suitable to incorporate in the GABA quantification. Methods Twelve healthy volunteers were scanned three times using a 3 T MR system. One measurement protocol consisted of two MEGA-PRESS measurements, one reference measurement and one measurement including head motions. The resulting datasets were analyzed with the standard averaging technique and with the OSF-technique in two schemes; filtering phase cycles RAW PC and filtering dynamics RAW Dyn. Results The datasets containing artifacts resulted in an underestimation of the concentrations. There was a trend for the OSF-technique to compensate for this reduction when quantifying SNR-intense signals. However, there was no indication that OSF improved the estimated GABA concentrations. Moreover, when only considering the reference measurements, the OSF technique was equally as effective as averaging, which suggests that the techniques are interchangeable. Conclusion OSF performed equally well as the conventional averaging technique for low-SNR signals. For high-SNR signals, OSF performed better and thus could be considered for routine usage.

    Download full text (pdf)
    fulltext
  • 9.
    Lundberg, Peter
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences.
    Tisell, Anders
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Absolute Quantification of Metabolite Concentrations and Relaxation Rates.2016Conference paper (Refereed)
  • 10.
    Lundberg, Peter
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Faculty of Medicine and Health Sciences.
    Icenhour, Adriane
    Bednarska, O.
    Tapper, Sofie
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Witt, ST
    Elsenbruch, S
    Walter, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Gastroentorology.
    Increased inhibitory neurotransmission within anterior cingulate cortex is related to comorbid anxiety in irritable bowel syndrome.2016Conference paper (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf