liu.seSearch for publications in DiVA
Change search
Refine search result
1234567 1 - 50 of 304
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Han, Shaobo
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Alvi, Naveed
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Granlof, Lars
    RISE Bioecon, Sweden.
    Granberg, Hjalmar
    RISE Bioecon, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    A Multiparameter Pressure-Temperature-Humidity Sensor Based on Mixed Ionic-Electronic Cellulose Aerogels2019In: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, no 8, article id 1802128Article in journal (Refereed)
    Abstract [en]

    Pressure (P), temperature (T), and humidity (H) are physical key parameters of great relevance for various applications such as in distributed diagnostics, robotics, electronic skins, functional clothing, and many other Internet-of-Things (IoT) solutions. Previous studies on monitoring and recording these three parameters have focused on the integration of three individual single-parameter sensors into an electronic circuit, also comprising dedicated sense amplifiers, signal processing, and communication interfaces. To limit complexity in, e.g., multifunctional IoT systems, and thus reducing the manufacturing costs of such sensing/communication outposts, it is desirable to achieve one single-sensor device that simultaneously or consecutively measures P-T-H without cross-talks in the sensing functionality. Herein, a novel organic mixed ion-electron conducting aerogel is reported, which can sense P-T-H with minimal cross-talk between the measured parameters. The exclusive read-out of the three individual parameters is performed electronically in one single device configuration and is enabled by the use of a novel strategy that combines electronic and ionic Seebeck effect along with mixed ion-electron conduction in an elastic aerogel. The findings promise for multipurpose IoT technology with reduced complexity and production costs, features that are highly anticipated in distributed diagnostics, monitoring, safety, and security applications.

  • 2.
    Gerasimov, Jennifer
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Karlsson, Roger H
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications2019In: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, no 7, article id 1801339Article in journal (Refereed)
    Abstract [en]

    An evolvable organic electrochemical transistor (OECT), operating in the hybrid accumulation-depletion mode is reported, which exhibits short-term and long-term memory functionalities. The transistor channel, formed by an electropolymerized conducting polymer, can be formed, modulated, and obliterated in situ and under operation. Enduring changes in channel conductance, analogous to long-term potentiation and depression, are attained by electropolymerization and electrochemical overoxidation of the channel material, respectively. Transient changes in channel conductance, analogous to short-term potentiation and depression, are accomplished by inducing nonequilibrium doping states within the transistor channel. By manipulating the input signal, the strength of the transistor response to a given stimulus can be modulated within a range that spans several orders of magnitude, producing behavior that is directly comparable to short- and long-term neuroplasticity. The evolvable transistor is further incorporated into a simple circuit that mimics classical conditioning. It is forecasted that OECTs that can be physically and electronically modulated under operation will bring about a new paradigm of machine learning based on evolvable organic electronics.

  • 3.
    Janson, Per
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    An Ionic Capacitor for Integrated Iontronic Circuits2019In: ADVANCED MATERIALS TECHNOLOGIES, ISSN 2365-709X, Vol. 4, no 4, article id 1800494Article in journal (Refereed)
    Abstract [en]

    Organic electronics, in combination with custom polyelectrolytes, enables solid- and hydrogel-state circuit components using ionic charges in place of the electrons of traditional electronics. This growing field of iontronics leverages anion- and cation-exchange membranes as analogs to n-type and p-type semiconductors, and conjugated polymer electrodes as ion-to-electron converters. To date, the iontronics toolbox includes ionic resistors, ionic diodes, ionic transistors, and analog and digital circuits comprised thereof. Here, an ionic capacitor based on mixed electron-ion conductors is demonstrated. The ionic capacitor resembles the structure of a conventional electrochemical capacitor that is inverted, with an electronically conducting core and two electrolyte ionic conductors. The device is first verified as a capacitor, and then demonstrated as a smoothing element in an iontronic diode bridge circuit driving an organic electronic ion pump (ionic resistor). The ionic capacitor complements the existing iontronics toolbox, enabling more complex and functional ionic circuits, and will thus have implications in a variety of mixed electron-ion conduction technologies.

  • 4.
    Wang, Xin
    et al.
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Grimoldi, Andrea
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Hakansson, Karl
    RISE Bioeconomy, Stockholm, Sweden.
    Fall, Andreas
    RISE Bioeconomy, Stockholm, Sweden.
    Granberg, Hjalmar
    RISE Bioeconomy, Stockholm, Sweden.
    Mengistie, Desalegn
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, David
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Goran
    Department of Printed Electronics, RISE Acreo, Norrköping, Sweden.
    Anisotropic conductivity of Cellulose-PEDOT:PSS composite materials studied with a generic 3D four-point probe tool2019In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 66, p. 258-264Article in journal (Refereed)
    Abstract [en]

    The conducive polymer poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) is widely used in organic electronics and printed electronics due to its excellent electronic and ionic conductivity. PEDOT:PSS films exhibit anisotropic conductivities originating from the interplay of film deposition processes and chemical structure. The previous studies found that high boiling point solvent treated PEDOT:PSS exhibits an anisotropy of 3-4 orders magnitude. Even though both the in-plane and out-of-plane conductivities are important for the device performance, the out-of-plane conductivity is rarely studied due to the complexity with the experiment procedure. Cellulose-based paper or films can also exhibit anisotropic behavior due to the combination of their intrinsic fibric structure and film formation process. We have previously developed a conducive paper based on PEDOT:PSS and cellulose which could be used as the electrodes in energy storage devices. In this work we developed a novel measurement set-up for studying the anisotropy of the charge transport in such composite materials. A tool with two parallel plates mounted with spring loaded probes was constructed enabling probing both lateral and vertical directions and resistances from in-plane and out-of-plane directions to be obtained. The measurement results were then input and analyzed with a model based on a transformation method developed by Montgomery, and thus the in-plane and out-of-plane conductivities could be detangled and derived. We also investigated how the conductivity anisotropy depends on the microstructure of the cellulose template onto which the conducive polymer self-organizes. We show that there is a relatively small difference between the in-plane and out-of-plane conductivities which is attributed to the unique 3D-structure of the composites. This new knowledge gives a better understanding of the possibilities and limitations for using the material in electronic and electrochemical devices.

    The full text will be freely available from 2021-12-17 00:01
  • 5.
    Poxson, David
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Bonisoli, Alberto
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Ist Italiano Tecnol, Italy; St Anna Sch Adv Studies, Italy.
    Linderhed, Ulrika
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Res Inst Sweden, Sweden.
    Abrahamsson, Tobias
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Matthiesen, Isabelle
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. KTH Royal Inst Technol, Sweden.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Capillary-Fiber Based Electrophoretic Delivery Device2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 15, p. 14200-14207Article in journal (Refereed)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) are versatile tools for electrophoretic delivery of substances with high spatiotemporal resolution. To date, OEIPs and similar iontronic components have been fabricated using thin-film techniques and often rely on laborious, multistep photolithographic processes. OEIPs have been demonstrated in a variety of in vitro and in vivo settings for controlling biological systems, but the thin-film form factor and limited repertoire of polyelectrolyte materials and device fabrication techniques unnecessarily constrain the possibilities for miniaturization and extremely localized substance delivery, e.g., the greater range of pharmaceutical compounds, on the scale of a single cell. Here, we demonstrate an entirely new OEIP form factor based on capillary fibers that include hyperbranched polyglycerols (dPGs) as the selective electrophoretic membrane. The dPGs enable electrophoretic channels with a high concentration of fixed charges and well-controlled cross-linking and can be realized using a simple one-pot fluidic manufacturing protocol. Selective electrophoretic transport of cations and anions of various sizes is demonstrated, including large substances that are difficult to transport with other OEIP technologies. We present a method for tailoring and characterizing the electrophoretic channels fixed charge concentration in the operational state. Subsequently, we compare the experimental performance of these capillary OEIPs to a computational model and explain unexpected features in the ionic current for the transport and delivery of larger, lower-mobility ionic compounds. From this model, we are able to elucidate several operational and design principles relevant to miniaturized electrophoretic drug delivery technologies in general. Overall, the compactness of the capillary OEIP enables electrophoretic delivery devices with probelike geometries, suitable for a variety of ionic compounds, paving the way for less-invasive implantation into biological systems and for healthcare applications.

    The full text will be freely available from 2020-03-27 15:15
  • 6.
    Kim, Nara
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Petsagkourakis, Ioannis
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Chen, Shangzhi
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electric Transport Properties in PEDOT Thin Films2019In: Conjugated Polymers: Properties, Processing, and Applications / [ed] John R. Reynolds; Barry C. Thompson; Terje A. Skotheim, Boca Raton: CRC Press, 2019, p. 45-128Chapter in book (Refereed)
    Abstract [en]

    In this chapter, the authors summarize their understanding of Poly(3,4-ethylenedioxythiophene) (PEDOT), with respect to its chemical and physical fundamentals. They focus upon the structure of several PEDOT systems, from the angstrom level and up, and the impact on both electronic and ionic transport. The authors discuss the structural properties of PEDOT:X and PEDOT:poly(styrenesulfonate) based on experimental data probed at the scale ranging from angstrom to submicrometer. The morphology of PEDOT is influenced by the nature of counter-ions, especially at high oxidation levels. The doping anions intercalate between PEDOT chains to form a “sandwich” structure to screen the positive charges in PEDOT chains. The authors provide the main transport coefficients such as electrical conductivity s, Seebeck coefficient S, and Peltier coefficient σ, starting from a general thermodynamic consideration. The optical conductivity of PEDOT has also been examined based on the effective medium approximation, which is normally used to describe microscopic permittivity properties of composites made from several different constituents.

  • 7.
    Ghosh, Sarbani
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels2019In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, no 25, p. 15467-15476Article in journal (Refereed)
    Abstract [en]

    Theoretical understanding of the electronic structure and optical transitions in n-doped conducting polymers is still controversial for polaronic and bipolaronic states and is completely missing for the case of a high doping level. In the present paper, the electronic structure and optical properties of the archetypical n-doped conducting polymer, double-stranded benzimidazo-benzophenanthroline ladder (BBL), are studied using the density functional theory (DFT) and the time dependent DFT method. We find that a polaronic state in the BBL chain is a spin-resolved doublet where the spin degeneracy is lifted. The ground state of two electrons corresponds to a triplet polaron pair, which is in stark contrast to a commonly accepted picture where two electrons are postulated to form a spinless bipolaron. The total spin gradually increases until the reduction level reaches c(red) = 100% (i.e., one electron per monomer unit). With further increase of the reduction level, the total spin decreases until it becomes 0 for the reduction level c(red) = 200%. The calculated results reproduce the experimentally observed spin signal without any phenomenological parameters. A detailed analysis of the evolution of the electronic structure of BBL and its absorption spectra with increase in reduction level is presented. The calculated UV-vis-NIR spectra are compared with the available experimental results. The electronic structure and optical absorption for different reduction levels presented here are generic to a wide class of conducting polymers, which is illustrated by the corresponding calculations for another archetypical conducting polymer, poly(3,4-ethylenedioxythiophene) (best known as PEDOT).

    The full text will be freely available from 2020-06-06 11:25
  • 8.
    Wadnerkar, Nitin Shriram
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Exploring Hydrogen Storage in PEDOT: A Computational Study2019In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 123, no 4, p. 2066-2074Article in journal (Refereed)
    Abstract [en]

    A reliable hydrogen-based energy technology requires promising materials for safe storage and transport of hydrogen. Here, the storage of hydrogen in the organic polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is explored using density functional theory calculations. It is demonstrated that hydrogen chemisorption on PEDOT is feasible with the maximum gravimetric uptake of similar to 2.8 wt % in ambient condition, whereas physisorption is possible only at very low temperatures or at high pressure. The Gibbs absorption energies, electronic structure, and absorption spectra are calculated for the cases of chemisorption of a single hydrogen atom, a hydrogen pair, and hydrogen saturated chain for both neutral and oxidized PEDOT. Various experimental routes for PEDOT hydrogenations are discussed.

  • 9.
    Abrahamsson, Tobias
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Mats
    RISE Acreo AB, Sweden.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Formation of Monolithic Ion-Selective Transport Media Based on "Click" Cross-Linked Hyperbranched Polyglycerol2019In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, article id 484Article in journal (Refereed)
    Abstract [en]

    In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.

  • 10.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Acreo, Sweden.
    Edberg, Jesper
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Acreo, Sweden.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Greyscale and Paper Electrochromic Polymer Displays by UV Patterning2019In: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, no 2, article id 267Article in journal (Refereed)
    Abstract [en]

    Electrochromic devices have important implications as smart windows for energy efficient buildings, internet of things devices, and in low-cost advertising applications. While inorganics have so far dominated the market, organic conductive polymers possess certain advantages such as high throughput and low temperature processing, faster switching, and superior optical memory. Here, we present organic electrochromic devices that can switch between two high-resolution images, based on UV-patterning and vapor phase polymerization of poly(3,4-ethylenedioxythiophene) films. We demonstrate that this technique can provide switchable greyscale images through the spatial control of a UV-light dose. The color space was able to be further altered via optimization of the oxidant concentration. Finally, we utilized a UV-patterning technique to produce functional paper with electrochromic patterns deposited on porous paper, allowing for environmentally friendly electrochromic displays.

  • 11.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Malliaras, George G.
    Univ Cambridge, England.
    How conducting polymer electrodes operate2019In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 364, no 6437, p. 233-234Article in journal (Other academic)
    Abstract [en]

    n/a

  • 12.
    Bernacka Wojcik, Iwona
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Huerta, Miriam
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Karady, Michal
    Swedish Univ Agr Sci, Sweden.
    Mulla, Yusuf
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ljung, Karin
    Swedish Univ Agr Sci, Sweden.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Implantable Organic Electronic Ion Pump Enables ABA Hormone Delivery for Control of Stomata in an Intact Tobacco Plant2019In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 15, no 43, article id 1902189Article in journal (Refereed)
    Abstract [en]

    Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 mu m scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plants tolerance to stress, induces closure of stomata, the microscopic pores in leafs epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.

  • 13.
    Fahlman, Mats
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Interfaces in organic electronics2019In: Nature Reviews Materials, E-ISSN 2058-8437, Vol. 4, no 10, p. 627-650Article, review/survey (Refereed)
    Abstract [en]

    Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

    The full text will be freely available from 2020-01-25 15:13
  • 14.
    Berggren, Magnus
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1805813Article, review/survey (Refereed)
    Abstract [en]

    The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linkoping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganas and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganas all since 1981.

    The full text will be freely available from 2020-01-08 15:37
  • 15.
    Cherian, Dennis
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Armgarth, Astrid
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Beni, Valerio
    Res Inst Sweden, Sweden.
    Linderhed, Ulrika
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Res Inst Sweden, Sweden.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, David
    Res Inst Sweden, Sweden.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Large-area printed organic electronic ion pumps2019In: FLEXIBLE AND PRINTED ELECTRONICS, ISSN 2058-8585, Vol. 4, no 2, article id 022001Article in journal (Refereed)
    Abstract [en]

    Biological systems use a large variety of ions and molecules of different sizes for signaling. Precise electronic regulation of biological systems therefore requires an interface which translates the electronic signals into chemically specific biological signals. One technology for this purpose that has been developed during the last decade is the organic electronic ion pump (OEIP). To date, OEIPs have been fabricated by micropatterning and labor-intensive manual techniques, hindering the potential application areas of this promising technology. Here we show, for the first time, fully screen-printed OEIPs. We demonstrate a large-area printed design with manufacturing yield amp;gt;90%. Screen-printed cation- and anion-exchange membranes are both demonstrated with promising ion selectivity and performance, with transport verified for both small ions (Na+,K+,Cl-) and biologically-relevant molecules (the cationic neurotransmitter acetylcholine, and the anionic anti-inflammatory salicylic acid). These advances open the iontronics toolbox to the world of printed electronics, paving the way for a broader arena for applications.

  • 16.
    Seitanidou, Maria S
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Blomgran, Robert
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology, Infection and Inflammation. Linköping University, Faculty of Medicine and Health Sciences.
    Pushpamithran, Giggil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology, Infection and Inflammation. Linköping University, Faculty of Medicine and Health Sciences.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Modulating Inflammation in Monocytes Using Capillary Fiber Organic Electronic Ion Pumps2019In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 19, article id 1900813Article in journal (Refereed)
    Abstract [en]

    An organic electronic ion pump (OEIP) delivers ions and drugs from a source, through a charge selective membrane, to a target upon an electric bias. Miniaturization of this technology is crucial and will provide several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. To miniaturize OEIPs, new configurations have been developed based on glass capillary fibers filled with an anion exchange membrane (AEM). Fiber capillary OEIPs can be easily implanted in proximity to targeted cells and tissues. Herein, the efficacy of such a fiber capillary OEIP for modulation of inflammation in human monocytes is demonstrated. The devices are located on inflammatory monocytes and local delivery of salicylic acid (SA) is initiated. Highly localized SA delivery results in a significant decrease in cytokine (tumor necrosis factor alpha and interleukin 6) levels after lipopolysaccharide stimulation. The findings-the first use of such capillary OEIPs in mammalian cells or systems-demonstrate the utility of the technology for optimizing transport and delivery of different therapeutic substances at low concentrations, with the benefit of local and controlled administration that limits the adverse effect of oral/systemic drug delivery.

  • 17.
    Jakesova, Marie
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Silverå Ejneby, Malin
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Derek, Vedran
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Schmidt, Tony
    Med Univ Graz, Austria.
    Gryszel, Maciej
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Brask, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Schindl, Rainer
    Med Univ Graz, Austria.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Elinder, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Optoelectronic control of single cells using organic photocapacitors2019In: Science Advances, E-ISSN 2375-2548, Vol. 5, no 4, article id eaav5265Article in journal (Refereed)
    Abstract [en]

    Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 mu s to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions.

  • 18.
    Seitanidou, Maria S
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Overcoming transport limitations in miniaturized electrophoretic delivery devices2019In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 19, no 8, p. 1427-1435Article in journal (Refereed)
    Abstract [en]

    Organic electronic ion pumps (OEIPs) have been used for delivery of biological signaling compounds, at high spatiotemporal resolution, to a variety of biological targets. The miniaturization of this technology provides several advantages, ranging from better spatiotemporal control of delivery to reduced invasiveness for implanted OEIPs. One route to miniaturization is to develop OEIPs based on glass capillary fibers that are filled with a polyelectrolyte (cation exchange membrane, CEM). These devices can be easily inserted and brought into close proximity to targeted cells and tissues and could be considered as a starting point for other fiber-based OEIP and iontronic technologies enabling favorable implantable device geometries. While characterizing capillary OEIPs we observed deviations from the typical linear current-voltage behavior. Here we report a systematic investigation of these irregularities by performing experimental characterizations in combination with computational modelling. The cause of the observed irregularities is due to concentration polarization established at the OEIP inlet, which in turn causes electric field-enhanced water dissociation at the inlet. Water dissociation generates protons and is typically problematic for many applications. By adding an ion-selective cap that separates the inlet from the source reservoir this effect is then, to a large extent, suppressed. By increasing the surface area of the inlet with the addition of the cap, the concentration polarization is reduced which thereby allows for significantly higher delivery rates. These results demonstrate a useful approach to optimize transport and delivery of therapeutic substances at low concentrations via miniaturized electrophoretic delivery devices, thus considerably broadening the opportunities for implantable OEIP applications.

  • 19.
    Zozoulenko, Igor
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Singh, Amritpal
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Chalmers Univ Technol, Sweden.
    Singh, Sandeep Kumar
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Polarons, Bipolarons, And Absorption Spectroscopy of PEDOT2019In: ACS APPLIED POLYMER MATERIALS, ISSN 2637-6105, Vol. 1, no 1, p. 83-94Article in journal (Refereed)
    Abstract [en]

    Electronic structure and optical absorption spectra of poly(3,4-ethyl-enedioxythiophene) (PEDOT) for different oxidation levels were studied using density functional theory (DFT) and time-dependent DFT. It is shown, that the DFT-based predictions for the polaronic and bipolaronic states and the nature of corresponding optical transitions are qualitatively different from the widely used traditional picture based on semi-empirical pre-DFT approaches that still dominate the current literature. On the basis of the results of our calculations, the experimental Vis/NIR absorbance spectroscopy and the electron paramagnetic resonance spectroscopy are re-examined, and a new interpretation of the measured spectra and the spin signal, which is qualitatively different from the traditional interpretation, is provided. The findings and conclusions concerning the nature of polaronic and bipolaronic states, band structure and absorption spectra presented for PEDOT, are generic for a wide class of conducting polymers (such as polythiophenes and their derivatives) that have a similar structure of monomer units.

  • 20.
    Diacci, Chiara
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Lee, Jee Woong
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Janson, Per
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Dufil, Gwennael
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Méhes, Gábor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Real-Time Monitoring of Glucose Export from Isolated Chloroplasts Using an Organic Electrochemical Transistor2019In: Advanced Materials Technologies, ISSN 2365-709X, article id 1900262Article in journal (Refereed)
    Abstract [en]

    Biosensors based on organic electrochemical transistors (OECT) are attractive devices for real-time monitoring of biological processes. The direct coupling between the channel of the OECT and the electrolyte enables intimate interfacing with biological environments at the same time bringing signal amplification and fast sensor response times. So far, these devices are mainly applied to mammalian systems; cells or body fluids for the development of diagnostics and various health status monitoring technology. Yet, no direct detection of biomolecules from cells or organelles is reported. Here, an OECT glucose sensor applied to chloroplasts, which are the plant organelles responsible for the light-to-chemical energy conversion of the photosynthesis, is reported. Real-time monitoring of glucose export from chloroplasts in two distinct metabolic phases is demonstrated and the transfer dynamics with a time resolution of 1 min is quantified, thus reaching monitoring dynamics being an order of magnitude better than conventional methods.

  • 21.
    Che, Canyan
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Department of Physics, Chemistry and Biology.
    Ail, Ujwala
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Gueskine, Viktor
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Phopase, Jaywant
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology.
    Brooke, Robert
    RISE, Norrköping, Sweden.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mak, Wing Cheung
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage2019In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, no 9, article id 1900039Article in journal (Refereed)
    Abstract [en]

    Abstract Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer?polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g?1.

  • 22.
    Hwang, Sunbin
    et al.
    KIST, South Korea.
    Jang, Sukjae
    KIST, South Korea.
    Kang, Minji
    KIST, South Korea.
    Bae, Sukang
    KIST, South Korea.
    Lee, Seoung-Ki
    KIST, South Korea.
    Hong, Jae-Min
    KIST, South Korea.
    Lee, Sang Hyun
    Chonnam Natl Univ, South Korea.
    Wang, Gunuk
    Korea Univ, South Korea.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Kim, Tae-Wook
    KIST, South Korea.
    Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P(VDF-TrFE) via Photocrosslinking2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 28, p. 25358-25368Article in journal (Refereed)
    Abstract [en]

    Organic electronics demand new platforms that can make integrated circuits and undergo mass production while maintaining diverse functions with high performance. The field-effect transistor has great potential to be a multifunctional device capable of sensing, data processing, data storage, and display. Currently, transistor-based devices cannot be considered intrinsic multifunctional devices because all installed functions are mutually coupled. Such incompatibilities are a crucial barrier to developing an all-in-one multifunctional device capable of driving each function individually. In this study, we focus on the decoupling of electric switching and data storage functions in an organic ferroelectric memory transistor. To overcome the incompatibility of each function, the high permittivity needed for electrical switching and the ferroelectricity needed for data storage become compatible by restricting the motion of poly(vinylidene fluoride-trifluoroethylene) via photocrosslinking with bis-perfluorobenzoazide. The two-in-one device consisting of a photocrosslinked ferroelectric layer exhibits reversible and individual dual-functional operation as a typical transistor with nonvolatile memory. Moreover, a p-MOS depletion load inverter composed of the two transistors with different threshold voltages is also demonstrated by simply changing only one of the threshold voltages by polarization switching. We believe that the two-in-one device will be considered a potential component of integrated organic logic circuits, including memory, in the future.

  • 23.
    Jakešová, Marie
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Arbring, Theresia
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics.
    Đerek, Vedran
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Wireless organic electronic ion pumps driven by photovoltaics2019In: npj Flexible Electronics, ISSN 2397-4621, Vol. 3, no 1, p. 14-14Article in journal (Refereed)
    Abstract [en]

    The organic electronic ion pump (OEIP) is an emerging bioelectronic technology for on-demand and local delivery of pharmacologically active species, especially targeting alkali ions, and neurotransmitters. While electrical control is advantageous for providing precise spatial, temporal, and quantitative delivery, traditionally, it necessitates wiring. This complicates implantation. Herein, we demonstrate integration of an OEIP with a photovoltaic driver on a flexible carrier, which can be addressed by red light within the tissue transparency window. Organic thin-film bilayer photovoltaic pixels are arranged in series and/or vertical tandem to provide the 2.5–4.5 V necessary for operating the high-resistance electrophoretic ion pumps. We demonstrate light-stimulated transport of cations, ranging in size from protons to acetylcholine. The device, laminated on top of the skin, can easily be driven with a red LED emitting through a 1.5-cm-thick finger. The end result of our work is a thin and flexible integrated wireless device platform.

  • 24.
    Wang, Suhao
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sun, Hengda
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Erdmann, Tim
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany; Flexterra Corp, IL 60077 USA; IBM Almaden Res Ctr, CA 95120 USA.
    Wang, Gang
    Northwestern Univ, IL 60208 USA.
    Fazzi, Daniele
    Max Planck Inst Kohlenforsch, Germany; Univ Cologne, Germany.
    Lappan, Uwe
    Leibniz Inst Polymerforsch Dresden eV, Germany.
    Puttisong, Yuttapoom
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Chen, Zhihua
    Flexterra Corp, IL 60077 USA.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kiriy, Anton
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Voit, Brigitte
    Tech Univ Dresden, Germany; Leibniz Inst Polymerforsch Dresden eV, Germany.
    Marks, Tobin J.
    Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    Facchetti, Antonio
    Flexterra Corp, IL 60077 USA; Northwestern Univ, IL 60208 USA; Northwestern Univ, IL 60208 USA.
    A Chemically Doped Naphthalenediimide-Bithiazole Polymer for n-Type Organic Thermoelectrics2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 31, article id 1801898Article in journal (Refereed)
    Abstract [en]

    The synthesis of a novel naphthalenediimide (NDI)-bithiazole (Tz2)-based polymer [P(NDI2OD-Tz2)] is reported, and structural, thin-film morphological, as well as charge transport and thermoelectric properties are compared to the parent and widely investigated NDI-bithiophene (T2) polymer [P(NDI2OD-T2)]. Since the steric repulsions in Tz2 are far lower than in T2, P(NDI2OD-Tz2) exhibits a more planar and rigid backbone, enhancing p-p chain stacking and intermolecular interactions. In addition, the electron-deficient nature of Tz2 enhances the polymer electron affinity, thus reducing the polymer donor-acceptor character. When n-doped with amines, P(NDI2OD-Tz2) achieves electrical conductivity (approximate to 0.1 S cm(-1)) and a power factor (1.5 mu W m(-1) K-2) far greater than those of P(NDI2OD-T2) (0.003 S cm(-1) and 0.012 mu W m(-1) K-2, respectively). These results demonstrate that planarized NDI-based polymers with reduced donor-acceptor character can achieve substantial electrical conductivity and thermoelectric response.

  • 25.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Janson, Per
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Poxson, David
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Seitanidou, Maria S.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    A Decade of Iontronic Delivery Devices2018In: Advanced Materials Technologies, ISSN 2365-709X, Vol. 3, no 5, article id 1700360Article, review/survey (Refereed)
    Abstract [en]

    In contrast to electronic systems, biology rarely uses electrons as the signal to regulate functions, but rather ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conjugated polymers and polyelectrolytes, these materials have emerged as an excellent tool for translating signals between these two realms, hence the field of organic bioelectronics. Since organic bioelectronics relies on the electron-mediated transport and compensation of ions (or the ion-mediated transport and compensation of electrons), a great deal of effort has been devoted to the development of so-called "iontronic" components to effect precise substance delivery/transport, that is, components where ions are the dominant charge carrier and where ionic-electronic coupling defines device functionality. This effort has resulted in a range of technologies including ionic resistors, diodes, transistors, and basic logic circuits for the precisely controlled transport and delivery of biologically active chemicals. This Research News article presents a brief overview of some of these "ion pumping" technologies, how they have evolved over the last decade, and a discussion of applications in vitro, in vivo, and in plantae.

  • 26.
    Gabrielsson, Erik
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Biocompatible Circuits for Human–Machine Interfacing2018In: Green Materials for Electronics / [ed] Mihai Irimia-Vladu, Eric D. Głowacki, Niyazi Sariciftci, Siegfried Bauer, Wiley-VCH Verlagsgesellschaft, 2018, p. 91-118Chapter in book (Other academic)
    Abstract [en]

    Conventional electronic devices have evolved from the first transistors introduced in the 1940s to integrated circuits and today's modern (CMOS) computer chips fabricated on silicon wafers using photolithography. This chapter reviews such iontronic devices for signal translation and their application in bioelectronics. It begins with a brief description of the ion transport mechanisms that lay the conceptual groundwork for this type of iontronic devices. The chapter presents various iontronic devices aimed at bioelectronic applications. It outlines the future possible developments of iontronics for human-machine interfacing. The physical interface between electronic devices and biological tissues is of particular interest, as this interface bridges the gap between artificial, humanmade technologies and biological "circuits". Ion-conducting diodes and transistors can be used to build circuits for modulation of ion flow, with the possibility of mimicking the dynamic and nonlinear processes occurring in the body.

  • 27.
    Edberg, Jesper
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. RISE Acreo, Sweden.
    Inganäs, Olle
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Stellenbosch University, South Africa.
    Boosting the capacity of all-organic paper supercapacitors using wood derivatives2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 1, p. 145-152Article in journal (Refereed)
    Abstract [en]

    Printed and flexible organic electronics is a steadily expanding field of research and applications. One of the most attractive features of this technology is the possibility of large area and high throughput production to form low-cost electronics on different flexible substrates. With an increasing demand for sustainable energy production, low-cost and large volume technologies to store high-quality energy become equally important. These devices should be environmentally friendly with respect to their entire life cycle. Supercapacitors and batteries based on paper hold great promise for such applications due to the low cost and abundance of cellulose and other forest-derived components. We report a thick-film paper-supercapacitor system based on cellulose nanofibrils, the mixed ion-electron conducting polymer PEDOT: PSS and sulfonated lignin. We demonstrate that the introduction of sulfonated lignin into the cellulose-conducting polymer system increases the specific capacitance from 110 to 230 F g(-1) and the areal capacitance from 160 mF cm(-2) to 1 F cm(-2). By introducing lignosulfonate also into the electrolyte solution, equilibrium, with respect to the concentration of the redox molecule, was established between the electrode and the electrolyte, thus allowing us to perform beyond 700 charge/discharge cycles with no observed decrease in performance.

  • 28.
    Sun, Hengda
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Vagin, Mikhail
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Forchheimer, Robert
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 9, article id 1704916Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-electron affinity conjugated polymers, has made the development of n-type OECTs troublesome. Here, it is shown that ladder-type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n-channel material for OECTs. These devices can be easily fabricated by means of facile spray-coating techniques. BBL-based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL-based n-type OECTs can be successfully integrated with p-type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst-case noise margin at a supply voltage below 0.6 V.

  • 29.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Iandolo, Donata
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering. Ecole Natl Super Mines, France.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Controlling the electrochromic properties of conductive polymers using UV-light2018In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, no 17, p. 4663-4670Article in journal (Refereed)
    Abstract [en]

    The phenomenon of electrochromism in conductive polymers is well known and has been exploited in many scientific reports. Using a newly developed patterning technique for conductive polymers, we manufactured high-resolution electrochromic devices from the complementary polymers PEDOT and polypyrrole. The technique, which combines UV-light exposure with vapor phase polymerization, has previously only been demonstrated with the conductive polymer PEDOT. We further demonstrated how the same technique can be used to control the optical properties and the electrochromic contrast in these polymers. Oxidant exposure to UV-light prior to vapor phase polymerization showed a reduction in polymer electrochromic contrast allowing high-resolution (100 mu m) patterns to completely disappear while applying a voltage bias due to their optical similarity in one redox state and dissimilarity in the other. This unique electrochromic property enabled us to construct devices displaying images that appear and disappear with the change in applied voltage. Finally, a modification of the electrochromic device architecture permitted a dual image electrochromic device incorporating patterned PEDOT and patterned polypyrrole on the same electrode, allowing the switching between two different images.

  • 30.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jager, Edwin
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018In: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 4, no 1, article id 19Article in journal (Refereed)
  • 31.
    Petsagkourakis, Ioannis
    et al.
    University of Bordeaux, France.
    Pavlopoulou, Eleni
    Institute Polytech Bordeaux Bordeaux INP, France.
    Cloutet, Eric
    University of Bordeaux, France.
    Fang Chen, Yan
    University of Bordeaux, France.
    Liu, Xianjie
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Dilhaire, Stefan
    University of Bordeaux, France.
    Fleury, Guillaume
    University of Bordeaux, France.
    Hadziioannou, Georges
    University of Bordeaux, France.
    Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism2018In: Organic electronics, ISSN 1566-1199, E-ISSN 1878-5530, Vol. 52, p. 335-341Article in journal (Refereed)
    Abstract [en]

    Room temperature flexible heat harvesters based on conducting polymers are ideally suited to cover the energy demands of the modern nomadic society. The optimization of their thermoelectric efficiency is usually sought by tuning the oxidation levels of the conducting polymers, even if such methodology is detrimental to the Seebeck coefficient (S) as both the Seebeck coefficient and the electrical conductivity (sigma) are antagonistically related to the carrier concentration. Here we report a concurrent increase of S and sigma and we experimentally derive the dependence of Seebeck coefficient on charge carrier mobility for the first time in organic electronics. Through specific control of the conducting polymer synthesis, we enabled the formation of a denser percolation network that facilitated the charge transport and the thermodiffusion of the charge carriers inside the conducting polymer layer, while the material shifted from a Fermi glass towards a semi-metal, as its crystallinity increased. This work sheds light upon the origin of the thermoelectric properties of conducting polymers, but also underlines the importance of enhanced charge carrier mobility for the design of efficient thermoelectric polymers.

  • 32.
    Berto, Marcello
    et al.
    Univ Modena and Reggio Emilia, Italy; Univ Ferrara, Italy.
    Diacci, Chiara
    Univ Modena and Reggio Emilia, Italy.
    DAgata, Roberta
    Univ Catania, Italy.
    Pinti, Marcello
    Univ Modena and Reggio Emilia, Italy.
    Bianchini, Elena
    Univ Modena and Reggio Emilia, Italy.
    Di Lauro, Michele
    Univ Modena and Reggio Emilia, Italy.
    Casalini, Stefano
    Univ Modena and Reggio Emilia, Italy; Inst Ciencia Mat Barcelona ICMAB CSIC, Spain.
    Cossarizza, Andrea
    Univ Modena and Reggio Emilia, Italy.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Spoto, Giuseppe
    Univ Catania, Italy; Univ Catania, Italy.
    Biscarini, Fabio
    Univ Modena and Reggio Emilia, Italy.
    Bortolotti, Carlo A.
    Univ Modena and Reggio Emilia, Italy.
    EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids2018In: ADVANCED BIOSYSTEMS, ISSN 2366-7478, Vol. 2, no 2, article id 1700072Article in journal (Refereed)
    Abstract [en]

    Organic electronic transistors are rapidly emerging as ultrahigh sensitive label-free biosensors suited for point-of-care or in-field deployed applications. Most organic biosensors reported to date are based on immunorecognition between the relevant biomarkers and the immobilized antibodies, whose use is hindered by large dimensions, poor control of sequence, and relative instability. Here, an electrolyte-gated organic field effect transistor (EGOFET) biosensor where the recognition units are surface immobilized peptide aptamers (Affimer proteins) instead of antibodies is reported. Peptide aptasensor for the detection of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha) with a 1 x 10(-12) M limit of detection is demonstrated. Ultralow sensitivity is met even in complex solutions such as cell culture media containing 10% serum, demonstrating the remarkable ligand specificity of the device. The device performances, together with the simple one-step immobilization strategy of the recognition moieties and the low operational voltages, all prompt EGOFET peptide aptasensors as candidates for early diagnostics and monitoring at the point-of-care.

  • 33.
    Sung, Sang Hyun
    et al.
    Korea Adv Inst Sci and Technol, South Korea.
    Kim, Young Soo
    Korea Adv Inst Sci and Technol, South Korea.
    Joe, Daniel J.
    Korea Adv Inst Sci and Technol, South Korea.
    Mun, Beom Ho
    Korea Adv Inst Sci and Technol, South Korea.
    You, Byoung Kuk
    Korea Adv Inst Sci and Technol, South Korea.
    Keum, Do Hee
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Hahn, Sei Kwang
    Pohang Univ Sci and Technol POSTECH, South Korea.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kim, Daesoo
    Korea Adv Inst Sci and Technol, South Korea.
    Lee, Keon Jae
    Korea Adv Inst Sci and Technol, South Korea.
    Flexible wireless powered drug delivery system for targeted administration on cerebral cortex2018In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 51, p. 102-112Article in journal (Refereed)
    Abstract [en]

    The controlled drug delivery devices helps timely drug administrations and maintenance of effective dose to maximize curing effects with minimal side effects. Application of this technology to various body parts has been limited, especially in organs with curved surface, such as the brain and the eye. Herein, we report a flexible drug delivery microdevice (f-DDM) for controlled administration on the curved organ surface. The unique structure of the f-DDM consists of freestanding gold membranes over the multireservoir array was implemented by reversing the typical fabrication order of the reservoir and sealing membrane. We optimized the design of the f-DDM by a finite element analysis to prevent thermal damage during the laser transfer and the applying current density for reliable drug release through an electrochemical analysis. The wireless power transfer system was applied to f-DDM, which shows stable wirelessly powered operation. The f-DDM was flexible enough to be implantable on the curved cerebral cortex and successfully adopted for delivery of two different chemicals or prevention of seizure activity using an anti-epileptic drug. Our study opens a new avenue for the controlled, region-specific, and combinatorial application of drugs, the key factors for precision medicine.

  • 34.
    Chaharsoughi, Mina Shiran
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Tordera, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Grimoldi, Andrea
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Hybrid Plasmonic and Pyroelectric Harvesting of Light Fluctuations2018In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071Article in journal (Refereed)
    Abstract [en]

    State-of-the-art solar energy harvesting systems based on photovoltaic technology require constant illumination for optimal operation. However, weather conditions and solar illumination tend to fluctuate. Here, a device is presented that extracts electrical energy from such light fluctuations. The concept combines light-induced heating of gold nanodisks (acting as plasmonic optical nanoantennas), and an organic pyroelectric copolymer film (poly(vinylidenefluoride-co-trifluoroethylene)), that converts temperature changes into electrical signals. This hybrid device can repeatedly generate current pulses, not only upon the onset of illumination, but also when illumination is blocked. Detailed characterization highlights the key role of the polarization state of the copolymer, while the copolymer thickness has minor influence on performance. The results are fully consistent with plasmon-assisted pyroelectric effects, as corroborated by combined optical and thermal simulations that match the experimental results. Owing to the tunability of plasmonic resonances, the presented concept is compatible with harvesting near infrared light while concurrently maintaining visible transparency.

  • 35.
    Berto, Marcello
    et al.
    Univ Modena and Reggio Emilia, Italy.
    Diacci, Chiara
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Theuer, Lorenz
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering. RISE Acreo, Sweden.
    Di Lauro, Michele
    Univ Modena and Reggio Emilia, Italy.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Biscarini, Fabio
    Univ Modena and Reggio Emilia, Italy; Ist Italiano Tecnol, Italy.
    Beni, Valerio
    RISE Acreo, Sweden.
    Bortolotti, Carlo A.
    Univ Modena and Reggio Emilia, Italy.
    Label free urea biosensor based on organic electrochemical transistors2018In: FLEXIBLE AND PRINTED ELECTRONICS, ISSN 2058-8585, Vol. 3, no 2, article id 024001Article in journal (Refereed)
    Abstract [en]

    The quantification of urea is of the utmost importance not only in medical diagnosis, where it serves as a potential indicator of kidney and liver disfunction, but also in food safety and environmental control. Here, we describe a urea biosensor based on urease entrapped in a crosslinked gelatin hydrogel, deposited onto a fully printed PEDOT:PSS-based organic electrochemical transistor (OECT). The device response is based on the modulation of the channel conductivity by the ionic species produced upon urea hydrolysis catalyzed by the entrapped urease. The biosensor shows excellent reproducibility, a limit of detection as low as 1 mu M and a response time of a few minutes. The fabrication of the OECTs by screen-printing on flexible substrates ensures a significant reduction in manufacturing time and costs. The low dimensionality and operational voltages (0.5 V or below) of these devices contribute to make these enzymatic OECT-based biosensors as appealing candidates for high-throughput monitoring of urea levels at the point-of-care or in the field.

  • 36.
    Derek, Vedran
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jakesova, Marie
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Glowacki, Eric
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Micropatterning of organic electronic materials using a facile aqueous photolithographic process2018In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 8, no 10, article id 105116Article in journal (Refereed)
    Abstract [en]

    Patterning organic semiconductors via traditional solution-based microfabrication techniques is precluded by undesired interactions between processing solvents and the organic material. Herein we show how to avoid these problems easily and introduce a simple lift-off method to pattern organic semiconductors. Positive tone resist is deposited on the substrate, followed by conventional exposure and development. After deposition of the organic semiconductor layer, the remaining photoresist is subjected to a flood exposure, rendering it developable. Lift-off is then performed using the same aqueous developer as before. We find that the aqueous developers do not compromise the integrity of the organic layer or alter its electronic performance. We utilize this technique to pattern four different organic electronic materials: epindo-lidione (EPI), a luminescent semiconductor, p-n photovoltaic bilayers of metal-free phthalocyanine and N, N-dimethyltetracarboxylic diimide, and finally the archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The result of our efforts is a facile method making use of well-established techniques that can be added to the toolbox of research and industrial scientists developing organic electronics technology. (c) 2018 Author(s).

  • 37.
    Jiao, Fei
    et al.
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Edberg, Jesper
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Puzinas, Skomantas
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Khan, Zia
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Mäkie, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Naderi, Ali
    Innventia AB, Sweden.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
    Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors2018In: ADVANCED SUSTAINABLE SYSTEMS, ISSN 2366-7486, Vol. 2, no 1, article id UNSP 1700121Article in journal (Refereed)
    Abstract [en]

    Solar photovoltaic technologies could fully deploy and impact the energy conversion systems in our society if mass-produced energy-storage solutions exist. A supercapacitor can regulate the fluctuations on the electrical grid on short time scales. Their mass-implementation requires the use of abundant materials, biological and organic synthetic materials are attractive because of atomic element abundancy and low-temperature synthetic processes. Nanofibrillated cellulose (NFC) coming from the forest industry is exploited as a three-dimensional template to control the transport of ions in an electrolyte-separator, with nanochannels filled of aqueous electrolyte. The nanochannels are defined by voids in the nanocomposite made of NFC and the proton transporting polymer polystyrene sulfonic acid PSSH. The ionic conductivity of NFC-PSSH composites (0.2 S cm(-1) at 100% relative humidity) exceeds sea water in a material that is solid, feel dry to the finger, but filled of nanodomains of water. A paper-based supercapacitor made of NFC-PSSH electrolyte-separator sandwiched between two paper-based electrodes is demonstrated. Although modest specific capacitance (81.3 F g(-1)), power density (2040 W kg(-1)) and energy density (1016 Wh kg(-1)), this is the first conceptual demonstration of a supercapacitor based on cellulose in each part of the device; which motivates the search for using paper manufacturing as mass-production of energy-storage devices.

  • 38.
    Sun, Hengda
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gerasimov, Jennifer
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    n-Type organic electrochemical transistors: materials and challenges2018In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 6, no 44, p. 11778-11784Article in journal (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) have emerged as an enabling technology for the development of a variety of applications ranging from digital logic circuits to biosensors and artificial synapses for neuromorphic computing. To date, most of the reported OECTs rely on the use of p-type (hole transporting) conducting and semiconducting polymers as the channel material, while electron transporting (n-type) OECTs are yet immature, thus precluding the realization of advanced complementary circuitry. In this highlight, we review and discuss recent achievements in the area of n-type OECTs, in particular targeting recently reported n-type channel materials and how these have enabled a considerable advancement of OECT circuit capabilities. Further, the critical challenges currently limiting the performance of n-channel OECTs are summarized and discussed, setting material design guidelines for the next generation n-type and complementary OECTs.

  • 39.
    Rivnay, Jonathan
    et al.
    Northwestern Univ, IL 60208 USA.
    Inal, Sahika
    King Abdullah Univ Sci and Technol KAUST, Saudi Arabia.
    Salleo, Alberto
    Stanford Univ, CA 94305 USA.
    Owens, Roisin M.
    Univ Cambridge, England.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Univ Stellenbosch, South Africa.
    Malliaras, George G.
    Univ Cambridge, England.
    Organic electrochemical transistors2018In: NATURE REVIEWS MATERIALS, ISSN 2058-8437, Vol. 3, no 2, article id 17086Article, review/survey (Refereed)
    Abstract [en]

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  • 40.
    Zajdel, Tom J.
    et al.
    Univ Calif Berkeley, CA 94720 USA; Lawrence Berkeley Natl Lab, CA 94720 USA.
    Baruch, Moshe
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    Méhes, Gábor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Lawrence Berkeley Natl Lab, CA 94720 USA.
    Stavrinidou, Eleni
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Maharbiz, Michel M.
    Univ Calif Berkeley, CA 94720 USA; Univ Calif Berkeley, CA 94720 USA; Chan Zuckerberg Biohub, CA USA.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ajo-Franklin, Caroline M.
    Lawrence Berkeley Natl Lab, CA 94720 USA.
    PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 15293Article in journal (Refereed)
    Abstract [en]

    Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 mu m thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.

  • 41.
    Tybrandt, Klas
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends2017In: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 3, no 12, article id eaao3659Article in journal (Refereed)
    Abstract [en]

    Conjugated polymer-polyelectrolyte blends combine and couple electronic semiconductor functionality with selective ionic transport, making them attractive as the active material in organic biosensors and bioelectronics, electrochromic displays, neuromorphic computing, and energy conversion and storage. Although extensively studied and explored, fundamental knowledge and accurate quantitative models of the coupled ion-electron functionality and transport are still lacking to predict the characteristics of electrodes and devices based on these blends. We report on a two-phase model, which couples the chemical potential of the holes, in the conjugated polymer, with the electric double layer residing at the conjugated polymer-polyelectrolyte interface. The model reproduces a wide range of experimental charging and transport data and provides a coherent theoretical framework for the system as well as local electrostatic potentials, energy levels, and charge carrier concentrations. This knowledge is crucial for future developments and optimizations of bioelectronic and energy devices based on the electronic-ionic interaction within these materials.

  • 42.
    Jiao, Fei
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Naderi, Ali
    Innventia AB, Sweden.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Schlueter, Joshua
    University of Kentucky, KY 40506 USA.
    Shahi, Maryam
    University of Kentucky, KY 40506 USA.
    Sundstrom, Jonas
    Innventia AB, Sweden.
    Granberg, Hjalmar
    Innventia AB, Sweden.
    Edberg, Jesper
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ail, Ujwala
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Brill, Joseph
    University of Kentucky, KY 40506 USA.
    Lindstrom, Tom
    Innventia AB, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Correction: Ionic thermoelectric paper (vol 5, pg 16883, 2017)2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 37, p. 20053-20053Article in journal (Other academic)
    Abstract [en]

    n/a

  • 43.
    Arbring Sjöström, Theresia
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Amanda
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Stanford University, CA 94305 USA.
    Gabrielsson, Erik
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kergoat, Loig
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Aix Marseille University, France.
    Tybrandt, Klas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Cross-Linked Polyelectrolyte for Improved Selectivity and Processability of lontronic Systems2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 36, p. 30247-30252Article in journal (Refereed)
    Abstract [en]

    On-demand local release of biomolecules enables fine-tuned stimulation for the next generation of neuromodulation therapies. Such chemical stimulation is achievable using iontronic devices based on microfabricated, highly selective ion exchange membranes (IEMs). Current limitations in processability and performance of thin film LEMs hamper future developments of this technology. Here we address this limitation by developing a cationic IEM with excellent processability and ionic selectivity: poly(4-styrenesulfonic acidco-maleic acid) (PSS-co-MA) cross-linked with polyethylene glycol (PEG). This enables new design opportunities and provides enhanced compatibility with in vitro cell studies. PSSA-co-MA/PEG is shown to out-perform the cation selectivity of the previously used iontronic material.

  • 44.
    Håkansson, Anna
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Han, Shaobo
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Wang, Suhao
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Braun, Slawomir
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlman, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Effect of (3-Glycidyloxypropyl)Trimethoxysilane (GOPS) on the Electrical Properties of PEDOT:PSS Films2017In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 55, no 10, p. 814-820Article in journal (Refereed)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water-solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3-glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross-link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. (c) 2017 Wiley Periodicals, Inc.

  • 45.
    Edberg, Jesper
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Malti, Abdellah
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Granberg, Hjalmar
    RISE Bioeconomy.
    Hamedi, Mahiar M.
    KTH Royal Institute of Technology.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Electrochemical circuits from ‘cut and stick’ PEDOT:PSS-nanocellulose composite2017In: Flexible and printed electronics, E-ISSN 2058-8585, Vol. 4, no 2, article id 045010Article in journal (Refereed)
    Abstract [en]

    We report a flexible self-standing adhesive composite made from PEDOT:PSS and nanofibrillated cellulose. The material exhibits good combined mechanical and electrical characteristics(an elastic modulus of 4.4 MPa, and an electrical conductivity of 30 S cm−1 ). The inherent self-adhesiveness of the material enables it to be laminated and delaminated repeatedly to form and reconfigure devices and circuits. This modular property opens the door for a plethora of applications where reconfigurability and ease-of-manufacturing are of prime importance. We also demonstrate a paper composite with ionic conductivity and combine the two materials to construct electrochemical devices, namely transistors, capacitors and diodes with high values of transconductance, charge storage capacity and current rectification. We have further used these devices to construct digital circuits such as NOT, NAND and NOR logic.

  • 46.
    Fabiano, Simone
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Abdollahi Sani, Negar
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering. RISE Acreo, Sweden.
    Kawahara, Jun
    RISE Acreo, Sweden; LINTEC Corp, Japan.
    Kergoat, Loig
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering. Aix Marseille University, France.
    Nissa, Josefin
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Engquist, Isak
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers2017In: Science Advances, ISSN 0036-8156, E-ISSN 2375-2548, Vol. 3, no 6, article id e1700345Article in journal (Refereed)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is an organic mixed ion-electron conducting polymer. The PEDOT phase transports holes and is redox-active, whereas the PSS phase transports ions. When PEDOT is redox-switched between its semiconducting and conducting state, the electronic and optical properties of its bulk are controlled. Therefore, it is appealing to use this transition in electrochemical devices and to integrate those into large-scale circuits, such as display or memory matrices. Addressability and memory functionality of individual devices, within these matrices, are typically achieved by nonlinear current-voltage characteristics and bistability-functions that can potentially be offered by the semiconductor-conductor transition of redox polymers. However, low conductivity of the semiconducting state and poor bistability, due to self-discharge, make fast operation and memory retention impossible. We report that a ferroelectric polymer layer, coated along the counter electrode, can control the redox state of PEDOT. The polarization switching characteristics of the ferroelectric polymer, which take place as the coercive field is overcome, introduce desired nonlinearity and bistability in devices that maintain PEDOT in its highly conducting and fast-operating regime. Memory functionality and addressability are demonstrated in ferro-electrochromic display pixels and ferro-electrochemical transistors.

  • 47.
    Toss, Henrik
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Lönnqvist, Susanna
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, David
    Acreo Swedish ICT AB, Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT AB, Norrköping, Sweden.
    Nissa, Josefin
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Fabiano, Simone
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Kratz, Gunnar
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Simon, Daniel T
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ferroelectric Surfaces for Cell Release2017In: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290, Vol. 228, p. 99-104Article in journal (Refereed)
    Abstract [en]

    Adherent cells cultured in vitro must usually, at some point, be detached from the culture substrate. Presently, the most common method of achieving detachment is through enzymatic treatment which breaks the adhesion points of the cells to the surface. This comes with the drawback of deteriorating the function and viability of the cells. Other methods that have previously been proposed include detachment of the cell substrate itself, which risks contaminating the cell sample, and changing the surface energy of the substrate through thermal changes, which yields low spatial resolution and risks damaging the cells if they are sensitive to temperature changes. Here cell culture substrates, based on thin films of the ferroelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) co-polymer, are developed for electroactive control of cell adhesion and enzyme-free detachment of cells. Fibroblasts cultured on the substrates are detached through changing the direction of polarization of the ferroelectric substrate. The method does not affect subsequent adhesion and viability of reseeded cells.

  • 48.
    Stavrinidou, Eleni
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, K. Peter R.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Singh, Sandeep Kumar
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Franco- Gonzalez, Juan Felipe
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Volkov, Anton V.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Grimoldi, Andrea
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Elgland, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor V.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    In vivo polymerization and manufacturing of wires and supercapacitors in plants2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 11, p. 2807-2812Article in journal (Refereed)
    Abstract [en]

    Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization

  • 49.
    Brooke, Robert
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Mitraka, Evangelia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sardar, Samim
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Sandberg, Mats
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Sawatdee, Anurak
    Acreo Swedish ICT, SE-601 74 Norrköping, Sweden.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Infrared electrochromic conducting polymer devices2017In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, no 23, p. 5824-5830Article in journal (Refereed)
    Abstract [en]

    The conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is well known for its electrochromic properties in the visible region. Less focus has been devoted to the infrared (IR) wavelength range, although tunable IR properties could enable a wide range of novel applications. As an example, modern day vehicles have thermal cameras to identify pedestrians and animals in total darkness, but road and speed signs cannot be easily visualized by these imaging systems. IR electrochromism could enable a new generation of dynamic road signs that are compatible with thermal imaging, while simultaneously providing contrast also in the visible region. Here, we present the first metal-free flexible IR electrochromic devices, based on PEDOT:Tosylate as both the electrochromic material and electrodes. Lateral electrochromic devices enabled a detailed investigation of the IR electrochromism of thin PEDOT:Tosylate films, revealing large changes in their thermal signature, with effective temperature changes up to 10 [degree]C between the oxidized (1.5 V) and reduced (-1.5 V) states of the polymer. Larger scale (7 [times] 7 cm) vertical electrochromic devices demonstrate practical suitability and showed effective temperature changes of approximately 7 [degree]C, with good optical memory and fast switching (1.9 s from the oxidized state to the reduced state and 3.3 s for the reversed switching). The results are highly encouraging for using PEDOT:Tosylate for IR electrochromic applications.

  • 50.
    Wang, Hui
    et al.
    Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
    Zhao, Dan
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ullah Khan, Zia
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Puzinas, Skomantas
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Crispin, Xavier
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors2017In: ADVANCED ELECTRONIC MATERIALS, ISSN 2199-160X, Vol. 3, no 4, article id 1700013Article in journal (Refereed)
    Abstract [en]

    Thermoelectric materials enable conversion of heat to electrical energy. The performance of electronic thermoelectric materials is typically evaluated using a figure of merit ZT = sigma alpha 2T/lambda, where sigma is the conductivity, alpha is the so-called Seebeck coefficient, and lambda is the thermal conductivity. However, it has been unclear how to best evaluate the performance of ionic thermoelectric materials, like ionic solids and electrolytes. These systems cannot be directly used in a traditional thermoelectric generator, because they are based on ions that cannot pass the interface between the thermoelectric material and external metal electrodes. Instead, energy can be harvested from the ionic thermoelectric effect by charging a supercapacitor. In this study, the authors investigate the ionic thermoelectric properties at varied relative humidity for the polyelectrolyte polystyrene sulfonate sodium and correlate these properties with the charging efficiency when used in an ionic thermoelectric supercapacitor (ITESC). In analogy with electronic thermoelectric generators, the results show that the charging efficiency of the ITESC can be quantitatively related to the figure of merit ZT(i) = sigma i alpha i2T/lambda. This means that the performance of ionic thermoelectric materials can also be compared and predicted based on the ZT, which will be highly valuable in the design of high-performance ITESCs.

1234567 1 - 50 of 304
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf