liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Moudio, Serge
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Rodin, Fredrik
    Linköping University, Department of Biomedical and Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Albargothy, Nazira
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Karlsson, Urban
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Reyes, Juan
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Hallbeck, Martin
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Exposure of alpha-Synuclein Aggregates to Organotypic Slice Cultures Recapitulates Key Molecular Features of Parkinsons Disease2022In: Frontiers in Neurology, E-ISSN 1664-2295, Vol. 13, article id 826102Article in journal (Refereed)
    Abstract [en]

    The accumulation of proteinaceous deposits comprised largely of the alpha-synuclein protein is one of the main hallmarks of Parkinsons disease (PD) and related synucleinopathies. Their progressive development coincides with site-specific phosphorylation, oxidative stress and eventually, compromised neuronal function. However, modeling protein aggregate formation in animal or in vitro models has proven notably difficult. Here, we took advantage of a preclinical organotypic brain slice culture model to study alpha-synuclein aggregate formation ex vivo. We monitored the progressive and gradual changes induced by alpha-synuclein such as cellular toxicity, autophagy activation, mitochondrial dysfunction, cellular death as well as alpha-synuclein modification including site-specific phosphorylation. Our results demonstrate that organotypic brain slice cultures can be cultured for long periods of time and when cultured in the presence of aggregated alpha-synuclein, the molecular features of PD are recapitulated. Taken together, this ex vivo model allows for detailed modeling of the molecular features of PD, thus enabling studies on the cumulative effects of alpha-synuclein in a complex environment. This provides a platform to screen potential disease-modifying therapeutic candidates aimed at impeding alpha-synuclein aggregation and/or cellular transmission. Moreover, this model provides a robust replacement for in vivo studies that do not include behavioral experiments, thus providing a way to reduce the number of animals used in an accelerated timescale.

    Download full text (pdf)
    fulltext
  • 2.
    Ottosson, Nina
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Silverå Ejneby, Malin
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Estrada Mondragón, Argel
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Michelle
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Schupp, Melanie
    Soph Biosci AS, Denmark.
    Rognant, Salome
    Univ Copenhagen, Denmark.
    Jepps, Thomas Andrew
    Univ Copenhagen, Denmark.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Elinder, Fredrik
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Synthetic resin acid derivatives selectively open the hK(V)7.2/7.3 channel and prevent epileptic seizures2021In: Epilepsia, ISSN 0013-9580, E-ISSN 1528-1167, Vol. 62, no 7, p. 1744-1758Article in journal (Refereed)
    Abstract [en]

    Objective About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hK(V)) channel hK(V)7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hK(V)7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hK(V)7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. Methods Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. Results Fourteen resin acid derivatives were tested on hK(V)7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hK(V)7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hK(V)7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hK(V)11.1, hNa(V)1.5, or hCa(V)1.2, or on the amplitude of hK(V)11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. Significance The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.

  • 3.
    Larsson, Johan
    et al.
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Liin, Sara
    Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Biomedical and Clinical Sciences, Division of Neurobiology.
    Combining endocannabinoids with retigabine for enhanced M-channel effect and improved KV7 subtype selectivity2020In: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 152, no 8, article id e202012576Article in journal (Refereed)
    Abstract [en]

    Retigabine is unique among anticonvulsant drugs by targeting the neuronal M-channel, which is composed of KV7.2/KV7.3 and contributes to the negative neuronal resting membrane potential. Unfortunately, retigabine causes adverse effects, which limits its clinical use. Adverse effects may be reduced by developing M-channel activators with improved KV7 subtype selectivity. The aim of this study was to evaluate the prospect of endocannabinoids as M-channel activators, either in isolation or combined with retigabine. Human KV7 channels were expressed in Xenopus laevis oocytes. The effect of extracellular application of compounds with different properties was studied using two-electrode voltage clamp electrophysiology. Site-directed mutagenesis was used to construct channels with mutated residues to aid in the mechanistic understanding of these effects. We find that arachidonoyl-L-serine (ARA-S), a weak endocannabinoid, potently activates the human M-channel expressed in Xenopus oocytes. Importantly, we show that ARA-S activates the M-channel via a different mechanism and displays a different KV7 subtype selectivity compared with retigabine. We demonstrate that coapplication of ARA-S and retigabine at low concentrations retains the effect on the M-channel while limiting effects on other KV7 subtypes. Our findings suggest that improved KV7 subtype selectivity of M-channel activators can be achieved through strategically combining compounds with different subtype selectivity.

    Download full text (pdf)
    fulltext
  • 4.
    Klawonn, Anna
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Fritz, Michael
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Anna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bonaventura, Jordi
    NIDA, MD USA.
    Shionoya, Kiseko
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Mirrasekhian, Elahe
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Jaarola, Maarit
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Granseth, Björn
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Blomqvist, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Michaelides, Michael
    NIDA, MD USA; Johns Hopkins Sch Med, MD USA.
    Engblom, David
    Linköping University, Department of Clinical and Experimental Medicine, Center for Social and Affective Neuroscience. Linköping University, Faculty of Medicine and Health Sciences.
    Motivational valence is determined by striatal melanocortin 4 receptors2018In: Journal of Clinical Investigation, ISSN 0021-9738, E-ISSN 1558-8238, Vol. 128, no 7, p. 3160-3170Article in journal (Refereed)
    Abstract [en]

    It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and. opioid receptorinduced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.

    Download full text (pdf)
    fulltext
  • 5.
    Yelhekar, Tushar D.
    et al.
    Umeå University, Sweden.
    Druzin, Michael
    Umeå University, Sweden.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Umeå University, Sweden.
    Blomqvist, Erii
    Umeå University, Sweden.
    Johansson, Staffan
    Umeå University, Sweden.
    How to Properly Measure a Current-Voltage Relation?: Interpolation vs. Ramp Methods Applied to Studies of GABA(A) Receptors2016In: Frontiers in Cellular Neuroscience, E-ISSN 1662-5102, Vol. 10, no 10Article in journal (Refereed)
    Abstract [en]

    The relation between current and voltage, I-V relation, is central to functional analysis of membrane ion channels. A commonly used method, since the introduction of the voltage-clamp technique, to establish the I-V relation depends on the interpolation of current amplitudes recorded at different steady voltages. By a theoretical computational approach as well as by experimental recordings from GABA(A) receptor mediated currents in mammalian central neurons, we here show that this interpolation method may give reversal potentials and conductances that do not reflect the properties of the channels studied under conditions when ion flux may give rise to concentration changes. Therefore, changes in ion concentrations may remain undetected and conclusions on changes in conductance, such as during desensitization, may be mistaken. In contrast, an alternative experimental approach, using rapid voltage ramps, enable I-V relations that much better reflect the properties of the studied ion channels.

    Download full text (pdf)
    fulltext
  • 6.
    Liin, Sara
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bentzen, B. H.
    University of Copenhagen, Denmark.
    Schmitt, N.
    University of Copenhagen, Denmark.
    Elinder, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes2016In: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 218, no 1, p. 28-37Article in journal (Refereed)
    Abstract [en]

    Aim: Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Methods: Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Results: Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 mu M) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, alpha-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 mu M). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV7.2/3 channel. Conclusions: These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability.

    Download full text (pdf)
    fulltext
  • 7.
    Ottosson, Nina
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nolting, Andreas
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Karlsson, Urban
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Lund, Per-Eric
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Ruda, Katinka
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Svensson, Stefan
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Elinder, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability2015In: Scientific Reports, E-ISSN 2045-2322, Vol. 5, no 13278Article in journal (Refereed)
    Abstract [en]

    Voltage-gated ion channels generate cellular excitability, cause diseases when mutated, and act as drug targets in hyperexcitability diseases, such as epilepsy, cardiac arrhythmia and pain. Unfortunately, many patients do not satisfactorily respond to the present-day drugs. We found that the naturally occurring resin acid dehydroabietic acid (DHAA) is a potent opener of a voltage-gated K channel and thereby a potential suppressor of cellular excitability. DHAA acts via a non-traditional mechanism, by electrostatically activating the voltage-sensor domain, rather than directly targeting the ion-conducting pore domain. By systematic iterative modifications of DHAA we synthesized 71 derivatives and found 32 compounds more potent than DHAA. The most potent compound, Compound 77, is 240 times more efficient than DHAA in opening a K channel. This and other potent compounds reduced excitability in dorsal root ganglion neurons, suggesting that resin-acid derivatives can become the first members of a new family of drugs with the potential for treatment of hyperexcitability diseases.

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf