liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bustamante, Mariana
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Automated Assessment of Blood Flow in the Cardiovascular System Using 4D Flow MRI2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Medical image analysis focuses on the extraction of meaningful information from medical images in order to facilitate clinical assessment, diagnostics and treatment. Image processing techniques have gradually become an essential part of the modern health care system, a consequence of the continuous technological improvements and the availability of a variety of medical imaging techniques.

    Magnetic Resonance Imaging (MRI) is an imaging technique that stands out as non-invasive, highly versatile, and capable of generating high quality images without the use of ionizing radiation. MRI is frequently performed in the clinical setting to assess the morphology and function of the heart and vessels. When focusing on the cardiovascular system, blood flow visualization and quantification is essential in order to fully understand and identify related pathologies. Among the variety of MR techniques available for cardiac imaging, 4D Flow MRI allows for full three-dimensional spatial coverage over time, also including three-directional velocity information. It is a very powerful technique that can be used for retrospective analysis of blood flow dynamics at any location in the acquired volume.

    In the clinical routine, however, flow analysis is typically done using two-dimensional imaging methods. This can be explained by their shorter acquisition times, higher in-plane spatial resolution and signal-to-noise ratio, and their relatively simpler post-processing requirements when compared to 4D Flow MRI. The extraction of useful knowledge from 4D Flow MR data is especially challenging due to the large amount of information included in these images, and typically requires substantial user interaction.

    This thesis aims to develop and evaluate techniques that facilitate the post-processing of thoracic 4D Flow MRI by automating the steps necessary to obtain hemodynamic parameters of interest from the data. The proposed methods require little to no user interaction, are fairly quick, make effective use of the information available in the four-dimensional images, and can easily be applied to sizable groups of data.The addition of the proposed techniques to the current pipeline of 4D Flow MRI analysis simplifies and expedites the assessment of these images, thus bringing them closer to the clinical routine.

    List of papers
    1. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis
    Open this publication in new window or tab >>Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis
    Show others...
    2018 (English)In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 79, no 1, p. 554-560Article in journal (Refereed) Published
    Abstract [en]

    PurposeAssessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. MethodThe left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. ResultsHigh spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (Pamp;lt;0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (Pamp;gt;0.05). ConclusionOur results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.

    Place, publisher, year, edition, pages
    WILEY, 2018
    Keywords
    four-dimensional flow MRI; image registration; blood flow analysis; cardiology; MRI; 4D flow MRI; image registration; blood flow analysis; cardiology; MRI
    National Category
    Medical Image Processing
    Identifiers
    urn:nbn:se:liu:diva-143887 (URN)10.1002/mrm.26674 (DOI)000417926300054 ()28303611 (PubMedID)
    Note

    Funding Agencies|ERC [310612]; 310612; Grant sponsor: Vetenskapsradet [621-2014-6191]; Hjart-Lungfonden [20140398]; Knut och Alice Wallenbergs Stiftelse [KAW 2013.0076]

    Available from: 2017-12-29 Created: 2017-12-29 Last updated: 2018-03-22
    2. Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification
    Open this publication in new window or tab >>Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification
    Show others...
    2015 (English)In: Journal of Cardiovascular Magnetic Resonance, ISSN 1097-6647, E-ISSN 1532-429X, Vol. 17, no 87Article in journal (Refereed) Published
    Abstract [en]

    Background: Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any location in a time-resolved 3D volume. However, analysis of these datasets can be demanding. The aim of this study is to develop and evaluate a fully automatic method for segmentation and analysis of 4D flow CMR data of the great thoracic vessels. Methods: The proposed method utilizes atlas-based segmentation to segment the great thoracic vessels in systole, and registration between different time frames of the cardiac cycle in order to segment these vessels over time. Additionally, net flow volumes are calculated automatically at locations of interest. The method was applied on 4D flow CMR datasets obtained from 11 healthy volunteers and 10 patients with heart failure. Evaluation of the method was performed visually, and by comparison of net flow volumes in the ascending aorta obtained automatically (using the proposed method), and semi-automatically. Further evaluation was done by comparison of net flow volumes obtained automatically at different locations in the aorta, pulmonary artery, and caval veins. Results: Visual evaluation of the generated segmentations resulted in good outcomes for all the major vessels in all but one dataset. The comparison between automatically and semi-automatically obtained net flow volumes in the ascending aorta resulted in very high correlation (r(2) = 0.926). Moreover, comparison of the net flow volumes obtained automatically in other vessel locations also produced high correlations where expected: pulmonary trunk vs. proximal ascending aorta (r(2) = 0.955), pulmonary trunk vs. pulmonary branches (r(2) = 0.808), and pulmonary trunk vs. caval veins (r(2) = 0.906). Conclusions: The proposed method allows for automatic analysis of 4D flow CMR data, including vessel segmentation, assessment of flow volumes at locations of interest, and 4D flow visualization. This constitutes an important step towards facilitating the clinical utility of 4D flow CMR.

    Place, publisher, year, edition, pages
    BIOMED CENTRAL LTD, 2015
    Keywords
    4D flow cardiovascular magnetic resonance (4D flow CMR); Flow volume; Image segmentation; Image registration; Phase contrast
    National Category
    Clinical Medicine
    Identifiers
    urn:nbn:se:liu:diva-122197 (URN)10.1186/s12968-015-0190-5 (DOI)000362164100002 ()26438074 (PubMedID)
    Note

    Funding Agencies|Swedish Heart and Lung foundation; Swedish Research Council; European Research Council (HEART4FLOW) [310612]

    Available from: 2015-10-26 Created: 2015-10-23 Last updated: 2018-03-22
    3. Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D PC-MRCA)
    Open this publication in new window or tab >>Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D PC-MRCA)
    2017 (English)In: Journal of Cardiovascular Magnetic Resonance, ISSN 1097-6647, E-ISSN 1532-429X, Vol. 19, article id 47Article in journal (Refereed) Published
    Abstract [en]

    Magnetic Resonance Angiography (MRA) and Phase-Contrast MRA (PC-MRA) approaches used for assessment of cardiovascular morphology typically result in data containing information from the entire cardiac cycle combined into one 2D or 3D image. Information specific to each timeframe of the cardiac cycle is, however, lost in this process. This study proposes a novel technique, called Phase-Contrast Magnetic Resonance CardioAngiography (4D PC-MRCA), that utilizes the full potential of 4D Flow CMR when generating temporally resolved PC-MRA data to improve visualization of the heart and major vessels throughout the cardiac cycle. Using non-rigid registration between the timeframes of the 4D Flow CMR acquisition, the technique concentrates information from the entire cardiac cycle into an angiographic dataset at one specific timeframe, taking movement over the cardiac cycle into account. Registration between the timeframes is used once more to generate a time-resolved angiography. The method was evaluated in ten healthy volunteers. Visual comparison of the 4D PC-MRCAs versus PC-MRAs generated from 4D Flow CMR using the traditional approach was performed by two observers using Maximum Intensity Projections (MIPs). The 4D PC-MRCAs resulted in better visibility of the main anatomical regions of the cardiovascular system, especially where cardiac or vessel motion was present. The proposed method represents an improvement over previous PC-MRA generation techniques that rely on 4D Flow CMR, as it effectively utilizes all the information available in the acquisition. The 4D PC-MRCA can be used to visualize the motion of the heart and major vessels throughout the entire cardiac cycle.

    Place, publisher, year, edition, pages
    BIOMED CENTRAL LTD, 2017
    Keywords
    Computer-Assisted Image Analysis; 4D flow cardiovascular magnetic resonance (4D flow CMR); Phase-Contrast Magnetic Resonance Angiography (PC-MRA)
    National Category
    Radiology, Nuclear Medicine and Medical Imaging
    Identifiers
    urn:nbn:se:liu:diva-139277 (URN)10.1186/s12968-017-0360-8 (DOI)000404063800001 ()28645326 (PubMedID)
    Note

    Funding Agencies|European Research Council [310612]; Swedish Heart and Lung foundation [20140398]; Swedish Research Council [621-2014-6191]

    Available from: 2017-07-07 Created: 2017-07-07 Last updated: 2018-03-22
    4. Creating Hemodynamic Atlases of Cardiac 4D Flow MRI
    Open this publication in new window or tab >>Creating Hemodynamic Atlases of Cardiac 4D Flow MRI
    Show others...
    2017 (English)In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 46, no 5, p. 1389-1399Article in journal (Refereed) Published
    Abstract [en]

    Purpose: Hemodynamic atlases can add to the pathophysiological understanding of cardiac diseases. This study proposes a method to create hemodynamic atlases using 4D Flow magnetic resonance imaging (MRI). The method is demonstrated for kinetic energy (KE) and helicity density (Hd). Materials and Methods: Thirteen healthy subjects underwent 4D Flow MRI at 3T. Phase-contrast magnetic resonance cardioangiographies (PC-MRCAs) and an average heart were created and segmented. The PC-MRCAs, KE, and Hd were nonrigidly registered to the average heart to create atlases. The method was compared with 1) rigid, 2) affine registration of the PC-MRCAs, and 3) affine registration of segmentations. The peak and mean KE and Hd before and after registration were calculated to evaluate interpolation error due to nonrigid registration. Results: The segmentations deformed using nonrigid registration overlapped (median: 92.3%) more than rigid (23.1%, P amp;lt; 0.001), and affine registration of PC-MRCAs (38.5%, P amp;lt; 0.001) and affine registration of segmentations (61.5%, P amp;lt; 0.001). The peak KE was 4.9 mJ using the proposed method and affine registration of segmentations (P50.91), 3.5 mJ using rigid registration (P amp;lt; 0.001), and 4.2 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001). The mean KE was 1.1 mJ using the proposed method, 0.8 mJ using rigid registration (P amp;lt; 0.001), 0.9 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001), and 1.0 mJ using affine registration of segmentations (P50.028). The interpolation error was 5.262.6% at mid-systole, 2.863.8% at early diastole for peak KE; 9.669.3% at mid-systole, 4.064.6% at early diastole, and 4.964.6% at late diastole for peak Hd. The mean KE and Hd were not affected by interpolation. Conclusion: Hemodynamic atlases can be obtained with minimal user interaction using nonrigid registration of 4D Flow MRI. Level of Evidence: 2 Technical Efficacy: Stage 1

    Place, publisher, year, edition, pages
    WILEY, 2017
    National Category
    Medical Image Processing
    Identifiers
    urn:nbn:se:liu:diva-142968 (URN)10.1002/jmri.25691 (DOI)000412894800015 ()28295788 (PubMedID)
    Note

    Funding Agencies|ERC [Heart4flow, 310612]; Swedish Research Council [621-2014-6191]; Swedish Heart and Lung Foundation [20140398]

    Available from: 2017-11-13 Created: 2017-11-13 Last updated: 2018-03-22
  • 2.
    Bustamante, Mariana
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gupta, Vikas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Forsberg, Daniel
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Sectra, Linköping, Sweden.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Engvall, Jan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Automated multi-atlas segmentation of cardiac 4D flow MRI2018In: Medical Image Analysis, ISSN 1361-8415, E-ISSN 1361-8423, Vol. 49, p. 128-140Article in journal (Refereed)
    Abstract [en]

    Four-dimensional (4D) flow magnetic resonance imaging (4D Flow MRI) enables acquisition of time-resolved three-directional velocity data in the entire heart and all major thoracic vessels. The segmentation of these tissues is typically performed using semi-automatic methods. Some of which primarily rely on the velocity data and result in a segmentation of the vessels only during the systolic phases. Other methods, mostly applied on the heart, rely on separately acquired balanced Steady State Free Precession (b-SSFP) MR images, after which the segmentations are superimposed on the 4D Flow MRI. While b-SSFP images typically cover the whole cardiac cycle and have good contrast, they suffer from a number of problems, such as large slice thickness, limited coverage of the cardiac anatomy, and being prone to displacement errors caused by respiratory motion. To address these limitations we propose a multi-atlas segmentation method, which relies only on 4D Flow MRI data, to automatically generate four-dimensional segmentations that include the entire thoracic cardiovascular system present in these datasets. The approach was evaluated on 4D Flow MR datasets from a cohort of 27 healthy volunteers and 83 patients with mildly impaired systolic left-ventricular function. Comparison of manual and automatic segmentations of the cardiac chambers at end-systolic and end-diastolic timeframes showed agreements comparable to those previously reported for automatic segmentation methods of b-SSFP MR images. Furthermore, automatic segmentation of the entire thoracic cardiovascular system improves visualization of 4D Flow MRI and facilitates computation of hemodynamic parameters.

    The full text will be freely available from 2020-08-13 11:32
  • 3.
    Gupta, Vikas
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Bustamante, Mariana
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Fredriksson, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis2018In: Magnetic Resonance in Medicine, ISSN 0740-3194, E-ISSN 1522-2594, Vol. 79, no 1, p. 554-560Article in journal (Refereed)
    Abstract [en]

    PurposeAssessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. MethodThe left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. ResultsHigh spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (Pamp;lt;0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (Pamp;gt;0.05). ConclusionOur results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. (c) 2017 International Society for Magnetic Resonance in Medicine.

  • 4.
    Cibis, Merih
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Bustamante, Mariana
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Eriksson, Jonatan
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Creating Hemodynamic Atlases of Cardiac 4D Flow MRI2017In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 46, no 5, p. 1389-1399Article in journal (Refereed)
    Abstract [en]

    Purpose: Hemodynamic atlases can add to the pathophysiological understanding of cardiac diseases. This study proposes a method to create hemodynamic atlases using 4D Flow magnetic resonance imaging (MRI). The method is demonstrated for kinetic energy (KE) and helicity density (Hd). Materials and Methods: Thirteen healthy subjects underwent 4D Flow MRI at 3T. Phase-contrast magnetic resonance cardioangiographies (PC-MRCAs) and an average heart were created and segmented. The PC-MRCAs, KE, and Hd were nonrigidly registered to the average heart to create atlases. The method was compared with 1) rigid, 2) affine registration of the PC-MRCAs, and 3) affine registration of segmentations. The peak and mean KE and Hd before and after registration were calculated to evaluate interpolation error due to nonrigid registration. Results: The segmentations deformed using nonrigid registration overlapped (median: 92.3%) more than rigid (23.1%, P amp;lt; 0.001), and affine registration of PC-MRCAs (38.5%, P amp;lt; 0.001) and affine registration of segmentations (61.5%, P amp;lt; 0.001). The peak KE was 4.9 mJ using the proposed method and affine registration of segmentations (P50.91), 3.5 mJ using rigid registration (P amp;lt; 0.001), and 4.2 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001). The mean KE was 1.1 mJ using the proposed method, 0.8 mJ using rigid registration (P amp;lt; 0.001), 0.9 mJ using affine registration of the PC-MRCAs (P amp;lt; 0.001), and 1.0 mJ using affine registration of segmentations (P50.028). The interpolation error was 5.262.6% at mid-systole, 2.863.8% at early diastole for peak KE; 9.669.3% at mid-systole, 4.064.6% at early diastole, and 4.964.6% at late diastole for peak Hd. The mean KE and Hd were not affected by interpolation. Conclusion: Hemodynamic atlases can be obtained with minimal user interaction using nonrigid registration of 4D Flow MRI. Level of Evidence: 2 Technical Efficacy: Stage 1

  • 5.
    Bustamante, Mariana
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Gupta, Vikas
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping.
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D PC-MRCA)2017In: Journal of Cardiovascular Magnetic Resonance, ISSN 1097-6647, E-ISSN 1532-429X, Vol. 19, article id 47Article in journal (Refereed)
    Abstract [en]

    Magnetic Resonance Angiography (MRA) and Phase-Contrast MRA (PC-MRA) approaches used for assessment of cardiovascular morphology typically result in data containing information from the entire cardiac cycle combined into one 2D or 3D image. Information specific to each timeframe of the cardiac cycle is, however, lost in this process. This study proposes a novel technique, called Phase-Contrast Magnetic Resonance CardioAngiography (4D PC-MRCA), that utilizes the full potential of 4D Flow CMR when generating temporally resolved PC-MRA data to improve visualization of the heart and major vessels throughout the cardiac cycle. Using non-rigid registration between the timeframes of the 4D Flow CMR acquisition, the technique concentrates information from the entire cardiac cycle into an angiographic dataset at one specific timeframe, taking movement over the cardiac cycle into account. Registration between the timeframes is used once more to generate a time-resolved angiography. The method was evaluated in ten healthy volunteers. Visual comparison of the 4D PC-MRCAs versus PC-MRAs generated from 4D Flow CMR using the traditional approach was performed by two observers using Maximum Intensity Projections (MIPs). The 4D PC-MRCAs resulted in better visibility of the main anatomical regions of the cardiovascular system, especially where cardiac or vessel motion was present. The proposed method represents an improvement over previous PC-MRA generation techniques that rely on 4D Flow CMR, as it effectively utilizes all the information available in the acquisition. The 4D PC-MRCA can be used to visualize the motion of the heart and major vessels throughout the entire cardiac cycle.

  • 6.
    Bustamante, Mariana
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Petersson, Sven
    Linköping University, Department of Medical and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Medicine and Health Sciences.
    Eriksson, Jonatan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Alehagen, Urban
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Cardiology in Linköping.
    Dyverfeldt, Petter
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Carlhäll, Carljohan
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ebbers, Tino
    Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification2015In: Journal of Cardiovascular Magnetic Resonance, ISSN 1097-6647, E-ISSN 1532-429X, Vol. 17, no 87Article in journal (Refereed)
    Abstract [en]

    Background: Flow volume quantification in the great thoracic vessels is used in the assessment of several cardiovascular diseases. Clinically, it is often based on semi-automatic segmentation of a vessel throughout the cardiac cycle in 2D cine phase-contrast Cardiovascular Magnetic Resonance (CMR) images. Three-dimensional (3D), time-resolved phase-contrast CMR with three-directional velocity encoding (4D flow CMR) permits assessment of net flow volumes and flow patterns retrospectively at any location in a time-resolved 3D volume. However, analysis of these datasets can be demanding. The aim of this study is to develop and evaluate a fully automatic method for segmentation and analysis of 4D flow CMR data of the great thoracic vessels. Methods: The proposed method utilizes atlas-based segmentation to segment the great thoracic vessels in systole, and registration between different time frames of the cardiac cycle in order to segment these vessels over time. Additionally, net flow volumes are calculated automatically at locations of interest. The method was applied on 4D flow CMR datasets obtained from 11 healthy volunteers and 10 patients with heart failure. Evaluation of the method was performed visually, and by comparison of net flow volumes in the ascending aorta obtained automatically (using the proposed method), and semi-automatically. Further evaluation was done by comparison of net flow volumes obtained automatically at different locations in the aorta, pulmonary artery, and caval veins. Results: Visual evaluation of the generated segmentations resulted in good outcomes for all the major vessels in all but one dataset. The comparison between automatically and semi-automatically obtained net flow volumes in the ascending aorta resulted in very high correlation (r(2) = 0.926). Moreover, comparison of the net flow volumes obtained automatically in other vessel locations also produced high correlations where expected: pulmonary trunk vs. proximal ascending aorta (r(2) = 0.955), pulmonary trunk vs. pulmonary branches (r(2) = 0.808), and pulmonary trunk vs. caval veins (r(2) = 0.906). Conclusions: The proposed method allows for automatic analysis of 4D flow CMR data, including vessel segmentation, assessment of flow volumes at locations of interest, and 4D flow visualization. This constitutes an important step towards facilitating the clinical utility of 4D flow CMR.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf