liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Yao, Huifeng
    et al.
    Chinese Acad Sci, Peoples R China.
    Cui, Yong
    Univ Chinese Acad Sci, Peoples R China.
    Qian, Deping
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ponseca, Carlito
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Honarfar, Alireza
    Lund Univ, Sweden.
    Xu, Ye
    Univ Chinese Acad Sci, Peoples R China.
    Xin, Jingming
    Xi An Jiao Tong Univ, Peoples R China.
    Chen, Zhenyu
    Xi An Jiao Tong Univ, Peoples R China.
    Hong, Ling
    Univ Chinese Acad Sci, Peoples R China.
    Gao, Bowei
    Univ Chinese Acad Sci, Peoples R China.
    Yu, Runnan
    Univ Chinese Acad Sci, Peoples R China.
    Zu, Yunfei
    Univ Chinese Acad Sci, Peoples R China.
    Ma, Wei
    Xi An Jiao Tong Univ, Peoples R China.
    Chabera, Pavel
    Lund Univ, Sweden.
    Pullerits, Tonu
    Lund Univ, Sweden.
    Yartsev, Arkady
    Lund Univ, Sweden.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hou, Jianhui
    Univ Chinese Acad Sci, Peoples R China.
    14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference2019In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, no 19, p. 7743-7750Article in journal (Refereed)
    Abstract [en]

    Although significant improvements have been achieved for organic photovoltaic cells (OPVs), the top-performing devices still show power conversion efficiencies far behind those of commercialized solar cells. One of the main reasons is the large driving force required for separating electron-hole pairs. Here, we demonstrate an efficiency of 14.7% in the single-junction OPV by using a new polymer donor PTO2 and a nonfullerene acceptor IT-4F. The device possesses an efficient charge generation at a low driving force. Ultrafast transient absorption measurements probe the formation of loosely bound charge pairs with extended lifetime that impedes the recombination of charge carriers in the blend. The theoretical studies reveal that the molecular electrostatic potential (ESP) between PTO2 and IT-4F is large, and the induced intermolecular electric field may assist the charge generation. The results suggest OPVs have the potential for further improvement by judicious modulation of ESP.

  • 2.
    Ponseca, Carlito
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arlauskas, Andrius
    Ctr Phys Sci and Technol, Lithuania.
    Yu, Hongling
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wang, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nevinskas, Ignas
    Ctr Phys Sci and Technol, Lithuania.
    Duda, Eimantas
    Ctr Phys Sci and Technol, Lithuania.
    Vaicaitis, Virgilijus
    Vilnius Univ, Lithuania.
    Eriksson, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Bergqvist, Jonas
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Liu, Xiaoke
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kemerink, Martijn
    Linköping University, Department of Physics, Chemistry and Biology, Complex Materials and Devices. Linköping University, Faculty of Science & Engineering.
    Krotkus, Arunas
    Ctr Phys Sci and Technol, Lithuania.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gao, Feng
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Pulsed Terahertz Emission from Solution-Processed Lead Iodide Perovskite Films2019In: ACS Photonics, E-ISSN 2330-4022, Vol. 6, no 5, p. 1175-1181Article in journal (Refereed)
    Abstract [en]

    We report pulsed terahertz (THz) emission from solution-processed metal halide perovskite films with electric field 1 order of magnitude lower than p-InAs, an efficient THz emitter. Such emission is enabled by a unique combination of efficient charge separation, high carrier mobilities, and more importantly surface defects. The mechanism of generation was identified by investigating the dependence of the THz electric field amplitude on surface defect densities, excess charge carriers, excitation intensity and energy, temperature, and external electric field. We also show for the first time THz emission from a curved surface, which is not possible for any crystalline semiconductor and paves the way to focus high-intensity sources. These results represent a possible new direction for perovskite optoelectronics and for THz emission spectroscopy as a complementary tool in investigating surface defects on metal halide perovskites, of fundamental importance in the optimization of solar cells and light-emitting diodes.

    The full text will be freely available from 2020-02-19 15:38
  • 3.
    Lan, Yang
    et al.
    McGill Univ, Canada.
    Dringoli, Benjamin J.
    McGill Univ, Canada.
    Valverde-Chavez, David A.
    McGill Univ, Canada.
    Ponseca, Carlito
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sutton, Mark
    McGill Univ, Canada.
    He, Yihui
    Northwestern Univ, IL 60208 USA.
    Kanatzidis, Mercouri G.
    Northwestern Univ, IL 60208 USA.
    Cooke, David G.
    McGill Univ, Canada.
    Ultrafast correlated charge and lattice motion in a hybrid metal halide perovskite2019In: Science Advances, E-ISSN 2375-2548, Vol. 5, no 5, article id eaaw5558Article in journal (Refereed)
    Abstract [en]

    Hybrid organic-inorganic halide perovskites have shown remarkable optoelectronic properties, exhibiting an impressive tolerance to defects believed to originate from correlated motion of charge carriers and the polar lattice forming large polarons. Few experimental techniques are capable of directly probing these correlations, requiring simultaneous sub-millielectron volt energy and femtosecond temporal resolution after absorption of a photon. Here, we use time-resolved multi-THz spectroscopy, sensitive to the internal excitations of the polaron, to temporally and energetically resolve the coherent coupling of charges to longitudinal optical phonons in single-crystal CH3NH3PbI3 (MAPI). We observe room temperature intraband quantum beats arising from the coherent displacement of charge from the coupled phonon cloud. Our measurements provide strong evidence for the existence of polarons in MAPI at room temperature, suggesting that electron/hole-phonon coupling is a defining aspect of the hybrid metal-halide perovskites contributing to the protection from scattering and enhanced carrier lifetimes that define their usefulness in devices.

  • 4.
    Elfwing, Anders
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ponseca, Carlito
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ouyang, Liangqi
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Urbanowicz, Andrzej
    Ctr Phys Sci and Technol, Lithuania; TERAVIL Ltd, Lithuania.
    Krotkus, Arunas
    Ctr Phys Sci and Technol, Lithuania.
    Tu, Deyu
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Conducting Helical Structures from Celery Decorated with a Metallic Conjugated Polymer Give Resonances in the Terahertz Range2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 24, article id 1706595Article in journal (Refereed)
    Abstract [en]

    A method to decorate cellulose-based helices retrieved from the plant celery with a conductive polymer is proposed. Using a layer-by-layer method, the decoration of the polyanionic conducting polymer poly(4-(2,3-dihydrothieno [3,4-b]-[1,4]dioxin-2-yl-methoxy)-1-butanesulfonic acid (PEDOT-S) is enhanced after coating the negatively charged cellulose helix with a polycationic polyethyleneimine. Microscopy techniques and two-point probe are used to image the structure and measure the conductivity of the helix. Analysis of the optical and electrical properties of the coated helix in the terahertz (THz) frequency range shows a resonance close to 1 THz and a broad shoulder that extends to 3.5 THz, consistent with electromagnetic models. Moreover, as helical antennas, it is shown that both axial and normal modes are present, which are correlated to the orientation and antenna electrical lengths of the coated helices. This work opens the possibility of designing tunable terahertz antennas through simple control of their dimensions and orientation.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf