liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Melling, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Martinez Gil, Jose Gabriel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Conjugated Polymer Actuators and Devices: Progress and Opportunities2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1808210Article, review/survey (Refereed)
    Abstract [en]

    Conjugated polymers (CPs), as exemplified by polypyrrole, are intrinsically conducting polymers with potential for development as soft actuators or artificial muscles for numerous applications. Significant progress has been made in the understanding of these materials and the actuation mechanisms, aided by the development of physical and electrochemical models. Current research is focused on developing applications utilizing the advantages that CP actuators have (e.g., low driving potential and easy to miniaturize) over other actuating materials and on developing ways of overcoming their inherent limitations. CP actuators are available as films, filaments/yarns, and textiles, operating in liquids as well as in air, ready for use by engineers. Here, the milestones made in understanding these unique materials and their development as actuators are highlighted. The primary focus is on the recent progress, developments, applications, and future opportunities for improvement and exploitation of these materials, which possess a wealth of multifunctional properties.

  • 2.
    Melling, Daniel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Wilson, S. A.
    University of Dundee, Scotland.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Biosensors and Bioelectronics. Linköping University, Faculty of Science & Engineering.
    Controlling the electro-mechanical performance of polypyrrole through 3- and 3,4-methyl substituted copolymers2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 102, p. 84153-84163Article in journal (Refereed)
    Abstract [en]

    Conducting polymers such as polypyrrole are biocompatible materials used in bioelectronic applications and microactuators for mechanobiology and soft microrobotics. The materials are commonly electrochemically synthesised from an electrolyte solution comprising pyrrole monomers and a salt, which is incorporated as the counter ion. This electrosynthesis results in polypyrrole forming a three-dimensional network with extensive cross-linking in both the alpha and beta positions, which impacts the electro-mechanical performance. In this study we adopt a blocking strategy to restrict and control cross-linking and chain branching through beta substitution of the monomer to investigate the effect of crosslinking on the electroactive properties. Methyl groups where used as blocking groups to minimise the impact on the pyrrole ring system. Pyrrole, 3- and 3,4-methyl substituted pyrrole monomers were electro-polymerised both as homo-polymers and as a series of co-polymer films. The electroactive performance of the films was characterised by measuring their electrochemical responses and their reversible and non-reversible film thickness changes. This showed that altering the degree of crosslinking through this blocking strategy had a large impact on the reversible and irreversible volume change. These results elaborate the importance of the polymer structure in the actuator performance, an aspect that has hitherto received little attention.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf