liu.seSearch for publications in DiVA
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Syed, Bilal
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. Linköping University.
    Jöessar, Mats J.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. SECO Tools AB, Fagersta, Sweden.
    Polcik, Peter
    PLANSEE Composite Materials GmbH, Lechbruck am See, Germany.
    Kolozsvari, Szilard
    PLANSEE Composite Materials GmbH, Lechbruck am See, Germany.
    Håkansson, Greger
    Ionbond Sweden AB, Box 1161, Linköping, Sweden.
    Johnson, Lars
    Sandvik Coromant, Stockholm, Sweden.
    Ahlgren, Mats
    Sandvik Coromant, Stockholm, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Effect of work function and cohesive energy of the constituent phases of Ti-50 at.% Al cathode during arc deposition of Ti-Al-N coatings2019In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 357, p. 393-401Article in journal (Refereed)
    Abstract [en]

    The differences in work function (W.F.) and cohesive energy (C.E.) of the phases constituting the cathode, plays an important role in the formation of the converted layer at its near-surface region during cathodic arc deposition. As a consequence, this also affects the deposition conditions for the coatings. In this study, we explore the effect of W.F. and C.E. of the constituent phases during arc evaporation by utilizing two kinds of customized Ti-50 at.% Al cathodes with different phase compositions. Our results show that during reactive arc evaporation the disparity in W.F. and C.E. among the constituent phases of Ti-50 at.% Al cathodes leads to preferential erosion of the phases with lower W.F. and C.E. The aforementioned preferential erosion begets higher surface roughness on the Ti-50 at.% Al cathode with a wider range of W.F. and C.E. disparity. It is also observed that the thermal conductivity of the Ti-50 at.% Al cathode plays a dominant role in the deposition rate of Ti-Al-N coating. This article also presents how the surface geometry of the cathode in the presence of arc guiding magnetic field significantly influences the microstructure of the deposited coatings.

    The full text will be freely available from 2020-10-15 12:50
  • 2.
    Syed, Bilal
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Zhu, Jianqiang
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Polcik, Peter
    PLANSEE Composite Materials GmbH, Germany.
    Kolozsvari, Szilard
    PLANSEE Composite Materials GmbH, Germany.
    Håkansson, Greger
    Ionbond Sweden AB, Sweden.
    Johnson, Lars
    Sandvik Coromant, Stockholm, Sweden.
    Ahlgren, Mats
    Sandvik Coromant, Stockholm, Sweden.
    Jöessar, Mats
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering. Seco Tools AB, Fagersta, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, Faculty of Science & Engineering.
    Morphology and microstructure evolution of Ti-50 at.% Al cathodes during cathodic arc deposition of Ti-Al-N coatings2017In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 24, article id 245309 (2017)Article in journal (Refereed)
    Abstract [en]

    Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.

  • 3.
    Forsén, Rikard
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Syed, Muhammad Bilal
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Ghafoor, Naureen
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Alloying as a tool for structure and thermal stability engineering of hard coatings2014Manuscript (preprint) (Other academic)
    Abstract [en]

    A large range of (ZrxAly Cr(100-x-y))1N1 coatings have been deposited using cathodic arc evaporation and annealed at temperatures up to 1100 ºC. The coatings can be divided into three different characteristic categories based on their structure, thermal stability and hardness.

    The first category of coatings, (Al < ~30 % and ~40 % < Zr), are stable cubic solid solutions up to 1100 ºC. The hardness decreases upon annealing because of defect annihilation.

    In the second category, (40 % < Al < 60 % and Zr < 15 %), the coatings decompose into ZrCr- and Al-rich nanometer-sized domains when annealed, which results in a hardness increase.

    In the third category (~67 % < Al), the microstructure contain a mixture of 1-2 nanometer-sized nano-crystalline hexagonal (AlN) and cubic (ZrCrN) phases. These coatings have a significantly lower hardness in the as deposited state but upon annealing the hardness increases significantly.

  • 4.
    Zhu, Jianqiang
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Syed, Muhammad Bilal
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Polcik, Peter
    PLANSEE Composite Materials GmbH, Germany.
    Håkansson, G.
    Ionbond Sweden AB, Linköping, Swedeb.
    Johansson Jöesaar, Mats P.
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology. Seco Tools, Fagersta, Sweden.
    Ahlgren, M.
    Sandvik Coromant, Stockholm, Sweden.
    Odén, Magnus
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Effects of cathode grain size and substrate fixturing on the microstructure evolution of arc evaporated Cr-cathodes and Cr-N coating synthesis2014In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 32, no 2, p. 021515-Article in journal (Refereed)
    Abstract [en]

    The influence of the cathode grain size and the substrate fixturing on the microstructure evolution of the Cr cathodes and the resulting Cr-N coating synthesis is studied. Hot isostatic pressed Cr cathodes with three different grain sizes were arc evaporated in a nitrogen atmosphere and Cr-N coatings were deposited on cemented carbide substrate at 2 and 4 Pa nitrogen pressure, respectively. The Cr cathodes before and after arc discharging are composed of polycrystalline α-Cr regardless of the grain size. A converted layer forms on the Cr cathode surface and its microstructure differs with the cathode grain size. A stationary substrate fixturing results in ditches covering the cathode surface while a single rotating fixturing does not. The increased grain size of the virgin Cr cathodes enhances the quantities of the ditches. The possible causes are addressed. At 2 Pa nitrogen pressure, the Cr-N coatings deposited with the single rotating fixturing comprise only cubic CrN phase while the ones deposited with the stationary fixturing contain a mixture of hexagonal Cr2N and cubic CrN phases. By the increasing grain size of the Cr cathode, the droplet density of the Cr-N coatings increase somewhat while the hardness decreases for the Cr-N coatings deposited with stationary fixturing at 2 Pa nitrogen pressure.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf