liu.seSearch for publications in DiVA
Change search
Refine search result
1234 1 - 50 of 189
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kanesund, Jan
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering, Engineering Materials.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Siemens Ind Turbomachinery AB, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    High temperature corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service2020In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 110, article id UNSP 104388Article in journal (Refereed)
    Abstract [en]

    A metallographic study is performed on a turbine blade from a land-based gas turbine in an industrial environment. The aim of the present work is to study the degradation of the turbine blade. The gas turbine has been running for about a month before shut down, which has established steady-state temperature gradients around the cooling holes, causing tensile stresses as a result of cold spots. The tensile stresses cause creep damage, which, in turn, plastically deformed the material, generating substructures and twins near the crack. Furthermore, by comparing substructures from the turbine blade formed during service with substructure from test bars subjected to thermal mechanical fatigue testing gives a strong indication that the damage of the turbine blade is not caused by thermal mechanical fatigue. The turbine blade is also exposed to chemical degradation by type I hot corrosion and internal corrosion/nitridation. Type I hot corrosion has formed Ti-sulfides in grain boundaries and nearby surroundings. Ti-sulfides are also found ahead of the crack tip region. The internal corrosion/nitridation has established TiN, AlN and simultaneously formed a depletion zone near the crack.

  • 2.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Wärner, Hugo
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    High Temperature Properties of Austenitic Stainless Steels for Future Power Plant Applications2019Conference paper (Refereed)
  • 3.
    Kanesund, Jan
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Brodin, Håkan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Siemens Ind Turbomachinery AB, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Hot corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service2019In: Engineering Failure Analysis, ISSN 1350-6307, E-ISSN 1873-1961, Vol. 96, p. 118-129Article in journal (Refereed)
    Abstract [en]

    The deformation and damage mechanisms of a gamma-prime hardened superalloy is investigated in the current paper. Two turbine blades made of precision cast polycrystalline superalloy IN-792 have been examined after service exposure under engine conditions typical for industrial gas turbines. This study is compared to a previous study with focus on deformation and damage mechanisms in IN-792 during thermal mechanical fatigue testing performed under laboratory conditions. The failure of the two turbine blades is explained as a combination of two damage mechanisms, mechanical and chemical damage. In the current investigation, type I hot corrosion and creep are the two dominant damage mechanisms. The type I hot corrosion is confirmed by the presence of Ti-sulfides and sulfur in free form at the grain boundaries, which has caused embrittlement and loss of resistance to crack growth. In turn, this has shortened the turbine blade life dramatically and intercrystalline failure is the dominant damage mechanism. Almost all cracks have propagated intercrystalline in the two turbine blades. In the previous study, mechanical damage mechanism is the dominant mechanism and for the highest temperature also oxidation give is contribution. In the previous study, almost all cracks propagated transcrystalline. When exposed to laboratory conditions, the areas around cracks are more plastically deformed compared to the area around the cracks in the turbine blades. In the two studies, dynamic recrystallization has occurred at the grain boundaries.

  • 4.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Influence of Ageing on Thermomechanical Fatigue of Austenitic Stainless Steels2019In: Procedia Structural Integrity / [ed] Elsevier, Elsevier, 2019, Vol. 23, p. 354-359Conference paper (Refereed)
  • 5.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Structural Integrity and Impact Toughness of Austenitic Stainless Steels2019In: Proceedings of the 13th International Conference on the Mechanical Behaviour of Materials, International Congress on Mechanical Behavior of Materials , 2019, p. 270-275Conference paper (Refereed)
  • 6.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys2019In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, no 127, p. 509-521Article in journal (Refereed)
    Abstract [en]

    The increasing demands for efficiency and flexibility result in more severe operating conditions for the materials used in critical components of biomass power plants. These operating conditions involve higher temperature ranges, more pronounced environmental effects and cyclic operations. Austenitic stainless steels have shown to possess promising high temperature properties which makes them suitable as candidates for critical components in biomass power plant. However, their behaviour under such conditions is not yet fully understood. This work investigates three commercial austenitic alloys: Esshete 1250, Sanicro 25 and Sanicro 31HT. The alloys were subjected to in-phase (IP) thermomechanical fatigue (TMF) testing under strain-control in the temperature range of 100–800 °C. Both virgin and pre-aged TMF specimens were tested in order to simulate service degradation resulting from long-term usage. The results show that the pre-aged specimens suffered shorter TMF-life compared to the virgin specimens. The scanning electron microscopy methods electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were used to analyse and discuss active failure and deformation mechanisms. The difference in TMF-life produced by the two testing conditions was attributed to an embrittling effect by precipitation, reduced creep properties and oxidation assisted cracking.

    Download full text (pdf)
    Thermomechanical Fatigue Behaviour of Aged Heat Resistant Austenitic Alloys
  • 7.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Mat Technol, Sweden.
    Polak, Jaroslav
    Acad Sci Czech Republ, Czech Republic.
    Petras, Roman
    Acad Sci Czech Republ, Czech Republic.
    Heczko, Milan
    Acad Sci Czech Republ, Czech Republic.
    Kruml, Tomas
    Acad Sci Czech Republ, Czech Republic.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Fracture and Damage Behavior in an Advanced Heat Resistant Austenitic Stainless Steel During LCF, TMF and CF2018In: ECF22 - LOADING AND ENVIRONMENTAL EFFECTS ON STRUCTURAL INTEGRITY, ELSEVIER SCIENCE BV , 2018, Vol. 13, p. 843-848Conference paper (Refereed)
    Abstract [en]

    Future advanced ultra-supercritical power plant will be run at higher temperature and pressure. New materials will be used to meet the requirements. However, the structure integrity of these materials needs to be evaluated. Sanicro 25 is a newly developed advanced austenitic heat resistant stainless steel with the aim to be used in future 700 degrees C or 650 degrees C power plants to replace part of Ni based alloys. This paper provides an overview on the fracture and damage behavior in this material during LCF, TMF and CF. The cyclic hardening and fatigue life during LCF, TMF and CF will be discussed. The influence of prolonged service degradation has been analyzed by the use of pre-aged material for TMF and CF loading conditions. (C) 2018 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the ECF22 organizers.

  • 8.
    Zhang, Pimin
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Li, Xin-Hai
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Investigation of Element Effect on High-Temperature Oxidation of HVOF NiCoCrAlX Coatings2018In: Coatings, ISSN 2079-6412, Vol. 8, no 4, p. 129-145Article in journal (Refereed)
    Abstract [sv]

    MCrAlX (M: Ni or Co or both, X: minor elements) coatings have been used widely to protect hot components in gas turbines against oxidation and heat corrosion at high temperatures. Understanding the influence of the X-elements on oxidation behavior is important in the design of durable MCrAlX coatings. In this study, NiCoCrAlX coatings doped with Y + Ru and Ce, respectively, were deposited on an Inconel-792 substrate using high velocity oxygen fuel (HVOF). The samples were subjected to isothermal oxidation tests in laboratory air at 900, 1000, and 1100 °C and a cyclic oxidation test between 100 and 1100 °C with a 1-h dwell time at 1100 °C. It was observed that the coating with Ce showed a much higher oxidation rate than the coating with Y + Ru under both isothermal and cyclic oxidation tests. In addition, the Y + Ru-doped coating showed significantly lower β phase depletion due to interdiffusion between the coating and the substrate, resulting from the addition of Ru. Simulation results using a moving phase boundary model and an established oxidation-diffusion model showed that Ru stabilized β grains, which reduced β-depletion of the coating due to substrate interdiffusion. This paper, combining experiment and simulation results, presents a comprehensive study of the influence of Ce and Ru on oxidation behavior, including an investigation of the microstructure evolution in the coating surface and the coating-substrate interface influenced by oxidation time.

    Download full text (pdf)
    fulltext
  • 9.
    Ahmad, Maqsood
    et al.
    Base Engine & Materials Technology, Volvo Group, Gothenburg.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    König, Mathias
    Materials Technology for Basic Engine, Scania CV, Södertälje.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Bending Fatigue Behavior of Blast Cleaned Grey Cast Iron2017In: Residual Stresses 2016: ICRS-10, Materials Research Proceedings 2 (2016), 2017, Vol. 2, p. 193-198Conference paper (Refereed)
    Abstract [en]

    This paper presents a detailed study on the effect of an industrial blast cleaning process on the fatigue behavior of a grey cast iron with regard to the residual stresses and microstructural changes induced by the process. A comparison was also made to the effect of a machining operation which removed the casting skin layer. The blast cleaning process was found to greatly improve the fatigue resistance in both the low and high cycle regimes with a 75% increase in the fatigue limit. Xray diffraction measurements and scanning electron microscopic analyses showed that the improvement was mainly attributed to compressive residual stresses in a surface layer up to 800 μm in thickness in the blast cleaned specimens. The machining also gave better fatigue performance with a 30% increase in the fatigue limit, which was ascribed to the removal of the weaker casting skin layer.

  • 10.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology, Sandviken, Sweden.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan J.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Characterization of austenitic stainless steels deformed at elevated temperature2017In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, no 10, p. 4525-4538Article in journal (Refereed)
    Abstract [en]

    Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

    Download full text (pdf)
    fulltext
  • 11.
    Tofique, Waqas W
    et al.
    Dept of Physics and Engineering Sciences, Karlstad University, Sweden.
    Bergström, Jens
    Dept of Physics and Engineering Sciences, Karlstad University, Sweden.
    Svensson, K
    Dept of Physics and Engineering Sciences, Karlstad University, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    ECCI/EBSD and TEM Analysis of Plastic Fatigue Damage Accumulation Responsible for Fatigue Crack Initiation and Propagation in VHCF of Duplex Stainless Steels2017In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 100, p. 251-262Article in journal (Refereed)
    Abstract [en]

    Fatigue test data of duplex stainless steel grades, LDX 2101 and 2304 SRG, in the Very High Cycle Fatigue (VHCF) regime is presented. Fatigue testing was conducted using ultrasonic fatigue test equipment operating at 20 kHz under fully reversed tension-compression load condition. Scanning Electron Microscope (SEM) analysis of the fracture surfaces and external surfaces of failed specimens was conducted. Electron Channelling Contrast Imaging (ECCI) and Electron Back Scattered Diffraction (EBSD) studies of the axially cut surface of the failed specimens was done to analyse the accumulation of plastic fatigue damage and fatigue crack growth in the grains adjacent to the external surface and crack initiation site. Transmission Electron Microscope (TEM) analysis of thin foils cut from failed specimens of LDX 2101 was carried out to examine the effect of fatigue loading on dislocation structure. SEM studies of the Crystallographic Growth Region (CGR) showed features like grain boundaries and fatigue striations on the fracture surfaces. SEM analysis of the external surfaces of fatigue loaded specimens showed inhomogeneous accumulation of plastic fatigue damage. ECCI/EBSD analysis showed Persistent Slip Bands (PSBs) in ferrite grains in LDX 2101 grade but no PSBs were observed in any grains of 2304 SRG specimens. The barrier effect of grain and phase boundaries on short fatigue crack propagation was observed. TEM analysis of thin foils cut from the failed specimens of LDX 2101 showed stacking faults in austenite grains and they were seen to stop at the grain and phase boundaries.

  • 12.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Widman, Olle
    Ytstruktur Arboga AB, Arboga, Sweden.
    Gustafsson, David
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Effect of Cooling and Shot Peening on Residual Stresses and Fatigue Performance of Milled Inconel 7182017In: Residual Stresses 2016 ICRS 10 / [ed] T.M. Holden, O. Muránsky, and L. Edwards, 2017, Vol. 2, p. 13-18Conference paper (Refereed)
    Abstract [en]

    The present study highlights the effect of cooling and post-machining surface treatment of shot peening on the residual stresses and corresponding fatigue life of milled superalloy Inconel 718. It was found that tensile residual stresses were created on the milled surface, regardless of the use of coolant, however, the wet milling operation led to a lower surface tension and a reduced thickness of the tensile layer. The shot peening performed on the dry-milled specimens completely annihilated the surface tensile residual tresses and introduced a high level of surface compression. A comparable fatigue life for the wet-milled specimens was obtained as compared with the specimens prepared by dry milling. This is very likely attributed to that the milling-induced surface damage with respect to cracked non-metallic inclusions is the predominant cause of the fatigue failure. The presence of the compressive layer induced by shot peening resulted in a significant increase of the fatigue life and strength, while the extent to which the lifetime was prolonged was decreased as the applied load was increased.

  • 13.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Zhou, Jinming
    Bushlya, Volodymyr
    Saoubi, Rachid M
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Effect of Cutting Conditions on Machinability of AD 730 TM during High Speed Turning with PCBN Tools2017Conference paper (Refereed)
  • 14.
    Cadorin, Eduardo
    et al.
    Linköping University, Department of Management and Engineering, Project Innovations and Entrepreneurship. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Klofsten, Magnus
    Linköping University, Department of Management and Engineering, Project Innovations and Entrepreneurship. Linköping University, Faculty of Science & Engineering. Linköping University, HELIX Competence Centre.
    Future developments for Science Parks: Attracting and developing talent2017In: Industry and Higher Education, ISSN 2043-6858, Vol. 31, no 3, p. 156-167Article in journal (Refereed)
    Abstract [en]

    Over the years, science parks have developed and improved their processes to offer better support to their tenants and promote the growth of the region in which they are located. Since regional growth is closely associated with groups of talented people, science parks carry out various activities at the company or individual level to attract and recruit talent. In order to understand how such activities have been and are being performed at Mja¨rdevi Science Park in Sweden, the authors highlight and analyse four talent-related cases. Their aim is to identify how talent can be attracted or recruited and to consider the stakeholders, their relationships and their motivations. The results confirm the importance to a science park of being close to a student community and of being connected to an international network with a well-recognized brand.

  • 15.
    Zhang, Pimin
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Li, Xin-Hai
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Hot Corrosion Behavior of HVOF CoNiCrAlY(Hf) Coating on Ni-based Superalloys2017Conference paper (Refereed)
  • 16.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Influence of Cyclic Oxidation in Moist Air on Surface Oxidation-Affected Zones2017Conference paper (Refereed)
  • 17.
    Zhang, Pimin
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Department of Management and Engineering, Linköping University, Linköping, Sweden.
    Sadeghimeresht, Esmaeil
    Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Markocsan, Nicolaie
    Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Joshi, Shrikant
    Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT).
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Isothermal oxidation behavior of HVAF-sprayed NiCoCrAlY coatings: Effect of surface treatment2017In: Proceedings of International Thermal Sprayed Conference (ITSC), May 7-9,Germany, 456-461 (2017), 2017, p. 456-461Conference paper (Other academic)
    Abstract [en]

    NiCoCrAlY coatings are widely used as bond coats for ceramic thermal barrier coatings (TBCs) andoxidation and corrosion protective overlay coatings in industrial gas turbines. High temperature oxidation behaviour of NiCoCrAlYs has a great influence on the coating performance and lifetime of TBCs. A promising route to decrease the oxidation rate of such coatings is post-coating surface modification which can facilitate formation of a uniform alumina scale with a considerably slower growth rate compared to the as-sprayed coatings. In this work, the effect of surface treatment by means of shot peening and laser surface melting (LSM) on the oxidation resistance of high velocity air-fuel (HVAF) sprayed NiCoCrAlY coatings was studied. Isothermal oxidation was carried out at 1000⁰C for 1000h. Results showed that the rough surface of as-sprayed HVAF sprayed coatings was significantly changed after shot peening and LSM treatment, with a compact and smooth appearance. After the exposure, the oxide scales formed on surface-treated NiCoCrAlY coatings showed different morphology and growth rate compared to those formed on as-sprayed coating surface. The oxidation behaviour of surface treated HVAF-sprayed NiCoCrAlY coatings were revealed and discussed.

  • 18.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Siemens Industrial Turbomachinery AB, Berlin.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Högberg, Jan
    AB Sandvik Materials Technology R&D Center Sandviken.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Local Surface Phase Stability During Cyclic Oxidation Process2017In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 879, p. 855-860Article in journal (Refereed)
  • 19.
    Zhang, Pimin
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Yuan, Kang
    Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Li, Xin-Hai
    Siemens Ind Turbomachinery AB, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Long-term oxidation of MCrAlY coatings at 1000 degrees C and an Al-activity based coating life criterion2017In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 332, p. 12-21Article in journal (Refereed)
    Abstract [en]

    MCrAlY type (M = Ni and/or Co) coatings are widely used for the protection of components in the hot sections of gas turbines at high service temperatures by forming a continuous alpha-alumina. A reliable criterion to estimate the capability of coating to form alpha-alumina is of great importance to accurately evaluate coating lifetime. However, some coatings retain the ability to form a continuous alpha-alumina scale when the concentration of Al in coatings decreases to a critical level, therefore, the empirical Al-concentration based criterion is inadequate to properly predict the formation of a continuous alpha-alumina. Thus, a new life criterion, namely the critical Al-activity criterion, is proposed. In this work, the critical Al-activity to form a continuous a-alumina was validated by Al-activity calculation using Thermo-Calc software based on survey of research results of critical Al-concentration to form alpha-alumina on binary Ni-Al and ternary Ni-Cr-Al systems. Long-term oxidation tests were performed to support the criterion: three different MCrAlY coatings coated on IN-792 superalloy substrates were oxidized at 1000 degrees C for various periods of time up to 10,000 h. The microstructural evolution of MCrAlY coatings was investigated using Scanning Electron Microscope. The near-surface Al concentration and interdiffusion behaviour between substrate and coating were measured using Energy Dispersive X-ray Spectroscopy. The new critical Al-activity criterion has been successfully adopted in alpha-alumina formation prediction, showing a good agreement with experiment results. Therefore, it can be concluded that the extrapolation of new criterion from binary and ternary systems to multi-alloyed MCrAlY system is reasonable. Furthermore, the partial pressure of oxygen (P-O2) in atmosphere has been taken into consideration by combination with Al-activity to calculate the critical chemical reaction constant (K) of formation of a-alumina. The potential applicability of the methodology to predict MCrAlY life is also discussed.

    Download full text (pdf)
    fulltext
  • 20.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Hörnqvist Colliander, Magnus
    Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Sundell, Gustav
    Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund University, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Nano-scale characterization of white layer in broached Inconel 7182017In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 684, p. 373-384Article in journal (Refereed)
    Abstract [sv]

    The formation mechanism of white layers during broaching and their mechanical properties are not well investigated and understood to date. In the present study, multiple advanced characterization techniques with nano-scale resolution, including transmission electron microscopy (TEM), transmission Kikuchi diffraction (TKD), atom probe tomography (APT) as well as nano-indentation, have been used to systematically examine the microstructural evolution and corresponding mechanical properties of a surface white layer formed when broaching the nickel-based superalloy Inconel 718.

    TEM observations showed that the broached white layer consists of nano-sized grains, mostly in the range of 20–50 nm. The crystallographic texture detected by TKD further revealed that the refined microstructure is primarily caused by strong shear deformation. Co-located Al-rich and Nb-rich fine clusters have been identified by APT, which are most likely to be γ′ and γ′′ clusters in a form of co-precipitates, where the clusters showed elongated and aligned appearance associated with the severe shearing history. The microstructural characteristics and crystallography of the broached white layer suggest that it was essentially formed by adiabatic shear localization in which the dominant metallurgical process is rotational dynamic recrystallization based on mechanically-driven subgrain rotations. The grain refinement within the white layer led to an increase of the surface nano-hardness by 14% and a reduction in elastic modulus by nearly 10% compared to that of the bulk material. This is primarily due to the greatly increased volume fraction of grain boundaries, when the grain size was reduced down to the nanoscale.

  • 21.
    Wärner, Hugo
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Thermomechanical Fatigue Behavior of Aged Heat Resistant Austenitic Alloys2017Conference paper (Refereed)
  • 22.
    Chai, Guocai
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Toughening Behavior in Alloy 617 with Long Term Ageing2017In: Solid State Phenomena, ISSN 1012-0394, E-ISSN 1662-9779, Vol. 258, p. 302-305Article in journal (Refereed)
  • 23.
    Kontis, Paraskevas
    et al.
    Dept of Materials, University of Oxford, UK.
    Collins, David M
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Wilkinson, Angus J
    Dept of Materials, University of Oxford, UK.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Reed, Roger C
    Dept of Materials, University of Oxford, UK.
    Crack Initiation and Propagation During Thermal-Mechanical Fatigue on IN792: Effects of Dwell Time2016In: Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, TMS (The Minerals, metals & Materials Society) 2016 / [ed] M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman and S. Tin, Wiley-Blackwell, 2016, p. 763-772Conference paper (Refereed)
  • 24.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology,Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel2016In: Transactions of the Indian Institute of Metals, ISSN 0972-2815, E-ISSN 0975-1645, Vol. 69, no 2, p. 337-342Article in journal (Refereed)
    Abstract [en]

    Sanicro 25 is a newly developed advanced high strength heat resistant austenitic stainless steel. The material shows good resistance to steam oxidation and flue gas corrosion, and has higher creep rupture strength than other austenitic stainless steels available today. It is thus an excellent candidate for superheaters and reheaters for advanced ultra-super critical power plants with efficiency higher than 50 %. This paper provides a study on the creep–fatigue interaction behavior of Sanicro 25 at 700 °C. Two strain ranges, 1 and 2 %, and two dwell times, 10 and 30 min, were used. The influences of dwell time on the cyclic deformation behavior and life has been evaluated. Due to stress relaxation the dwell time causes a larger plastic strain range compared to the tests without dwell time. The results also show that the dwell time leads to a shorter fatigue life for the lower strain range, but has no or small effect on the life for the higher strain range. Fracture investigations show that dwell times result in more intergranular cracking. With the use of the electron channeling contrast imaging technique, the influences of dwell time on the cyclic plastic deformation, precipitation behavior, recovery phenomena and local plasticity exhaustion have also been studied.

    Download full text (pdf)
    fulltext
  • 25.
    Jonnalagadda, Krisha Praveen
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Eriksson, Robert
    Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Li, X. -H.
    Siemens Ind Turbomachinery AB, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Factors Affecting the Performance of Thermal Barrier Coatings in the Presence of V2O5 and Na2SO42016In: JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, ISSN 2190-9385, Vol. 7, no 4, p. 409-415Article in journal (Refereed)
    Abstract [en]

    This study investigates the influence of temperature, salt concentration and thickness on the corrosion resistance of seven YSZ thermal barrier coatings in the presence of V2O5 and Na2SO4. For this study, a thick, high-porosity APS coating (670 gm) using hollow spherical powder (HOSP) and a thin, low-porosity APS coating (300 pm) using agglomerated and sintered (Aamp;S) powder were fabricated. Corrosion tests were conducted at 750 degrees C and 900 degrees C with a mixture of Na2SO4 and V2O5 for four hours. At each temperature, salt concentrations of 4,10 and 20 mg/cm(2) were used. SEM and XRD investigations after the corrosion tests revealed that a combination of low temperature and high salt concentration resulted in higher corrosion-induced damage to the thin TBC coatings. With regard to the thick TBC coatings, all except one sample failed during the corrosion test. This suggests that thick TBC coatings with higher porosity may not be suitable in corrosive environments.

  • 26.
    Chai, Guocai
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology, Strategy research, Sandviken, Sweden.
    Calmunger, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Odqvist, Joakim
    Sandvik Materials Technology, Strategy research, Sandviken, Sweden.
    Influence of Dynamic Strain Ageing and Long Term Ageing on Deformation and Fracture Behaviors of Alloy 6172016In: THERMEC 2016 / [ed] C. Sommitsch, M. Ionescu, B. Mishra, E. Kozeschnik and T. Chandra, Trans Tech Publications, 2016, Vol. 879, p. 306-311Conference paper (Refereed)
    Abstract [en]

    Influences of dynamic strain ageing and long term ageing on deformation, damage and fracture behaviors of Alloy 617 material have been studied. Dynamic strain ageing can occur in this alloy at temperature from 400 to 700°C, which leads to a strain hardening and also an increase in fracture strain due to plastic deformation caused by twinning. Long term ageing at 700°C for up to 20 000 hours can cause different precipitation such as γ ́, M6C (Mo-rich) and M23C6 (Cr-rich) carbides. These carbides are both inter-and intra-granular particles. The long term ageing reduces the fracture toughness of the material, but the alloy can still have rather high impact toughness and fracture toughness even with an ageing at 700°C for 20 000 hour. The mechanisms have been studied using electron backscatter detection and electron channeling contrast imaging. It shows that besides dislocation slip, twinning is another main deformation mechanism in these aged Alloy 617 materials. At the crack front, plenty of micro or nanotwins can be observed. The formation of these twins leads to a high ductility and toughness which is a new observation or a new concept for this type of material.

  • 27.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Gustafsson, David
    Siemens Industrial Turbomachinery AB, SE-61283 Finspång, Sweden.
    On the Conjoint Influence of Broaching and Heat Treatment on Bending Fatigue Behavior of Inconel 7182016In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 671, p. 158-169Article in journal (Refereed)
    Abstract [en]

    In this study, the conjoint effect of a broaching operation, similar to that used for machining fir-tree slots on turbine discs, and subsequent heat treatments at 550 °C and 650 °C on the fatigue performance and corresponding crack initiation behavior of forged Inconel 718 has been investigated. Four-point bending fatigue tests were conducted under load control on specimens of two groups, i.e. a polished group and a broached group, with totally six different surface conditions. Compared to the as-polished specimens, a beneficial effect of the broaching operation was found on the fatigue life due to the high compressive residual stresses on the broached surface which transfer the fatigue crack initiation from surface to sub-surface regions. Introducing a heat treatment generally deteriorated the fatigue performance of the alloy because of the oxidation assisted crack initiation, while the reduction in fatigue life was found to be more remarkable for the broached specimens, in particular when heat treated at 650 °C, as the thermal impact also led to a great relaxation of the compressive residual stresses; the combined effect, together with the substantial anomalies created by broaching on the surface, such as cracked carbides and machining grooves, caused an increased propensity to surface cracking in fatigue and consequently a loss of the lifetime. Furthermore, it was found that the occurrence of surface recrystallization at elevated temperatures in machined Inconel 718 could lead to intergranular oxidation, creating micro-notches as preferable sites for the fatigue crack initiation.

  • 28.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Surface Integrity and Fatigue Performance of Inconel 718 in Wire Electrical Discharge Machining2016In: 3RD CIRP CONFERENCE ON SURFACE INTEGRITY, 2016, Vol. 45, p. 307-310Conference paper (Refereed)
    Abstract [en]

    This paper presents a study to characterize the surface integrity in wire electrical discharge machining (EDM) of Inconel 718 and investigate its effect on the fatigue performance of the alloy in a four-point bending fatigue mode at room temperature. The EDM process generates a rough recast surface with multi-types of defects. Surface craters, micro-cracks and micro-voids within the recast layer have been found to be most detrimental from the point of view of fatigue as they could provide many preferential initiation sites for fatigue cracks. As a consequence, the specimens with an EDM cut surface show an approximately 30% decrease in fatigue life compared to those with a polished surface, and multiple crack origins were observed on the fracture surface. The high tensile residual stresses generated on the EDM cut surface, on the other hand, are also believed to be partly responsible for the loss in fatigue life of the alloy machined by EDM.

    Download full text (pdf)
    fulltext
  • 29.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Avdovic, Pajazit
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund university.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures2016In: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 47A, no 7, p. 3664-3676Article in journal (Refereed)
    Abstract [en]

    The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 A degrees C, 550 A degrees C, and 650 A degrees C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and alpha-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

    Download full text (pdf)
    fulltext
  • 30.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandvik Materials Technology, Sandviken, Sweden.
    Characterisation of creep deformation during slow strain rate tensile testing2015Manuscript (preprint) (Other academic)
    Abstract [en]

    The strain-rate dependent deformation of the superalloy Haynes 282 during slow strain-rate tensile testing (SSRT) at 700 C has been investigated. The stress-strain response is remarkably well described by a simple constitutive model over a wide range of different strain-rates. The microstructure development is characterised and related to the influence of both strainrate dependent and independent deformation. Damage and cracking similar to what has been observed previously during conventional creep testing of Haynes 282 was found and explained. The model and the microstructure investigations show that the deformation and damage mechanisms during SSRT are essentially the same as under creep.

  • 31.
    Ceschini, Lorella
    et al.
    Dept of Industrial Engineering (DIN), University of Bologa, Italy.
    Morri, Alessandro
    Dept of Industrial Engineering (DIN), University of Bologa, Italy.
    Morri, Andrea
    Industrial Research Centre for Advanced Mechanics and Materials, University of Bologna, Italy.
    Toschi, Stefania
    Dept of Industrial Engineering (DIN), University of Bologna, Italy.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Seifeddine, Salem
    Dept of Materials and Manufacturing, Jönköping University.
    Effect of Microstructure and Overaging on the Tensile Behavior at Room and Elevated Temperature of C355-T6 Cast Aluminum Alloy2015In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 83, p. 626-634Article in journal (Refereed)
    Abstract [en]

    The present study was focused on the microstructural and mechanical characterization of the Al–Si–Cu–Mg C355 alloy, at room and elevated temperature. In order to evaluate the influence of microstructural coarseness on mechanical behavior, samples with different Secondary Dendrite Arm Spacing (SDAS) (20–25 μm for fine microstructure and 50–70 μm for coarse microstructure), were produced through controlled casting conditions. The tensile behavior of the alloy was evaluated at T6 condition and at T6 with subsequent high temperature exposure (41 h at 210 °C, i.e. overaging), both at room and elevated temperature (200 °C). Microstructural investigations were performed through optical and electron microscopy.

    The results confirmed the important role of microstructure on the tensile behavior of C355 alloy. Ultimate tensile strength and elongation to failure strongly increased with the decrease of SDAS. Larger SDAS, related to lower solidification rates, modify microstructural features, such as eutectic Si morphology and size of the intermetallic phases, which in turn influence elongation to failure. Overaging before tensile testing induced coarsening of the strengthening precipitates, as observed by STEM analyses, with consequent reduction of the tensile strength of the alloy, regardless of SDAS. A more sensible decrease of tensile properties was registered at 200 °C testing temperature.

  • 32.
    Yuan, Kang
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Lin Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Wang, Yandong
    University of Science and Technology, Beijing, China.
    Hot corrosion behavior of HVOF-sprayed CoNiCrAlYSi coatings in a sulphate environment2015In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 122, no Part A, p. 47-53Article in journal (Refereed)
    Abstract [en]

    HVOF-sprayed CoNiCrAlYSi coatings were tested at 900 °C in a hot corrosion environment containing sodium–potassium sulphates. The HVOF spraying caused the typical splat-on-splat structure. The results after the hot corrosion testing showed that the corrosion preferentially occurred at the coating surface and the splat boundaries. The oxidation along the splat boundaries can isolate the splat from the underlying coating matrix. In those isolated splats or coating parts, internal oxidation and nitridation of Al took place, following that the Al-depleted coating fragments were then oxidized to spinels. For those coatings which had a worse splat boundary quality (i.e. with higher porosity and intersplat oxides) or had a worse coating surface quality (i.e. with more small coating fragments therefore more interfaces), heavier corrosion attack was observed on those coatings due to the corrosion of the splats or the coating fragments. The results indicated that the as-sprayed coating quality including porosity and surface morphology was important for the hot-corrosion resistance of the coatings.

    Download full text (pdf)
    fulltext
  • 33.
    Yuan, Kang
    et al.
    Linköping University, Department of Management and Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering.
    Li, Xin-Hai
    Finspang, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering.
    Hot Corrosion Behavior of HVOF-sprayed CoNiCrAlYSi Coatings in a Sulphate Environment2015In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 122, no part A, p. 47-53Article in journal (Refereed)
    Abstract [en]

    HVOF-sprayed CoNiCrAlYSi coatings were tested at 900 °C in a hot corrosion environment containing sodium–potassium sulphates. The HVOF spraying caused the typical splat-on-splat structure. The results after the hot corrosion testing showed that the corrosion preferentially occurred at the coating surface and the splat boundaries. The oxidation along the splat boundaries can isolate the splat from the underlying coating matrix. In those isolated splats or coating parts, internal oxidation and nitridation of Al took place, following that the Al-depleted coating fragments were then oxidized to spinels. For those coatings which had a worse splat boundary quality (i.e. with higher porosity and intersplat oxides) or had a worse coating surface quality (i.e. with more small coating fragments therefore more interfaces), heavier corrosion attack was observed on those coatings due to the corrosion of the splats or the coating fragments. The results indicated that the as-sprayed coating quality including porosity and surface morphology was important for the hot-corrosion resistance of the coatings.

  • 34.
    Yuan, Kang
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Lin Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Talus, Annika
    Swerea KIMAB, Kista, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Wang, Yandong
    University of Science and Technology, Beijing, China.
    Hot corrosion of MCrAlY coatings in sulphate and SO2 environment at 900 °C: is SO2 necessarily bad?2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 261, p. 41-53Article in journal (Refereed)
    Abstract [en]

    MCrAlY coatings can be corroded due to the basic fluxing (Type-I corrosion) of suppose-to-be protective alumina scale in a molten sulphate environment. In this study, two MCrAlY coatings, coating A (10 wt.% Al, 20 wt.% Cr) and coating B (7 wt.% Al, 28 wt.% Cr), were tested in a sodium-potassium sulphate environment with and without SO2 (500 ppm) in air with 100-900 °C thermal cycling up to about 500 hours. The aim was to test the effect of SO2 at the typical Type-I-corrosion temperature – 900 °C. The results showed that the corrosion behavior of the MCrAlY coatings depended not only on the coating composition but also on the corrosion environment. It was found that in coating A alumina scale was more resistant in the sulphate plus SO2 condition than that in the sulphate only condition. Such phenomenon indicated a beneficial effect of SO2. On Coating B, however, a mixed oxide layer, consisting of alumina and other oxides and sulphides, after a certain cycles in the sulphate environments with and without SO2 gas. In this coating, the addition of SO2 in the sulphate environment changed the corrosion mode from the basic fluxing of alumina to the sulfidation of Cr.

    Download full text (pdf)
    fulltext
  • 35.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Long Term High-Temperature Environmental Effect on Impact Toughness in Austenitic Alloys2015In: / [ed] Key Engineering Materials Vol 627 (2015),pp 205-208., 2015, p. 205-308Conference paper (Refereed)
  • 36.
    Ceschini, Lorella
    et al.
    Dept of Industrial Engineering (DIN), University of Bologa, Italy.
    Morri, Alessandro
    Dept of Industrial Engineering (DIN), University of Bologna, Italy.
    Toschi, Stefania
    Dept of Industrial Engineering (DIN), University of Bologna, Italy.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Seifeddine, Salem
    Dept of Materials and Manufacturing, Jönköping University.
    Microstructural and Mechanical Properties Characterization of Heat Treated and Overaged Cast A354 Alloy with Various SDAS at Room and Elevated Temperature2015In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 648, p. 340-349Article in journal (Refereed)
    Abstract [en]

    The aim of the present study was to carry out a microstructural and mechanical characterization of the A354 (Al–Si–Cu–Mg) cast aluminum alloy. The effect of microstructure on the tensile behavior was evaluated by testing samples with different Secondary Dendrite Arm Spacing, (SDAS) values (20–25 μm and 50–70 μm for fine and coarse microstructure, respectively), which were produced through controlled casting conditions. The tensile behavior of the alloy was evaluated both at room and elevated temperature (200 °C), in the heat treated and overaged (exposure at 210 °C for 41 h, after heat treatment) conditions. Optical, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) were used for microstructural investigations.

    Experimental data confirmed the significant role of microstructural coarseness on the tensile behavior of A354 alloy. Ultimate tensile strength and elongation to failure strongly increased with the decrease of SDAS. Moreover, solidification rate influenced other microstructural features, such as the eutectic silicon morphology as well as the size of the intermetallic phases, which in turn also influenced elongation to failure. Coarsening of the strengthening precipitates was induced by overaging, as observed by STEM analyses, thus leading to a strong reduction of the tensile strength of the alloy, regardless of SDAS. Tensile properties of the alloy sensibly decrease at elevated temperature (200 °C) in all the investigated heat treatment conditions.

  • 37.
    Yuan, Kang
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Lin Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Li, Xin-Hai
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Wang, Yandong
    University of Science and Technology, Beijing, China.
    Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation2015In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 261, p. 86-101Article in journal (Refereed)
    Abstract [en]

    MCrAlY coatings are widely used to protect superalloys against oxidation and corrosion at high temperature in gas turbine engines. To design a durable MCrAlY coating, the elemental behaviour in coating-superalloy couples needs to be better understood. After oxidation tests in temperature range between 900 °C to 1100 °C, the microstructural development in the samples were analysed. The investigation was mainly focused on the microstructures at the coating surface or in areas near the coating-superalloy interface. Some interdiffusion simulations were also done to model the diffusion behaviour of alloying elements in different coatingsuperalloy couples. The results showed that both oxidation at the coatings’ surfaces and the elements’ diffusion inside of the materials were temperature- and chemical-composition dependent. The behaviour of some minor elements like Y, Hf, Ru and Ir in the oxidation processes was particularly studied by tracking their position and composition in the materials.

    Download full text (pdf)
    fulltext
  • 38.
    Calmunger, Mattias
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Management and Engineering, Engineering Materials.
    Eriksson, Robert
    Siemens AG, Huttenstr. 12, 10553 Berlin, Germany.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air2015In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 100, p. 524-534Article in journal (Refereed)
    Abstract [en]

    The formation of α’ martensite at the surface of an AISI 304 stainless steel subjected to cyclic heating in humidified air is reported. The α’ martensite formed during the cooling part of the cyclic tests due to local depletion of Cr and Mn and transformed back to austenite when the temperature again rose to 650 °C. The size of the α’ martensite region increased with increasing number of cycles. Thermodynamical simulations were used as basis for discussing the formation of α’ martensite. The effect of the α’ martensite on corrosion is also discussed.

    Download full text (pdf)
    fulltext
  • 39.
    Kahl, Sören
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Gränges Technology, Gränges AB, Finspång.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Tensile Failure of Thin Aluminium Sheet Observed by In-Situ EBSD2015In: 17TH INTERNATIONAL CONFERENCE ON TEXTURES OF MATERIALS (ICOTOM 17), IOP Publishing , 2015, Vol. 82Conference paper (Refereed)
    Abstract [en]

    Tensile tests on two similar 75-μm-thick aluminium sheet materials were carried out inside a scanning electron microscope equipped with an electron backscatter detector. The materials were subjected to simulated brazing prior to the test because this type of material is used for fins in automotive heat exchangers. Grain sizes were large relative to sheet thickness and ND-rotated cube and P texture components dominated the recrystallization textures; their volume fractions differed strongly in the two different materials, though. Strains over the microscope image fields were determined from positions of constituent particles or from grain sizes; the two methods gave consistent results. Grains with high Schmid factors accumulated significantly more deformation than grains with low Schmid factors. Cracks nucleated in high-Schmid factor grains, or in groups of such grains, at the specimen edges. When only low-Schmid factor grains were present at the specimen edges, the crack nucleated inside the specimen. The subsequent crack growth was intragranular and occurred at approximately 90° relative to the load direction.

    Download full text (pdf)
    fulltext
  • 40.
    Kaouache, Belkhiri
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials.
    Bäckström, Daniel
    Ahmad, Maqsood
    Vuoristo, Taina
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
    To Increase Fatigue Strength of Grey Iron By Shot Peening2015Conference paper (Refereed)
  • 41.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Advanced Microstructure Studies of an Austenitic Material Using EBSD in Elevated Temperature In-Situ Tensile Testing in SEM2014Conference paper (Refereed)
    Abstract [en]

    In this study an advanced method for investigation of the microstructure such as electron backscatter diffraction (EBSD) together with in-situ tensile test in a scanning electron microscope (SEM) has been used at room temperature and 300°C. EBSD analyses provide information about crystallographic orientation in the microstructure and dislocation structures caused by deformation. The in-situ tensile tests enabled the same area to be investigated at different strain levels. For the same macroscopic strain values a lower average misorientation in individual grains at elevated temperature indicates that less residual strain at grain level are developed compared to room temperature. For both temperatures, while large scatters in grain average misorientation are observed for grains of similar size, there seems to be a tendency showing that larger grains may accumulate somewhat more strains.

    Download full text (pdf)
    fulltext
  • 42.
    Schmidt, Pål
    et al.
    Volvo Group Trucks Technology, Göteborg.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Davydov, Vadim
    Paul Shcerrer Institute, Spallation Neutron Source SINQ, Villinge PSI, Switzerland.
    Lundberg, Mattias
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Ahmad, Maqsood
    Volvo Group Trucks Technology, Göteborg.
    Vuoristo, Taina
    Testing Methods and Testing, Scania CV AB, Södertälje.
    Bäckström, Daniel
    Testing Methods and Testing, Scania CV AB, Södertälje.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Analysis of Residual Stress in Stres Harps of Grey Iron by Experiment and Simulation2014Conference paper (Refereed)
  • 43.
    Zhou, Jinming
    et al.
    Division of Production and Materials Engineering, Lund university.
    Bushlya, Volodymyr
    Division of Production and Materials Engineering, Lund university.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chen, Zhe
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Stahl, Jan-Erik
    Division of Production and Materials Engineering, Lund university.
    Analysis of Subsurface Microstructure and Residual Stresses in Machined Inconel 718 with PCBN and Al2O3-SiCw Tools2014In: 2ND CIRP CONFERENCE ON SURFACE INTEGRITY (CSI), Elsevier, 2014, Vol. 13, p. 150-155Conference paper (Refereed)
    Abstract [en]

    Subsurface microstructural alterations and residual stresses caused by machining significantly affect component lifetime and performance by influencing fatigue, creep, and stress corrosion cracking resistance. Assessing the surface quality of a machined part by characterizing subsurface microstructural alterations and residual stresses is essential for ensuring part performance and lifetime in aero-engines and power generators. This comparative study characterizes and analyzes subsurface microstructural alterations and residual stresses in Inconel 718 subjected to high-speed machining with PCBN and whisker-reinforced ceramic cutting tools. Effects of cutting tool materials and microgeometry on subsurface deformation, microstructural alterations, and residual stresses were investigated. Surface and subsurface regions of machined specimens were investigated using X-ray diffraction, electron channeling contrast imaging, and electron back-scatter diffraction to characterize microstructural alterations and measure deformation intensity and depth.

    Download full text (pdf)
    fulltext
  • 44.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Avdovic, Pajazit
    Siemens Industrial Turbomachinery, Finspång, Sweden.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Karlsson, Fredrik
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund university.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Analysis of Thermal Effect on Residual Stresses of Broached Inconel 7182014Conference paper (Refereed)
    Abstract [en]

    Inconel 718 is a nickel based superalloy that is widely used as a turbine disc material in gas turbine industries. This study details the effect of thermal exposure on the residual stresses produced when broaching Inconel 718. The chosen parameters for broaching in this study are similar to those used when manufacturing turbine discs. The broaching operation produced a high level of tensile residual stresses at the broached surface. A layer with tensile residual stresses was formed in the sub-surface region, followed by a layer several times thicker with compressive residual stresses. Thermal exposure was conducted at 550 °C. The depth distributions of residual stresses after thermal exposure are presented and discussed in this paper. Complete relaxation of the surface tensile residual stresses was observed after 30 h thermal exposure, whereas the 3000 h thermal exposure influenced both the surface and sub-surface residual stress states.

  • 45.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Peng, Ru Lin
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Damage analysis of a retired gas turbine disc2014In: Proceedings of the 2014 Energy Materials Conference, John Wiley & Sons, 2014, p. 405-410Conference paper (Refereed)
    Abstract [en]

    Gas turbine discs operate mostly at high temperature gradients and are subjected to mechanical loads simultaneously. The high thermal and mechanical loads eventually could result in degradation and damages in disc material, thereby increasing the risk of disc failure. In this study, a damage analysis was performed in a retired gas turbine disc made of Inconel 718. Oxidation attack and microstructural degradation as the consequence of the high service temperature have been found to be the main damages that take place in the non-contact area of the retired disc. In the blade/disc contact area, fretting fatigue occurs, with a result that cracks initiate from the oxide/metal interface and propagate in the disc alloy parallel to the sliding direction of fretting, consequently reducing the stability and safety of the disc. Meantime, oxygen diffuses into the fretting fatigue cracks, thereby exacerbating the oxidation attack. A multi-layered scale with periodic formation of the Fe-oxide/spinel layer and the metallic layer is formed on the contact surface. In both contact and non-contact area, recrystallization and α-Cr precipitation take place in the surface layer of the disc alloy. The locations where α-Cr precipitates are commonly considered to be the natural sites for mechanical weakness.

  • 46.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Damage and Fracture Behaviours in Aged Austentic Materials During High-Temperature Slow Strain Rate Testing2014Conference paper (Refereed)
    Abstract [en]

    Biomass power plants with high efficiency are desired as a renewable energy resource. High efficiency can be obtained by increasing temperature and pressure. An upgrade of the material performance to high temperature material is therefore required in order to meet the increased demands due to the higher temperature and the more corrosive environment. In this study, the material’s high-temperature behaviours of AISI 304 and Alloy617 under slow deformation rate are evaluated using high-temperature long-term aged specimens subjected to slow strain rate tensile testing (SSRT) with strain rates down to 10-6/s at 700°C. Both materials show decreasing stress levels and elongation to fracture when tensile deformed using low strain rate and elevated temperature. At high-temperature and low strain rates cracking in grain boundaries due to larger precipitates formed during deformation is the most common fracture mechanism.

    Download full text (pdf)
    fulltext
  • 47.
    Calmunger, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Chai, Guocai
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Sandviken, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Moverare, Johan
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature2014In: Theoretical and Applied Mechanics Letters, ISSN 2095-0349, Vol. 4, no 041004Article in journal (Refereed)
    Abstract [en]

    In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.

  • 48.
    Chen, Zhe
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Avdovic, Pajazit
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Zhou, Jinming
    Division of Production and Materials Engineering, Lund university, Sweden.
    Moverare, Johan
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Karlsson, Fredrik
    Siemens Industrial Turbomachinery AB, Finspång, Sweden.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Effect of thermal exposure on microstructure and nano-hardness of broached Inconel 7182014In: MATEC Web of Conferences Vol. 14 (2014) EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications: Session 8: Recrystallization and Grain Growth / [ed] J.Y. Guédou and J. Choné, Les Ulis, France: E D P Sciences , 2014, p. 08002-p.1-08002-p.6Conference paper (Refereed)
    Abstract [en]

    Inconel 718 is a high strength, heat resistant superalloy that is used extensively for components in hot sections of gas turbine engines. This paper presents an experimental study on the thermal stability of broached Inconel 718 in terms of microstructure and nano-hardness. The broaching process used in this study is similar to that used in gas turbine industries for machining fir-tree root fixings on turbine discs. Severe plastic deformation was found under the broached surface. The plastic deformation induces a work-hardened layer in the subsurface region with a thickness of ∼50 μm. Thermal exposure was conducted at two temperatures, 550 C and 650 C respectively, for 300 h. Recrystallization occurs in the surface layer during thermal exposure at 550 C and α-Cr precipitates as a consequence of the growth of recrystallized δ phases. More recrystallized grains with a larger size form in the surface layer and the α-Cr not only precipitates in the surface layer, but also in the sub-surface region when the thermal exposure temperature goes up to 650 C. The thermal exposure leads to an increase in nano-hardness both in the work-hardened layer and in the bulk material due to the coarsening of the main strengthening phase γ′′.

    Download full text (pdf)
    fulltext
  • 49.
    Chai, Guocai
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Sandvik Materials Technology, Sandviken, Sweden.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Fatigue Behaviors in Duplex Stainless Steel Studied Using In-Situ SEM-EBSD Method2014In: Procedia Materials Science, ISSN 2211-8128, Vol. 3, p. 1748-1753Article in journal (Refereed)
    Abstract [en]

    Austenite and ferrite in duplex stainless steels have different physical and mechanical properties. They can behave different during cyclic loading. To understand the fatigue behaviors of these two phases, an in-situ SEM/EBSD fatigue test has been performed. Flat specimens made from the specimens of pre-fatigue tested with three point bending were cyclically loaded in a scanning electron microscope via a compact test rig. By in situ/ex situ SEM/EBSD examination, slip activities and propagation of the fatigue cracks have been studied. Microstructures along the path of the fatigue crack were characterized. The different phase properties seem to lead to certain difference in the slip activity and formation of PSBs. Inhomogeneous slip activities and local strain concentrations were also found, which developed with increasing number of load cycles. Crack propagation behaviors in grain and cross the grain or phase boundaries have been discussed. Crack deflection occurs at the phase boundaries, but crack branching occurs mainly in the grains due to the dislocation slip. In-situ SEM/EBSD fatigue test confirms that crack propagation deflection and formation of crack branches can significantly reduce the crack propagation rate.

  • 50.
    Lundberg, Mattias
    et al.
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Peng, Ru
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Ahmad, Maqsood
    Base Engine & Materials Technology, Volvo Powertrain, Göteborg.
    Bäckström, Daniel
    Testing Methods and Testing, Scania CV AB, Södertälje.
    Vuoristo, Taina
    Testing Methods and Testing, Scania CV AB, Södertälje.
    Johansson, Sten
    Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
    Fatigue strength of Machined and Shot Peened Grey Cast Iron2014Conference paper (Refereed)
    Abstract [en]

    A common opinion is that cast iron, especially grey cast iron, is not as notch sensitive as steel therefore is not typically treated by shot peening to suppress crack initiation. For a heterogeneous material that also is brittle, just like grey cast iron, the shot peening parameters needed to induce beneficial surface residual stresses can be problematic to identify. Fatigue testing under uniaxial loading with an R value of -1, on mechanically polished and shot peened specimens, has been performed to determine the fatigue strength at 10(7) cycles as well as complete Wohler-curves. Two different types of specimen geometries were tested, one smooth and one notched specimen having k(t) equal to 1.05 and 1.33 respectively. With large shots and high peening intensity (heavy SP) the fatigue strength clearly decreased whereas small shots and low peening intensity (gentle SP) might have lowered the fatigue strength. A short annealing at 285 degrees after gentle SP increased the fatigue strength. The results are discussed and explained based on x-ray diffraction (XRD) measurements, i.e. residual stress and full width at half maximum profiles, as well as microstructural investigations using scanning electron microscope (SEM).

1234 1 - 50 of 189
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf