liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Roy, Arghyamalya
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bersellini Farinotti, Alex
    Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Abrahamsson, Tobias
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Cherian, Dennis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Karaday, Michal
    Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences; Faculty of Science of Palacký University, Olomouc, Czech Republic.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, David
    Department of Printed Electronics, Research Institute of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Svensson, Camilla I.
    Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electrophoretic Delivery of Clinically Approved Anesthetic Drug for Chronic Pain Therapy2023In: Advanced Therapeutics, E-ISSN 2366-3987Article in journal (Refereed)
    Abstract [en]

    Despite a range of available pain therapies, most patients report so-called “breakthrough pain.” Coupled with global issues like opioid abuse, there is a clear need for advanced therapies and technologies for safe and effective pain management. Here the authors demonstrate a candidate for such an advanced therapy: precise and fluid-flow-free electrophoretic delivery via organic electronic ion pumps (OEIPs) of the commonly used anesthetic drug bupivacaine. Bupivacaine is delivered to dorsal root ganglion (DRG) neurons in vitro. DRG neurons are a good proxy for pain studies as they are responsible for relaying ascending sensory signals from nociceptors (pain receptors) in the peripheral nervous system to the central nervous system. Capillary based OEIPs are used due to their probe-like and free-standing form factor, ideal for interfacing with cells. By delivering bupivacaine with the OEIP and recording dose versus response (Ca2+ imaging), it is observed that only cells close to the OEIP outlet (≤75 µm) are affected (“anaesthetized”) and at concentrations up to 10s of thousands of times lower than with bulk/bolus delivery. These results demonstrate the first effective OEIP deliveryof a clinically approved and widely used analgesic pharmaceutical, and thus are a major translational milestone for this technology.

    Download full text (pdf)
    fulltext
  • 2.
    Cherian, Dennis
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Roy, Arghyamalya
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Farinotti, Alex Bersellini
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Abrahamsson, Tobias
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, David
    Unit of Printed Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Svensson, Camilla I.
    Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Flexible Organic Electronic Ion Pump Fabricated Using Inkjet Printing and Microfabrication for Precision In Vitro Delivery of Bupivacaine2023In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an on-demand electrophoretic drug delivery device, that via electronic to ionic signal conversion enables drug delivery without additional pressure or volume changes. The fundamental component of OEIPs is their polyelectrolyte membranes which are shaped into ionic channels that conduct and deliver ionic drugs, with high spatiotemporal resolution. The patterning of these membranes is essential in OEIP devices and is typically achieved using laborious micro processing techniques. Here, we report the development of an inkjet printable formulation of polyelectrolyte, based on a custom anionically functionalized hyperbranched polyglycerol (i-AHPG). This polyelectrolyte ink greatly simplifies the fabrication process, and is used in the production of free standing, OEIPs on flexible polyimide substrates. Both i-AHPG and the OEIP devices are characterized, exhibiting favorable iontronic characteristics of charge selectivity and ability to transport aromatic compounds. Further, the applicability of these technologies is demonstrated by transport and delivery of the pharmaceutical compound bupivacaine to dorsal root ganglion cells with high spatial precision and effective nerve-blocking, highlighting the applicability of these technologies for biomedical scenarios.

    Download full text (pdf)
    fulltext
  • 3.
    Armgarth, Astrid
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. RISE Res Inst Sweden AB, Sweden.
    Pantzare, Sandra
    RISE Res Inst Sweden AB, Sweden.
    Arven, Patrik
    J2 Holding AB, Sweden.
    Lassnig, Roman
    RISE Res Inst Sweden AB, Sweden.
    Jinno, Hiroaki
    RIKEN, Japan; Univ Tokyo, Japan.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kifle, Yonatan Habteslassie
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Cherian, Dennis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berthou, Gautier
    Res Inst Sweden AB, Sweden.
    Dowling, Jim
    Res Inst Sweden AB, Sweden; KTH Royal Inst Technol, Sweden.
    Someya, Takao
    RIKEN, Japan; Univ Tokyo, Japan.
    Wikner, Jacob
    Linköping University, Department of Electrical Engineering, Integrated Circuits and Systems. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Göran
    RISE Res Inst Sweden AB, Sweden.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    A digital nervous system aiming toward personalized IoT healthcare2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 7757Article in journal (Refereed)
    Abstract [en]

    Body area networks (BANs), cloud computing, and machine learning are platforms that can potentially enable advanced healthcare outside the hospital. By applying distributed sensors and drug delivery devices on/in our body and connecting to such communication and decision-making technology, a system for remote diagnostics and therapy is achieved with additional autoregulation capabilities. Challenges with such autarchic on-body healthcare schemes relate to integrity and safety, and interfacing and transduction of electronic signals into biochemical signals, and vice versa. Here, we report a BAN, comprising flexible on-body organic bioelectronic sensors and actuators utilizing two parallel pathways for communication and decision-making. Data, recorded from strain sensors detecting body motion, are both securely transferred to the cloud for machine learning and improved decision-making, and sent through the body using a secure body-coupled communication protocol to auto-actuate delivery of neurotransmitters, all within seconds. We conclude that both highly stable and accurate sensing-from multiple sensors-are needed to enable robust decision making and limit the frequency of retraining. The holistic platform resembles the self-regulatory properties of the nervous system, i.e., the ability to sense, communicate, decide, and react accordingly, thus operating as a digital nervous system.

    Download full text (pdf)
    fulltext
  • 4.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ivanov, Anton I.
    INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France.
    Bernard, Christophe
    INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery2021In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 6, no 2, article id 2001006Article in journal (Refereed)
    Abstract [en]

    Highly controlled drug delivery devices play an increasingly important role in the development of new neuroengineering tools. Stringent - and sometimes contradicting - demands are placed on such devices, ranging from robustness in freestanding devices, to overall device miniaturization, while maintaining precise spatiotemporal control of delivery with high chemical specificity and high on/off ratio. Here, design principles of a hybrid microfluidic iontronic probe that uses flow for long-range pressure-driven transport in combination with an iontronic tip that provides electronically fine-tuned pressure-free delivery are explored. Employing a computational model, the effects of decoupling the drug reservoir by exchanging a large passive reservoir with a smaller microfluidic system are reported. The transition at the microfluidic-iontronic interface is found to require an expanded ion exchange membrane inlet in combination with a constant fluidic flow, to allow a broad range of device operation, including low source concentrations and high delivery currents. Complementary to these findings, the free-standing hybrid probe monitored in real time by an external sensor is demonstrated. From these computational and experimental results, key design principles for iontronic devices are outlined that seek to use the efficient transport enabled by microfluidics, and further, key observations of hybrid microfluidic iontronic probes are explained.

    Download full text (pdf)
    fulltext
  • 5.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Amanda
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds2020In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 5, no 3, article id 1900750Article in journal (Refereed)
    Abstract [en]

    Current neural interfaces rely on electrical stimulation pulses to affect neural tissue. The development of a chemical delivery technology, which can stimulate neural tissue with the bodys own set of signaling molecules, would provide a new level of sophistication in neural interfaces. Such technology should ideally provide highly local chemical delivery points that operate at synaptic speed, something that is yet to be accomplished. Here, the development of a miniaturized ionic polarization diode that exhibits many of the desirable properties for a chemical neural interface technology is reported. The ionic diode shows proper diode rectification and the current switches from off to on in 50 mu s at physiologically relevant electrolyte concentrations. A device model is developed to explain the characteristics of the ionic diode in more detail. In combination with experimental data, the model predicts that the ionic polarization diode has a delivery delay of 5 ms to reach physiologically relevant neurotransmitter concentrations at subcellular spatial resolution. The model further predicts that delays of amp;lt;1 ms can be reached by further miniaturization of the diode geometry. Altogether, the results show that ionic polarization diodes are a promising building block for the next generation of chemical neural interfaces.

    Download full text (pdf)
    fulltext
  • 6. Order onlineBuy this publication >>
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Organic Bioelectronics for Neurotransmitter Release at the Speed of Life2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The signaling dynamics in neuronal networks includes processes ranging from lifelong neuromodulation to direct synaptic neurotransmission. In chemical synapses, the time delay it takes to pass a signal from one neuron to the next lasts for less than a millisecond. At the post-synaptic neuron, further signaling is either up- or down-regulated, dependent on the specific neurotransmitter and receptor. While this up- and down-regulation of signals usually runs perfectly well and enables complex performance, even a minor dysfunction of this signaling system can cause major complications, in the shape of neurological disorders. The field of organic bioelectronics has the ability to interface neurons with high spatiotemporal recording and stimulation techniques. Local chemical stimulation, i.e. local release of neurotransmitters, enables the possibility of artificially altering the chemical environment in dysfunctional signaling pathways to regain or restore neural function. To successfully interface the biological nervous system with electronics, a range of demands must be met. Organic bioelectronic techniques and materials are capable of reaching the demands on the biological as well as the electronic side of the interface. These demands span from high performance biocompatible materials, to miniaturized and specific device architectures, and high dose control on demand within milliseconds.

    The content of this thesis is a continuation of the development of organic bioelectronic devices for neurotransmitter delivery. Organic materials are utilized to electrically control the dose of charged neurotransmitters by translating electric charge into controlled artificial release. The first part of the thesis, Papers 1 and 2, includes further development of the resistor-type release device called the organic electronic ion pump. This part includes material evaluation, microfluidic incorporation, and device design considerations. The aim for the second part of this thesis, Papers 3 and 4, is to enhance temporal performance, i.e. reduce the delay between electrical signal and neurotransmitter delivery to corresponding delay in biological neural signaling, while retaining tight dosage control. Diffusion of neurotransmitters between nerve cells is a slow process, but since it is restricted to short distances, the total time delay is short. In our organic bioelectronic devices, several orders of magnitude in speed can be gained by switching from lateral to vertical delivery geometries. This is realized by two different types of vertical diodes combined with a lateral preload and waste configuration. The vertical diode assembly was further expanded with a control electrode that enables individual addressing in each of several combined release sites. These integrated circuits allow for release of neurotransmitters with high on/off release ratios, approaching delivery times on par with biological neurotransmission.

    List of papers
    1. Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems
    Open this publication in new window or tab >>Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems
    Show others...
    2017 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 36, p. 30247-30252Article in journal (Refereed) Published
    Abstract [en]

    On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film LEMs hamper future developments of this technology. Here we address this limitation by developing a cationic IEM with excellent processability and ionic selectivity: poly(4-styrenesulfonic acidco-maleic acid) (PSS-co-MA) cross-linked with polyethylene glycol (PEG). This enables new design opportunities and provides enhanced compatibility with in vitro cell studies. PSSA-co-MA/PEG is shown to out-perform the cation selectivity of the previously used iontronic material.

    Place, publisher, year, edition, pages
    AMER CHEMICAL SOC, 2017
    Keywords
    ion exchange membranes; iontronics; organic bioelectronics; microfabrication; neurotransmitter release
    National Category
    Other Materials Engineering
    Identifiers
    urn:nbn:se:liu:diva-142182 (URN)10.1021/acsami.7b05949 (DOI)000411043600002 ()28831798 (PubMedID)
    Note

    Funding Agencies|Knut and Alice Wallenberg Foundation (KAW) [2012.0302]; Swedish Research Council (Vetenskapsradet) [621-2011-3517]; Swedish Innovation Office (VINNOVA) [2010-00507]; Onnesjo Foundation

    Available from: 2017-10-23 Created: 2017-10-23 Last updated: 2020-12-07
    2. Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery
    Open this publication in new window or tab >>Design and Operation of Hybrid Microfluidic Iontronic Probes for Regulated Drug Delivery
    Show others...
    2021 (English)In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 6, no 2, article id 2001006Article in journal (Refereed) Published
    Abstract [en]

    Highly controlled drug delivery devices play an increasingly important role in the development of new neuroengineering tools. Stringent - and sometimes contradicting - demands are placed on such devices, ranging from robustness in freestanding devices, to overall device miniaturization, while maintaining precise spatiotemporal control of delivery with high chemical specificity and high on/off ratio. Here, design principles of a hybrid microfluidic iontronic probe that uses flow for long-range pressure-driven transport in combination with an iontronic tip that provides electronically fine-tuned pressure-free delivery are explored. Employing a computational model, the effects of decoupling the drug reservoir by exchanging a large passive reservoir with a smaller microfluidic system are reported. The transition at the microfluidic-iontronic interface is found to require an expanded ion exchange membrane inlet in combination with a constant fluidic flow, to allow a broad range of device operation, including low source concentrations and high delivery currents. Complementary to these findings, the free-standing hybrid probe monitored in real time by an external sensor is demonstrated. From these computational and experimental results, key design principles for iontronic devices are outlined that seek to use the efficient transport enabled by microfluidics, and further, key observations of hybrid microfluidic iontronic probes are explained.

    Place, publisher, year, edition, pages
    Hoboken, New Jersey: John Wiley & Sons, 2021
    Keywords
    bioelectronics, drug delivery, iontronics, microfluidics, organic electronics
    National Category
    Medical Materials
    Identifiers
    urn:nbn:se:liu:diva-172686 (URN)10.1002/admt.202001006 (DOI)000607538700001 ()
    Conference
    2021/01/18
    Funder
    Swedish Foundation for Strategic Research Knut and Alice Wallenberg FoundationVinnovaSwedish Research CouncilEU, European Research Council, 2018
    Note

    Additional Funding agencies: FLAG‐ERA. Grant Number: JTC2017; EPIGRAPH. Grant Number: ANR‐17‐GRF2‐0001; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University. Grant Number: 2009‐00971; A*MIDEX ION. Grant Number: 2IONXXID/REID/ID17HRU208

    Available from: 2021-01-18 Created: 2021-01-18 Last updated: 2022-09-15Bibliographically approved
    3. Chemical delivery array with millisecond neurotransmitter release
    Open this publication in new window or tab >>Chemical delivery array with millisecond neurotransmitter release
    Show others...
    2016 (English)In: Science Advances, E-ISSN 2375-2548, Vol. 2, no 11, article id e1601340Article in journal (Refereed) Published
    Abstract [en]

    Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses.

    Place, publisher, year, edition, pages
    Washington: American Association for the Advancement of Science (A A A S), 2016
    National Category
    Atom and Molecular Physics and Optics Computer Engineering Other Engineering and Technologies not elsewhere specified Biomedical Laboratory Science/Technology Signal Processing
    Identifiers
    urn:nbn:se:liu:diva-133161 (URN)10.1126/sciadv.1601340 (DOI)000391267800033 ()27847873 (PubMedID)
    Available from: 2016-12-12 Created: 2016-12-12 Last updated: 2020-12-07Bibliographically approved
    4. Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds
    Open this publication in new window or tab >>Miniaturized Ionic Polarization Diodes for Neurotransmitter Release at Synaptic Speeds
    Show others...
    2020 (English)In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 5, no 3, article id 1900750Article in journal (Refereed) Published
    Abstract [en]

    Current neural interfaces rely on electrical stimulation pulses to affect neural tissue. The development of a chemical delivery technology, which can stimulate neural tissue with the bodys own set of signaling molecules, would provide a new level of sophistication in neural interfaces. Such technology should ideally provide highly local chemical delivery points that operate at synaptic speed, something that is yet to be accomplished. Here, the development of a miniaturized ionic polarization diode that exhibits many of the desirable properties for a chemical neural interface technology is reported. The ionic diode shows proper diode rectification and the current switches from off to on in 50 mu s at physiologically relevant electrolyte concentrations. A device model is developed to explain the characteristics of the ionic diode in more detail. In combination with experimental data, the model predicts that the ionic polarization diode has a delivery delay of 5 ms to reach physiologically relevant neurotransmitter concentrations at subcellular spatial resolution. The model further predicts that delays of amp;lt;1 ms can be reached by further miniaturization of the diode geometry. Altogether, the results show that ionic polarization diodes are a promising building block for the next generation of chemical neural interfaces.

    Place, publisher, year, edition, pages
    WILEY, 2020
    Keywords
    bioelectronics; controlled release; ion diodes; iontronics; neurotransmitters
    National Category
    Bioinformatics (Computational Biology)
    Identifiers
    urn:nbn:se:liu:diva-162499 (URN)10.1002/admt.201900750 (DOI)000497801400001 ()
    Note

    Funding Agencies|Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research; Knut and Alice Wallenberg foundationKnut & Alice Wallenberg Foundation; Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linkoping University [2009-00971]

    Available from: 2019-12-16 Created: 2019-12-16 Last updated: 2022-09-15
    Download full text (pdf)
    fulltext
    Download (png)
    presentationsbild
  • 7.
    Jakešová, Marie
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring, Theresia
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Đerek, Vedran
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wireless organic electronic ion pumps driven by photovoltaics2019In: npj Flexible Electronics, ISSN 2397-4621, Vol. 3, no 1, p. 14-14Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an emerging bioelectronic technology for on-demand and local delivery of pharmacologically active species, especially targeting alkali ions, and neurotransmitters. While electrical control is advantageous for providing precise spatial, temporal, and quantitative delivery, traditionally, it necessitates wiring. This complicates implantation. Herein, we demonstrate integration of an OEIP with a photovoltaic driver on a flexible carrier, which can be addressed by red light within the tissue transparency window. Organic thin-film bilayer photovoltaic pixels are arranged in series and/or vertical tandem to provide the 2.5–4.5 V necessary for operating the high-resistance electrophoretic ion pumps. We demonstrate light-stimulated transport of cations, ranging in size from protons to acetylcholine. The device, laminated on top of the skin, can easily be driven with a red LED emitting through a 1.5-cm-thick finger. The end result of our work is a thin and flexible integrated wireless device platform.

    Download full text (pdf)
    fulltext
  • 8.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Janson, Per
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Seitanidou, Maria S.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    A Decade of Iontronic Delivery Devices2018In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 3, no 5, article id 1700360Article, review/survey (Refereed)
    Abstract [en]

    In contrast to electronic systems, biology rarely uses electrons as the signal to regulate functions, but rather ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conjugated polymers and polyelectrolytes, these materials have emerged as an excellent tool for translating signals between these two realms, hence the field of organic bioelectronics. Since organic bioelectronics relies on the electron-mediated transport and compensation of ions (or the ion-mediated transport and compensation of electrons), a great deal of effort has been devoted to the development of so-called "iontronic" components to effect precise substance delivery/transport, that is, components where ions are the dominant charge carrier and where ionic-electronic coupling defines device functionality. This effort has resulted in a range of technologies including ionic resistors, diodes, transistors, and basic logic circuits for the precisely controlled transport and delivery of biologically active chemicals. This Research News article presents a brief overview of some of these "ion pumping" technologies, how they have evolved over the last decade, and a discussion of applications in vitro, in vivo, and in plantae.

    Download full text (pdf)
    fulltext
  • 9.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Amanda
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Stanford University, CA 94305 USA.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kergoat, Loig
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Aix Marseille University, France.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 36, p. 30247-30252Article in journal (Refereed)
    Abstract [en]

    On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film LEMs hamper future developments of this technology. Here we address this limitation by developing a cationic IEM with excellent processability and ionic selectivity: poly(4-styrenesulfonic acidco-maleic acid) (PSS-co-MA) cross-linked with polyethylene glycol (PEG). This enables new design opportunities and provides enhanced compatibility with in vitro cell studies. PSSA-co-MA/PEG is shown to out-perform the cation selectivity of the previously used iontronic material.

    Download full text (pdf)
    fulltext
  • 10.
    Seitanidou, Maria
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Franco-Gonzalez, Juan Felipe
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    pH Dependence of γ-Aminobutyric Acid Iontronic Transport2017In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 30, p. 7284-7289Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) has been developed as an “iontronic” tool for delivery of biological signaling compounds. OEIPs rely on electrophoretically “pumping” charged compounds, either at neutral or shifted pH, through an ion-selective channel. Significant shifts in pH lead to an abundance of H+ or OH–, which are delivered along with the intended substance. While this method has been used to transport various neurotransmitters, the role of pH has not been explored. Here we present an investigation of the role of pH on OEIP transport efficiency using the neurotransmitter γ-aminobutyric acid (GABA) as the model cationic delivery substance. GABA transport is evaluated at various pHs using electrical and chemical characterization and compared to molecular dynamics simulations, all of which agree that pH 3 is ideal for GABA transport. These results demonstrate a useful method for optimizing transport of other substances and thus broadening OEIP applications.

    Download full text (pdf)
    fulltext
  • 11.
    Jonsson, Amanda
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring Sjöström, Theresia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Chemical delivery array with millisecond neurotransmitter release2016In: Science Advances, E-ISSN 2375-2548, Vol. 2, no 11, article id e1601340Article in journal (Refereed)
    Abstract [en]

    Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses.

    Download full text (pdf)
    fulltext
  • 12.
    Williamson, Adam
    et al.
    Aix Marseille University, France; INSERM, France.
    Rivnay, Jonathan
    Ecole National Super Mines, France.
    Kergoat, Loig
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Amanda
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Inal, Sahika
    Ecole National Super Mines, France.
    Uguz, Ilke
    Ecole National Super Mines, France.
    Ferro, Marc
    Ecole National Super Mines, France.
    Ivanov, Anton
    Aix Marseille University, France; INSERM, France.
    Arbring, Sjöström, Theresia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Malliaras, George G.
    Ecole National Super Mines, France.
    Bernard, Christophe
    Aix Marseille University, France; INSERM, France.
    Controlling Epileptiform Activity with Organic Electronic Ion Pumps2015In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 27, no 20, p. 3138-3144Article in journal (Refereed)
    Abstract [en]

    In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings.

    Download full text (pdf)
    fulltext
  • 13.
    Nyman, Elin
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. CVMD iMED DMPK AstraZeneca R&D, Mölndal, Sweden.
    Lindgren, Isa
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology.
    Lövfors, William
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Lundengård, Karin
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Health Sciences.
    Cervin, Ida
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Arbring, Theresia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology. Linköping University, Department of Biomedical Engineering.
    Altimitas, Jordi
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology.
    Cedersund, Gunnar
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Mathematical modeling improves EC50 estimations from classical dose–response curves2015In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 282, no 5, p. 951-962Article in journal (Refereed)
    Abstract [en]

    The beta-adrenergic response is impaired in failing hearts. When studying beta-adrenergic function in vitro, the half-maximal effective concentration (EC50) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50. Instead, we have applied a mathematical modeling approach to interpret the full dose–response curvein a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose–response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180–525 nM) is higher than the classically interpreted EC50 (46–191 nM). Mathematical modeling thus makes it possible to reinterpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible.

    Download full text (pdf)
    fulltext
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf