IntroductionAdverse left ventricular remodelling (AR) develops over time in approximately 30% of patients with a history of coronary artery disease. AR manifests as a structural change in the left ventricle (LV) in terms of increased volumes and reduced left ventricular ejection fraction (LVEF). Manganese dipyridoxyl diphosphate (mangafodipir) has demonstrated interesting cardioprotective features in acute myocardial ischaemia. Pharmacological postconditioning (PP) with mangafodipir as an adjunct to primary percutaneous coronary intervention may possibly reduce the development of AR over time in ST-elevation myocardial infarction (STEMI). The aim of this 4-7-year follow-up study is to investigate the potential benefits of PP with mangafodipir in STEMI patients. MethodThirteen out of the initial 20 patients that were included in the primary study of Karlsson et al. were followed up between April and June 2017. The study group underwent review of the hospital records, a clinical examination with ECG and blood sample analysis before cardiac magnetic resonance examination of the patient. LVEF, left ventricular diastolic volume, left ventricular end systolic volume, LV mass and myocardial strain in all directions were computed. ResultsThe PP group showed a decrease in LV volume, mass and higher LVEF at follow-up (p < 0.05) while the individual response of the placebo group showed features that are seen in AR. Although there was no difference in myocardial strain, measurement for the PP-group was higher in absolute terms. ConclusionPharmacological postconditioning with mangafodipir in STEMI demonstrated cardioprotective features compared to the placebo group at follow-up. This article is protected by copyright. All rights reserved.
BackgroundMyocardial infarction (MI) is a major cause of heart failure. Left ventricular adverse remodeling is common post-MI. Several studies have demonstrated a correlation between reduced myocardial strain and the development of adverse remodeling. Cardiac magnetic resonance (CMR) with fast-strain encoding (fast-SENC) or feature tracking (FT) enables rapid assessment of myocardial deformation. The aim of this study was to establish a head-to-head comparison of fast-SENC and FT in post-ST-elevated myocardial infarction (STEMI) patients, with clinical 2D speckle tracking echocardiography (2DEcho) as a reference. MethodsThirty patients treated with primary percutaneous coronary intervention for STEMI were investigated. All participants underwent CMR examination with late gadolinium enhancement, cine-loop steady-state free precession, and fast-SENC imaging using a 1.5T scanner as well as a 2DEcho. Global longitudinal strain (GLS), segmental longitudinal strain (SLS), global circumferential strain (GCS), and segmental circumferential strain (SCS) were assessed along with the MI scar extent. ResultsThe GCS measurements from fast-SENC and FT were nearly identical: the mean difference was 0.01 (2.5)% (95% CI - 0.92 to 0.95). For GLS, fast-SENC values were higher than FT, with a mean difference of 1.8 (1.4)% (95% CI 1.31-2.35). Tests of significance for GLS did not show any differences between the MR methods and 2DEcho. Average strain in the infarct-related artery (IRA) segments compared to the remote myocardium was significantly lower for the left anterior descending artery and right coronary artery culprits but not for the left circumflex artery culprits. Fast-SENC displayed a higher area under the curve for detecting infarcted segments than FT for both SCS and SLS. ConclusionGLS and GCS did not significantly differ between fast-SENC and FT. Both showed acceptable agreement with 2DEcho for longitudinal strain. Segments perfused by the IRA showed significantly reduced strain values compared to the remote myocardium. Fast-SENC presented a higher sensitivity and specificity for detecting infarcted segments than FT.