We consider a tritrophic system with one basal and one top species and a large number of primary consumers, and derive upper and lower bounds for the total biomass of the middle trophic level. These estimates do not depend on dynamical regime, holding for fixed point, periodic, or chaotic dynamics. We have two kinds of estimates, depending on whether the predator abundance is zero. All these results are uniform in a self-limitation parameter, which regulates prey diversity in the system. For strong self-limitation, diversity is large; for weak self-limitation, it is small. Diversity depends on the variance of species parameter values. The larger this variance, the lower the diversity, and vice versa. Moreover, variation in the parameters of the Holling type II functional response changes the bifurcation character, with the equilibrium state with nonzero predator abundance losing stability. If that variation is small then the bifurcation can lead to oscillations (the Hopf bifurcation). Under certain conditions, there exists a supercritical Hopf bifurcation. We then find a connection between diversity and Hopf bifurcations. We also show that the system exhibits top-down regulation and a hump-shaped diversity-productivity curve. We then extend the model by allowing species to experience self-regulation. For this extended model, explicit estimates of prey diversity are obtained. We study the dynamics of this system and find the following. First, diversity and system dynamics crucially depend on variation in species parameters. We show that under certain conditions, the system undergoes a supercritical Hopf bifurcation. We also establish a connection between diversity and Hopf bifurcations. For strong self-limitation, diversity is large and complex dynamics are absent. For weak self-limitation, diversity is small and the equilibrium with non-zero predator abundance is unstable.