liu.seSearch for publications in DiVA
Change search
Refine search result
1234 1 - 50 of 155
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jonson, Maria
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Carlback, Marcus
    Linköping University, Department of Medical and Health Sciences, Division of Community Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Michno, Wojciech
    Univ Gothenburg, Sweden.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England.
    Starkenberg, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Peter, K.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Thor, Stefan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Hematopoiesis and Developmental Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Amyloid fibril polymorphism and cell-specific toxicity in vivo2019In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 26, no sup1, p. 136-137Article in journal (Refereed)
    Abstract [en]

    n/a

  • 2.
    Loffler, Susanne
    et al.
    Karolinska Inst, Sweden.
    Antypas, Hails
    Karolinska Inst, Sweden.
    Choong, Ferdinand X.
    Karolinska Inst, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Richter-Dahlfors, Agneta
    Karolinska Inst, Sweden.
    Conjugated Oligo- and Polymers for Bacterial Sensing2019In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 7, article id 265Article, review/survey (Refereed)
    Abstract [en]

    Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.

  • 3.
    Golob-Schwarzi, Nicole
    et al.
    Med Univ Graz, Austria; Ctr Biomaker Res Med, Austria.
    Bettermann, Kira
    Med Univ Graz, Austria.
    Mehta, Anita Kuldeep
    Med Univ Graz, Austria; Dana Farber Canc Inst, MA 02215 USA.
    Kessler, Sonja M.
    Med Univ Graz, Austria; Saarland Univ, Germany.
    Unterluggauer, Julia
    Med Univ Graz, Austria.
    Krassnig, Stefanie
    Med Univ Graz, Austria.
    Kojima, Kensuke
    Univ Texas Southwestern Med Ctr Dallas, TX 75390 USA.
    Chen, Xintong
    Univ Texas Southwestern Med Ctr Dallas, TX 75390 USA.
    Hoshida, Yujin
    Univ Texas Southwestern Med Ctr Dallas, TX 75390 USA.
    Bardeesy, Nabeel M.
    Harvard Med Sch, MA USA.
    Mueller, Heimo
    Med Univ Graz, Austria.
    Svendova, Vendula
    Med Univ Graz, Austria.
    Schimek, Michael G.
    Med Univ Graz, Austria.
    Diwoky, Clemens
    Graz Univ Technol, Austria; Karl Franzens Univ Graz, Austria.
    Lipfert, Alexandra
    Graz Univ Technol, Austria.
    Mahajan, Vineet
    Med Univ Graz, Austria.
    Stumptner, Cornelia
    Med Univ Graz, Austria.
    Thueringer, Andrea
    Med Univ Graz, Austria.
    Froehlich, Leopold F.
    Med Univ Graz, Austria; Univ Munster, Germany.
    Stojakovic, Tatjana
    Med Univ Graz, Austria.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Kolbe, Thomas
    Univ Vet Med Vienna, Austria; Univ Bodenkultur Wien, Austria.
    Ruelicke, Thomas
    Univ Vet Med Vienna, Austria.
    Magin, Thomas M.
    Univ Leipzig, Germany.
    Strnad, Pavel
    Univ Hosp RWTH Aachen, Germany.
    Kiemer, Alexandra K.
    Ctr Biomaker Res Med, Austria.
    Moriggl, Richard
    Univ Vet Med Vienna, Austria; Ludwig Bolzmann Inst Canc Res, Austria; Med Univ Vienna, Austria.
    Haybaeck, Johannes
    Med Univ Graz, Austria; Otto von Guericke Univ, Germany.
    High Keratin 8/18 Ratio Predicts Aggressive Hepatocellular Cancer Phenotype2019In: Translational Oncology, ISSN 1944-7124, E-ISSN 1936-5233, Vol. 12, no 2, p. 256-268Article in journal (Refereed)
    Abstract [en]

    BACKGROUND amp; AIMS: Steatohepatitis (SH) and SH-associated hepatocellular carcinoma (HCC) are of considerable clinical significance. SH is morphologically characterized by steatosis, liver cell ballooning, cytoplasmic aggregates termedMallory-Denk bodies (MDBs), inflammation, and fibrosis at late stage. Disturbance of the keratin cytoskeleton and aggregation of keratins (KRTs) are essential for MDB formation. METHODS: Weanalyzed livers of aged Krt18(-/-) mice that spontaneously developed in the majority of cases SH-associated HCC independent of sex. Interestingly, the hepatic lipid profile in Krt18(-/-) mice, which accumulate KRT8, closely resembles human SH lipid profiles and shows that the excess of KRT8 over KRT18 determines the likelihood to develop SH-associated HCC linked with enhanced lipogenesis. RESULTS: Our analysis of the genetic profile of Krt18(-/-) mice with 26 human hepatoma cell lines and with data sets of amp;gt;300 patients with HCC, where Krt18(-/-) gene signatures matched human HCC. Interestingly, a high KRT8/18 ratio is associated with an aggressive HCC phenotype. CONCLUSIONS: We can prove that intermediate filaments and their binding partners are tightly linked to hepatic lipid metabolism and to hepatocarcinogenesis. We suggest KRT8/18 ratio as a novel HCC biomarker for HCC.

  • 4.
    Wang, Bing
    et al.
    Univ Calif Santa Barbara, CA 93106 USA.
    Queenan, Bridget N.
    Univ Calif Santa Barbara, CA 93106 USA.
    Wang, Shu
    Chinese Acad Sci, Peoples R China.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bazan, Guillermo C.
    Univ Calif Santa Barbara, CA 93106 USA.
    Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, no 22, article id 1806701Article, review/survey (Refereed)
    Abstract [en]

    Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.

  • 5.
    Michno, Wojciech
    et al.
    Univ Gothenburg, Sweden.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Wehrli, Patrick
    Univ Gothenburg, Sweden.
    Lashley, Tammaryn
    UCL, England.
    Brinkmalm, Gunnar
    Univ Gothenburg, Sweden.
    Guerard, Laurent
    Univ Gothenburg, Sweden.
    Syvanen, Stina
    Uppsala Univ, Sweden.
    Sehlin, Dag
    Uppsala Univ, Sweden.
    Kaya, Ibrahim
    Univ Gothenburg, Sweden.
    Brinet, Dimitri
    Univ Gothenburg, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Blennow, Kaj
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Zetterberg, Henrik
    Univ Gothenburg, Sweden; UCL, England; Sahlgrens Univ Hosp, Sweden; UCL, England.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England.
    Pyroglutamation of amyloid-x-42 (Ax-42) followed by A1-40 deposition underlies plaque polymorphism in progressing Alzheimers disease pathology2019In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 294, no 17, p. 6719-6732Article in journal (Refereed)
    Abstract [en]

    Amyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated Aβ polymorphism with amyloid conformation–sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased Aβ1–40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that Aβ1–40 aggregates at the core structure of mature plaques, whereas Aβ1–42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Aβx-42 levels in s-AD but not CU-AP, suggesting an AD pathology–related, hydrophobic functionalization of diffuse plaques facilitating Aβ1–40 deposition. Experiments in tgAPPSwe mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of Aβ1–42 and that Aβ plaque maturation over time is associated with increases in Aβ1–40. Finally, we found that Aβ1–40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Aβx-42 pyroglutamation and Aβ1–40 deposition are critical events in priming and maturation of pathogenic Aβ from diffuse into cored plaques, underlying neurotoxic plaque development in AD.

  • 6.
    Choong, Ferdinand X.
    et al.
    Karolinska Inst, Sweden.
    Lantz, Linda
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Shirani, Hamid
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Schulz, Anette
    Karolinska Inst, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Edlund, Ulrica
    KTH Royal Inst Technol, Sweden.
    Richter-Dahlfors, Agneta
    Karolinska Inst, Sweden.
    Stereochemical identification of glucans by a donor-acceptor-donor conjugated pentamer enables multi-carbohydrate anatomical mapping in plant tissues2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 7, p. 4253-4264Article in journal (Refereed)
    Abstract [en]

    Optotracing is a novel method for analytical imaging of carbohydrates in plant and microbial tissues. This optical method applies structure-responsive oligothiophenes as molecular fluorophores emitting unique optical signatures when bound to polysaccharides. Herein, we apply Carbotrace680, a short length anionic oligothiophene with a central heterocyclic benzodithiazole (BTD) motif, to probe for different glucans. The donor-acceptor-donor type electronic structure of Carbotrace680 provides improved spectral properties compared to oligothiophenes due to the possibility of intramolecular charge-transfer transition to the BTD motif. This enables differentiation of glucans based on the glycosidic linkage stereochemistry. Thus -configured starch is readily differentiated from -configured cellulose. The versatility of optotracing is demonstrated by dynamic monitoring of thermo-induced starch remodelling, shown in parallel by spectrophotometry and microscopy of starch granules. Imaging of Carbotrace680 bound to multiple glucans in plant tissues provided direct identification of their physical locations, revealing the spatial relationship between structural (cellulose) and storage (starch) glucans at sub-cellular scale. Our work forms the basis for the development of superior optotracers for sensitive detection of polysaccharides. Our non-destructive method for anatomical mapping of glucans in biomass will serve as an enabling technology for developments towards efficient use of plant-derived materials and biomass. [GRAPHICS] .

  • 7.
    Jonsson, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Carlback, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Michno, Wojciech
    Univ Gothenburg, Sweden.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England.
    Starkenberg, Annika
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Thor, Stefan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Aggregated A beta 1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila2018In: Cell Chemical Biology, ISSN 2451-9456, E-ISSN 2451-9448, Vol. 25, no 5, p. 595-610Article in journal (Refereed)
    Abstract [en]

    The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human A beta 1-42 associated with Alzheimers disease. Expression of A beta 1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ringtangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of A beta 1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of A beta 1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that A beta 1-42 cytotoxicity is both cell and aggregate morphotype dependent.

  • 8.
    Khodaparast, Ladan
    et al.
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Khodaparast, Laleh
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Gallardo, Rodrigo
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Louros, Nikolaos N.
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Michiels, Emiel
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Ramakrishnan, Reshmi
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Ramakers, Meine
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Claes, Filip
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Young, Lydia
    Univ Leeds, England; Univ Leeds, England.
    Shahrooei, Mohammad
    KULeuven, Belgium.
    Wilkinson, Hannah
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Desager, Matyas
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Tadesse, Wubishet Mengistu
    KULeuven, Belgium.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Aertsen, Abram
    KULeuven, Belgium.
    Carpentier, Sebastien
    KULeuven, Belgium.
    Van Eldere, Johan
    KULeuven, Belgium.
    Rousseau, Frederic
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Schymkowitz, Joost
    SWITCH Lab, Belgium; KULeuven, Belgium.
    Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 866Article in journal (Refereed)
    Abstract [en]

    Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins. Buildup of bacterial resistance against these peptides is slow. In addition, the approach is effective against drug-resistant clinical isolates of Escherichia coli and Acinetobacter baumannii, reducing bacterial load in a murine bladder infection model. Our results indicate that redundant APRs are weak points of bacterial protein homeostasis and that targeting these may be an attractive antibacterial strategy.

  • 9.
    Fändrich, M.
    et al.
    Ulm Univ, Germany.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bockmann, A.
    Univ Lyon, France.
    LeVine, H. III
    Univ Kentucky, KY 40536 USA; Univ Kentucky, KY USA.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Amyloid fibril polymorphism: a challenge for molecular imaging and therapy2018In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 283, no 3, p. 218-237Article in journal (Refereed)
    Abstract [en]

    The accumulation of misfolded proteins (MPs), both unique and common, for different diseases is central for many chronic degenerative diseases. In certain patients, MP accumulation is systemic (e.g. TTR amyloid), and in others, this is localized to a specific cell type (e.g. Alzheimers disease). In neurodegenerative diseases, NDs, it is noticeable that the accumulation of MP progressively spreads throughout the nervous system. Our main hypothesis of this article is that MPs are not only markers but also active carriers of pathogenicity. Here, we discuss studies from comprehensive molecular approaches aimed at understanding MP conformational variations (polymorphism) and their bearing on spreading of MPs, MP toxicity, as well as MP targeting in imaging and therapy. Neurodegenerative disease (ND) represents a major and growing societal challenge, with millions of people worldwide suffering from Alzheimers or Parkinsons diseases alone. For all NDs, current treatment is palliative without addressing the primary cause and is not curative. Over recent years, particularly the shape-shifting properties of misfolded proteins and their spreading pathways have been intensively researched. The difficulty in addressing ND has prompted most major pharma companies to severely downsize their nervous system disorder research. Increased academic research is pivotal for filling this void and to translate basic research into tools for medical professionals. Recent discoveries of targeting drug design against MPs and improved model systems to study structure, pathology spreading and toxicity strongly encourage future studies along these lines to provide an opportunity for selective imaging, prognostic diagnosis and therapy.

  • 10.
    Ulrich, Jason D.
    et al.
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Ulland, Tyler K.
    Washington Univ, MO 63130 USA.
    Mahan, Thomas E.
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Song, Wilbur M.
    Washington Univ, MO 63130 USA.
    Zhou, Yingyue
    Washington Univ, MO 63130 USA.
    Reinartz, Mariska
    Washington Univ, MO 63110 USA; Radboud Univ Nijmegen, Netherlands.
    Choi, Seulah
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Jiang, Hong
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Stewart, Floy R.
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Anderson, Elise
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    Wang, Yaming
    Washington Univ, MO 63130 USA; Eli Lilly and Co, IN 46285 USA.
    Colonna, Marco
    Washington Univ, MO 63130 USA.
    Holtzman, David M.
    Washington Univ, MO 63110 USA; Washington Univ, MO 63130 USA; Washington Univ, MO 63130 USA.
    ApoE facilitates the microglial response to amyloid plaque pathology2018In: Journal of Experimental Medicine, ISSN 0022-1007, E-ISSN 1540-9538, Vol. 215, no 4, p. 1047-1058Article in journal (Refereed)
    Abstract [en]

    One of the hallmarks of Alzheimers disease is the presence of extracellular diffuse and fibrillar plaques predominantly consisting of the amyloid-beta (A beta) peptide. Apolipoprotein E (ApoE) influences the deposition of amyloid pathology through affecting the clearance and aggregation of monomeric A beta in the brain. In addition to influencing A beta metabolism, increasing evidence suggests that apoE influences microglial function in neurodegenerative diseases. Here, we characterize the impact that apoE has on amyloid pathology and the innate immune response in APPPS1 Delta E9 and APPPS1-21 transgenic mice. We report that Apoe deficiency reduced fibrillar plaque deposition, consistent with previous studies. However, fibrillar plaques in Apoe-deficient mice exhibited a striking reduction in plaque compaction. Hyperspectral fluorescent imaging using luminescent conjugated oligothiophenes identified distinct A beta morphotypes in Apoe-deficient mice. We also observed a significant reduction in fibrillar plaque-associated microgliosis and activated microglial gene expression in Apoe-deficient mice, along with significant increases in dystrophic neurites around fibrillar plaques. Our results suggest that apoE is critical in stimulating the innate immune response to amyloid pathology.

  • 11.
    Schuetz, Anne K.
    et al.
    Swiss Fed Inst Technol, Switzerland.
    Hornemann, Simone
    Univ Zurich, Switzerland.
    Waelti, Marielle A.
    Swiss Fed Inst Technol, Switzerland.
    Greuter, Ladina
    Univ Zurich, Switzerland.
    Tiberi, Cinzia
    Univ Zurich, Switzerland.
    Cadalbert, Riccardo
    Swiss Fed Inst Technol, Switzerland.
    Gantner, Matthias
    Swiss Fed Inst Technol, Switzerland.
    Riek, Roland
    Swiss Fed Inst Technol, Switzerland.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Boeckmann, Anja
    Univ Lyon 1, France.
    Aguzzi, Adriano
    Univ Zurich, Switzerland.
    Meier, Beat H.
    Swiss Fed Inst Technol, Switzerland.
    Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore2018In: ACS Chemical Neuroscience, ISSN 1948-7193, E-ISSN 1948-7193, Vol. 9, no 3, p. 475-481Article in journal (Refereed)
    Abstract [en]

    Luminescent conjugated polythiophenes bind to amyloid proteins with high affinity. Their fluorescence properties, which are modulated by the detailed conformation in the bound state, are highly sensitive to structural features of the amyloid. Polythiophenes therefore represent diagnostic markers for the detection and differentiation of pathological amyloid aggregates. 560 We clarify the binding site and mode of two different polythiophenes to fibrils of the prion domain of the HET-s protein by solid-state NMR and correlate these findings with their fluorescence properties. We demonstrate how amyloid dyes recognize distinct binding sites with specific topological features. Regularly spaced surface charge patterns and well-accessible grooves on the fibril surface define the pharmacophore of the amyloid, which in turn determines the binding mode and fluorescence wavelength of the polythiophene.

  • 12.
    Zhang, Jun
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sandberg, Alexander
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konsmo, Audun
    Norwegian Univ Sci and Technol, Norway.
    Wu, Xiongyu
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    LeVine, Harry III
    Univ Kentucky, KY 40536 USA.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Norwegian Univ Sci and Technol, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Detection and Imaging of A beta 1-42 and Tau Fibrils by Redesigned Fluorescent X-34 Analogues2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 28, p. 7210-7216Article in journal (Refereed)
    Abstract [en]

    We revisited the Congo red analogue 2,5-bis(4-hydroxy-3-carboxy-styryl)benzene (X-34) to develop this highly fluorescent amyloid dye for imaging Alzheimers disease (AD) pathology comprising A beta and Tau fibrils. A selection of ligands with distinct optical properties were synthesized by replacing the central benzene unit of X-34, with other heterocyclic moieties. Full photophysical characterization was performed, including recording absorbance and fluorescence spectra, Stokes shift, quantum yield and fluorescence lifetimes. All ligands displayed high affinity towards recombinant amyloid fibrils of A beta 1-42 (13-300nmK(d)) and Tau (16-200nmK(d)) as well as selectivity towards the corresponding disease-associated protein aggregates in AD tissue. We observed that these ligands efficiently displaced X-34, but not Pittsburgh compound B (PiB) from recombinant A beta 1-42 amyloid fibrils, arguing for retained targeting of the Congo red type binding site. We foresee that the X-34 scaffold offers the possibility to develop novel high-affinity ligands for A pathology found in human AD brain in a different mode compared with PiB, potentially recognizing different polymorphs of A fibrils.

  • 13.
    Aguilar-Calvo, Patricia
    et al.
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Bett, Cyrus
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Sevillano, Alejandro M.
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Kurt, Timothy D.
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Lawrence, Jessica
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Soldau, Katrin
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Sigurdson, Christina J.
    Univ Calif San Diego, CA 92093 USA; Univ Calif San Diego, CA 92093 USA; Univ Calif Davis, CA USA.
    Generation of novel neuroinvasive prions following intravenous challenge2018In: Brain Pathology, ISSN 1015-6305, E-ISSN 1750-3639, Vol. 28, no 6, p. 999-1011Article in journal (Refereed)
    Abstract [en]

    Prions typically spread into the central nervous system (CNS), likely via peripheral nerves. Yet prion conformers differ in their capacity to penetrate the CNS; certain fibrillar prions replicate persistently in lymphoid tissues with no CNS entry, leading to chronic silent carriers. Subclinical carriers of variant Creutzfeldt-Jakob (vCJD) prions in the United Kingdom have been estimated at 1:2000, and vCJD prions have been transmitted through blood transfusion, however, the circulating prion conformers that neuroinvade remain unclear. Here we investigate how prion conformation impacts brain entry of transfused prions by challenging mice intravenously to subfibrillar and fibrillar strains. We show that most strains infiltrated the brain and caused terminal disease, however, the fibrillar prions showed reduced CNS entry in a strain-dependent manner. Strikingly, the highly fibrillar mCWD prion strain replicated in the spleen and emerged in the brain as a novel strain, indicating that a new neuroinvasive prion had been generated from a previously non-neuroinvasive strain. The new strain showed altered plaque morphology, brain regions targeted and biochemical properties and these properties were maintained upon intracerebral passage. Intracerebral passage of prion-infected spleen re-created the new strain. Splenic prions resembled the new strain biochemically and intracerebral passage of prion-infected spleen re-created the new strain, collectively suggesting splenic prion replication as a potential source. Taken together, these results indicate that intravenous exposure to prion-contaminated blood or blood products may generate novel neuroinvasive prion conformers and disease phenotypes, potentially arising from prion replication in non-neural tissues or from conformer selection.

  • 14.
    Nilsson, Peter
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Department of Physics, The Norwegian University of Science and Technology, 7491, Trondheim, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Luminescent-Conjugated Oligothiophene Probe Applications for Fluorescence Imaging of Pure Amyloid Fibrils and Protein Aggregates in Tissues2018In: Amyloid Proteins: Methods and Protocols / [ed] Einar M. Sigurdsson, Miguel Calero and María Gasset, Humana Press, 2018, Vol. 1779, p. 485-496Chapter in book (Refereed)
    Abstract [en]

    Luminescent-conjugated oligo- and polythiophenes (LCOs and LCPs) are valuable tools for optical imaging of a plethora of protein aggregates associated with amyloidoses. Here, we outline updated protocols for the application of the anionic pentameric LCO, p-FTAA, for staining and hyperspectral imaging of protein aggregates in a variety of settings such as in vitro formed amyloid fibrils, ex vivo tissue sections, and whole brain Drosophila.

  • 15.
    Michno, Wojciech
    et al.
    Univ Gothenburg, Sweden.
    Kaya, Ibrahim
    Univ Gothenburg, Sweden.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Guerard, Laurent
    Univ Gothenburg, Sweden; Univ Basel, Switzerland.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Blennow, Kaj
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden.
    Zetterberg, Henrik
    Univ Gothenburg, Sweden; Sahlgrens Univ Hosp, Sweden; UCL, England.
    Hanrieder, Jorg
    Univ Gothenburg, Sweden; UCL, England; Chalmers Univ Technol, Sweden.
    Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals A beta Aggregation Dependent Anionic Lipid Accumulations and Metabolism2018In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 90, no 13, p. 8130-8138Article in journal (Refereed)
    Abstract [en]

    Amyloid plaque formation constitutes one of the main pathological hallmarks of Alzheimers disease (AD) and is suggested to be a critical factor driving disease pathogenesis. Interestingly, in patients that display amyloid pathology but remain cognitively normal, A beta deposits are predominantly of diffuse morphology suggesting that cored plaque formation is primarily associated with cognitive deterioration and AD pathogenesis. Little is known about the molecular mechanism responsible for conversion of monomeric A beta into neurotoxic aggregates and the predominantly cored deposits observed in AD. The structural diversity among A beta plaques, including cored/compact- and diffuse, may be linked to their distinct A beta profile and other chemical species including neuronal lipids. We developed a novel, chemical imaging paradigm combining matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) and fluorescent amyloid staining. This multimodal imaging approach was used to probe the lipid chemistry associated with structural plaque heterogeneity in transgenic AD mice (tgAPP(Swe)) and was correlated to A beta profiles determined by subsequent laser microdissection and immunoprecipitation-mass spectrometry. Multivariate image analysis revealed an inverse localization of ceramides and their matching metabolites to diffuse and cored structures within single plaques, respectively. Moreover, phosphatidylinositols implicated in AD pathogenesis, were found to localize to the diffuse A beta structures and correlate with A beta 1-42. Further, lysophospholipids implicated in neuroinflammation were increased in all A beta deposits. The results support previous clinical findings on the importance of lipid disturbances in AD pathophysiology and associated sphingolipid processing. These data highlight the potential of multimodal imaging as a powerful technology to probe neuropathological mechanisms.

  • 16.
    Rouhbakhsh, Zeinab
    et al.
    Not Found:Linkoping Univ, Dept Phys Chem and Biol, Div Mol Phys, Lab Mol Mat, S-58183 Linkoping, Sweden; Linkoping Univ, Dept Phys, Div Chem, Chem and Biol, S-58183 Linkoping, Sweden.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Martinsson, Erik
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Svärd, Anna
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Back, Marcus
    Ferdowsi Univ Mashhad, Iran.
    Housaindokht, Mohammad R.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Ferdowsi Univ Mashhad, Iran.
    Selegård, Robert
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Self-Assembly of a Structurally Defined Chiro-Optical Peptide-Oligothiophene Hybrid Material2018In: ACS OMEGA, ISSN 2470-1343, Vol. 3, no 11, p. 15066-15075Article in journal (Refereed)
    Abstract [en]

    Conducting polymers are routinely used in optoelectronic biomaterials, but large polymer polydispersity and poor aqueous compatibility complicate integration with biomolecular templates and development of discrete and defined supramolecular complexes. Herein, we report on a chiro-optical hybrid material generated by the self-assembly of an anionic peptide and a chemically defined cationic pentameric thiophene in aqueous environment. The peptide acts as a stereochemical template for the thiophene and adopts an a-helical conformation upon association, inducing optical activity in the thiophene r-n * transition region. Theoretical calculations confirm the experimentally observed induced structural changes and indicate the importance of electrostatic interactions in the complex. The association process is also probed at the substrate-solvent interface using peptide-functionalized gold nanoparticles, indicating that the peptide can also act as a scaffold when immobilized, resulting in structurally well-defined supramolecular complexes. The hybrid complex could rapidly be assembled, and the kinetics of the formation could be monitored by utilizing the local surface plasmon resonance originating from the gold nanoparticles. We foresee that these findings will aid in designing novel hybrid materials and provide a possible route for the development of functional optoelectronic interfaces for both biomaterials and energy harvesting applications.

  • 17.
    Choong, Ferdinand X.
    et al.
    Karolinska Inst, Sweden.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Schulz, Anette
    Karolinska Inst, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Edlund, Ulrica
    KTH Royal Inst Technol, Sweden.
    Richter-Dahlfors, Agneta
    Karolinska Inst, Sweden.
    Stereochemical identification of glucans by oligothiophenes enables cellulose anatomical mapping in plant tissues2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 3108Article in journal (Refereed)
    Abstract [en]

    Efficient use of plant-derived materials requires enabling technologies for non-disruptive composition analysis. The ability to identify and spatially locate polysaccharides in native plant tissues is difficult but essential. Here, we develop an optical method for cellulose identification using the structure-responsive, heptameric oligothiophene h-FTAA as molecular fluorophore. Spectrophotometric analysis of h-FTAA interacting with closely related glucans revealed an exceptional specificity for beta-linked glucans. This optical, non-disruptive method for stereochemical differentiation of glycosidic linkages was next used for in situ composition analysis in plants. Multi-laser/multi-detector analysis developed herein revealed spatial localization of cellulose and structural cell wall features such as plasmodesmata and perforated sieve plates of the phloem. Simultaneous imaging of intrinsically fluorescent components revealed the spatial relationship between cell walls and other organelles, such as chloroplasts and lignified annular thickenings of the trachea, with precision at the sub-cellular scale. Our non-destructive method for cellulose identification lays the foundation for the emergence of anatomical maps of the chemical constituents in plant tissues. This rapid and versatile method will likely benefit the plant science research fields and may serve the biorefinery industry as reporter for feedstock optimization as well as in-line monitoring of cellulose reactions during standard operations.

  • 18.
    Arja, Katriann
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Elgland, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Lindgren, Mikael
    Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Synthesis and Characterization of Novel Fluoro-glycosylated Porphyrins that can be Utilized as Theranostic Agents2018In: ChemistryOpen, ISSN 2191-1363, Vol. 7, no 7, p. 495-503Article in journal (Refereed)
    Abstract [en]

    Small molecules with modalities for a variety of imaging techniques as well as therapeutic activity are essential, as such molecules render opportunities to simultaneously conduct diagnosis and targeted therapy, so called theranostics. In this regard, glycoporphyrins have proven useful as theranostic agents towards cancer, as well as noncancerous conditions. Herein, the synthesis and characterization of heterobifunctional glycoconjugated porphyrins with two different sugar moieties, a common monosaccharide at three sites, and a 2-fluoro-2-deoxy glucose (FDG) moiety at the fourth site are presented. The fluoro-glycoconjugated porphyrins exhibit properties for multimodal imaging and photodynamic therapy, as well as specificity towards cancer cells. We foresee that our findings might aid in the chemical design of heterobifunctional glycoconjugated porphyrins that could be utilized as theranostic agents.

  • 19.
    Arja, Katriann
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Elgland, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Synthesis and Characterization of Oligothiophene-Porphyrin-Based Molecules That Can Be Utilized for Optical Assignment of Aggregated Amyloid-beta Morphotypes2018In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 6, article id 391Article in journal (Refereed)
    Abstract [en]

    Molecular tools for fluorescent imaging of protein aggregates are essential for understanding the significance of these pathological hallmarks in proteopathic neurodegenerative diseases, such as Alzheimers disease. Here, we report the synthesis of a series of oligothiophene porphyrin hybrids, OTPHs, and the evaluation of these dyes for fluorescent imaging of beta-amyloid aggregates in tissue sections from a transgenic mouse model with Alzheimers disease pathology. The OTPHs proved to be successful for spectral and lifetime imaging assessment of protein deposits and our findings confirm that the enhanced spectral range and distinct lifetime diversity of these novel tools allow a more precise assessment of heterogeneous amyloid morphology compared with the corresponding oligothiophene dye. In addition, the chemical identity of the porphyrin moiety, as well as the spacing between the two optical active moieties, influenced the OTPHs performance for fluorescent assignment of the protein deposits. We foresee that our findings will aid in the chemical design of dyes that can be utilized as optical tools for studying the polymorphic nature of protein aggregates associated with proteopathic neurodegenerative diseases.

  • 20.
    Rasmussen, Jay
    et al.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany; University of Tubingen, Germany.
    Mahler, Jasmin
    University of Tubingen, Germany.
    Beschorner, Natalie
    University of Tubingen, Germany.
    Kaeser, Stephan A.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Haesler, Lisa M.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Baumann, Frank
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Portelius, Erik
    University of Gothenburg, Sweden; Sahlgrens University Hospital, Sweden.
    Blennow, Kaj
    University of Gothenburg, Sweden; Sahlgrens University Hospital, Sweden.
    Lashley, Tammaryn
    UCL, England.
    Fox, Nick C.
    UCL, England.
    Sepulveda-Falla, Diego
    University of Medical Centre Hamburg Eppendorf, Germany; University of Antioquia, Colombia; University of Antioquia, Colombia.
    Glatzel, Markus
    University of Medical Centre Hamburg Eppendorf, Germany.
    Oblak, Adrian L.
    Indiana University of School Med, IN 46202 USA.
    Ghetti, Bernardino
    Indiana University of School Med, IN 46202 USA.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Staufenbiel, Matthias
    University of Tubingen, Germany.
    Walker, Lary C.
    Emory University, GA 30329 USA.
    Jucker, Mathias
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimers disease2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 49, p. 13018-13023Article in journal (Refereed)
    Abstract [en]

    The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-beta peptide (A beta) has been shown to adopt distinct structural conformations with different biological activities, we asked whether A beta can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of beta-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimers disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of A beta nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to A beta plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic A beta-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic A beta among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between A beta conformation and clinical phenotype.

  • 21.
    Chu, Tak-Ho
    et al.
    University of Calgary, Canada.
    Cummins, Karen
    University of Calgary, Canada.
    Sparling, Joseph S.
    University of Calgary, Canada.
    Tsutsui, Shigeki
    University of Calgary, Canada.
    Brideau, Craig
    University of Calgary, Canada.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Joseph, Jeffrey T.
    Alberta Health Serv, Canada.
    Stys, Peter K.
    University of Calgary, Canada.
    Axonal and myelinic pathology in 5xFAD Alzheimers mouse spinal cord2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 11, article id e0188218Article in journal (Refereed)
    Abstract [en]

    As an extension of the brain, the spinal cord has unique properties which could allow us to gain a better understanding of CNS pathology. The brain and cord share the same cellular components, yet the latter is simpler in cytoarchitecture and connectivity. In Alzheimers research, virtually all focus is on brain pathology, however it has been shown that transgenic Alzheimers mouse models accumulate beta amyloid plaques in spinal cord, suggesting that the cord possesses the same molecular machinery and conditions for plaque formation. Here we report a spatial-temporal map of plaque load in 5xFAD mouse spinal cord. We found that plaques started to appear at 11 weeks, then exhibited a time dependent increase and differential distribution along the cord. More plaques were found in cervical than other spinal levels at all time points examined. Despite heavy plaque load at 6 months, the number of cervical motor neurons in 5xFAD mice is comparable to wild type littermates. On detailed microscopic examination, fine beta amyloid-containing and beta sheet-rich thread-like structures were found in the peri-axonal space of many axons. Importantly, these novel structures appear before any plaque deposits are visible in young mice spinal cord and they co-localize with axonal swellings at later stages, suggesting that these thread-like structures might represent the initial stages of plaque formation, and could play a role in axonal damage. Additionally, we were able to demonstrate increasing myelinopathy in aged 5xFAD mouse spinal cord using the lipid probe Nile Red with high resolution. Collectively, we found significant amyloid pathology in grey and white matter of the 5xFAD mouse spinal cord which indicates that this structure maybe a useful platform to study mechanisms of Alzheimers pathology and disease progression.

  • 22.
    Elgland, Mathias
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nordeman, P.
    Uppsala University, Sweden.
    Fyrner, Timmy
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Antoni, G.
    Uppsala University, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Konradsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    beta-Configured clickable [F-18] FDGs as novel F-18-fluoroglycosylation tools for PET2017In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 41, no 18, p. 10231-10236Article in journal (Refereed)
    Abstract [en]

    In oncology and neurology the F-18-radiolabeled glucose analogue 2-deoxy-2-[F-18]fluoro-D-glucose ([F-18]FDG) is by far the most commonly employed metabolic imaging agent for positron emission tomography (PET). Herein, we report a novel synthetic route to beta-configured mannopyranoside precursors and a chemoselective F-18-fluoroglycosylation method that employ two b-configured [F-18]FDG derivatives equipped with either a terminal azide or alkyne aglycon respectively, for use as a CuAAC clickable tool set for PET. The b-configured precursors provided the corresponding [F-18]FDGs in a radiochemical yield of 77-88%. Further, the clickability of these [F-18]FDGs was investigated by click coupling to the suitably functionalized Fmoc-protected amino acids, Fmoc-N-(propargyl)-glycine and Fmoc-3-azido-L-alanine, which provided the F-18-fluoroglycosylated amino acid conjugates in radiochemical yields of 75-83%. The F-18-fluoroglycosylated amino acids presented herein constitute a new and interesting class of metabolic PET radiotracers.

  • 23.
    Selegård, Robert
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Rouhbalchsh, Zeinab
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Shirani, Hamid
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Johansson, Leif
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
    Norman, Patrick
    KTH Royal Institute Technology, Sweden.
    Linares, Mathieu
    KTH Royal Institute Technology, Sweden.
    Aili, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Distinct Electrostatic Interactions Govern the Chiro-Optical Properties and Architectural Arrangement of Peptide-Oligothiophene Hybrid Materials2017In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 50, no 18, p. 7102-7110Article in journal (Refereed)
    Abstract [en]

    The development of chiral optoelectronic materials is of great interest due to their potential of being utilized in electronic devices, biosensors, and artificial enzymes. Herein, we report the chiral optical properties and architectural arrangement of optoelectronic materials generated from noncovalent self-assembly of a cationic synthetic peptide and five chemically defined anionic pentameric oligothiophenes. The peptide-oligothiophene hybrid materials exhibit a three-dimensional ordered helical structure and optical activity in the pi-pi* transition region that are observed due to a single chain induced chirality of the conjugated thiophene backbone upon interaction with the peptide. The latter property is highly dependent on electrostatic interactions between the peptide and the oligothiophene, verifying that a distinct spacing of the carboxyl groups along the thiophene backbone is a major chemical determinant for having a hybrid material with distinct optoelectronic properties. The necessity of the electrostatic interaction between specific carboxyl functionalities along the thiophene backbone and the lysine residues of the peptide, as well as the induced circular dichroism of the thiophene backbone, was also confirmed by theoretical calculations. We foresee that our findings will aid in designing optoelectronic materials with dynamic architectonical precisions as well as offer the possibility to create the next generation of materials for organic electronics and organic bioelectronics.

  • 24.
    Hahn, Katharina
    et al.
    Christian Albrechts University of Kiel, Germany.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Urban, Peter
    Institute Pathol and Dermatopathol, Germany.
    Ruediger Meliss, Rolf
    Institute Dermatopathol, Germany.
    Behrens, Hans-Michael
    Christian Albrechts University of Kiel, Germany.
    Krueger, Sandra
    Christian Albrechts University of Kiel, Germany.
    Roecken, Christoph
    Christian Albrechts University of Kiel, Germany.
    Establishing and validating the fluorescent amyloid ligand h-FTAA (heptamer formyl thiophene acetic acid) to identify transthyretin amyloid deposits in carpal tunnel syndrome2017In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 24, no 2, p. 78-86Article in journal (Refereed)
    Abstract [en]

    Transthyretin-derived (ATTR) amyloidosis is a frequent finding in carpal tunnel syndrome. We tested the following hypotheses: the novel fluorescent amyloid ligand heptameric formic thiophene acetic acid (h-FTAA) has a superior sensitivity for the detection of amyloid compared with Congo red-staining; Amyloid load correlates with patient gender and/or patient age. We retrieved 208 resection specimens obtained from 184 patients with ATTR amyloid in the carpal tunnel. Serial sections were stained with Congo red, h-FTAA and an antibody directed against transthyretin (TTR). Stained sections were digitalized and forwarded to computational analyses. The amount of amyloid was correlated with patient demographics. Amyloid stained intensely with h-FTAA and an anti-TTR-antibody. Congo red-staining combined with fluorescence microscopy was significantly less sensitive than h-FTAA-fluorescence and TTR-immunostaining: the highest percentage area was found in TTR-immunostained sections, followed by h-FTAA and Congo red. The Pearson correlation coefficient was .8 (Congo red vs. h-FTAA) and .9 (TTR vs. h-FTAA). Amyloid load correlated with patient gender, anatomical site and patient age. h-FTAA is a highly sensitive method to detect even small amounts of ATTR amyloid in the carpal tunnel. The staining protocol is easy and h-FTAA may be a much more sensitive procedure to detect amyloid at an earlier stage.

  • 25.
    Nyström, Sofie
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging2017In: Journal of Visualized Experiments, ISSN 1940-087X, E-ISSN 1940-087X, no 128, article id e56279Article in journal (Refereed)
    Abstract [en]

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimers and Parkinsons disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive beta-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  • 26.
    Stavrinidou, Eleni
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Gabrielsson, Roger
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Nilsson, K. Peter R.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Singh, Sandeep Kumar
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Franco- Gonzalez, Juan Felipe
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Volkov, Anton V.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Jonsson, Magnus P.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Grimoldi, Andrea
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Elgland, Mathias
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Zozoulenko, Igor V.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Simon, Daniel
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    In vivo polymerization and manufacturing of wires and supercapacitors in plants2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 11, p. 2807-2812Article in journal (Refereed)
    Abstract [en]

    Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization

  • 27.
    Ullsten, Sara
    et al.
    Uppsala University, Sweden.
    Bohman, Sara
    Uppsala University, Sweden.
    Oskarsson, Marie E.
    Uppsala University, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Westermark, Gunilla T.
    Uppsala University, Sweden.
    Carlsson, Per-Ola
    Uppsala University, Sweden.
    Islet amyloid deposits preferentially in the highly functional and most blood-perfused islets2017In: Endocrine Connections, ISSN 2049-3614, E-ISSN 2049-3614, Vol. 6, no 7, p. 458-468Article in journal (Refereed)
    Abstract [en]

    Islet amyloid and beta cell death in type 2 diabetes are heterogeneous events, where some islets are affected early in the disease process, whereas others remain visibly unaffected. This study investigated the possibility that inter-islet functional and vascular differences may explain the propensity for amyloid accumulation in certain islets. Highly blood-perfused islets were identified by microspheres in human islet amyloid polypeptide expressing mice fed a high-fat diet for three or 10 months. These highly blood-perfused islets had better glucose-stimulated insulin secretion capacity than other islets and developed more amyloid deposits after 10 months of high-fat diet. Similarly, human islets with a superior release capacity formed more amyloid in high glucose culture than islets with a lower release capacity. The amyloid formation in mouse islets was associated with a higher amount of prohormone convertase 1/3 and with a decreased expression of its inhibitor proSAAS when compared to islets with less amyloid. In contrast, levels of prohormone convertase 2 and expression of its inhibitor neuroendocrine protein 7B2 were unaltered. A misbalance in prohormone convertase levels may interrupt the normal processing of islet amyloid polypeptide and induce amyloid formation. Preferential amyloid load in the most blood-perfused and functional islets may accelerate the progression of type 2 diabetes.

  • 28.
    Snipstad, Sofie
    et al.
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
    Hak, Sjoerd
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
    Baghirov, Habib
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
    Sulheim, Einar
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; SINTEF Materials and Chemistry, Trondheim, Norway.
    Mørch, Ýrr
    SINTEF Materials and Chemistry, Trondheim, Norway.
    Lélu, Sylvie
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
    von Haartman, Eva
    Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, Finland; Laboratory of Physical Chemistry, Åbo Akademi University, Turku, Finland.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, K. Peter R.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Klymchenko, Andrey S
    Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Université de Strasbourg, Strasbourg, France.
    de Lange Davies, Catharina
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
    Åslund, Andreas K. O.
    Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
    Labeling nanoparticles: Dye leakage and altered cellular uptake2017In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 91, no 8, p. 760-766Article in journal (Refereed)
    Abstract [en]

    In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues. To allow for versatile NP studies with a variety of fluorescence-based assays, labeling of NPs with different dyes is desirable. Hence, when new dyes are introduced, simple and fast screening methods to assess labeling stability and NP-cell interactions are needed. For this purpose, we have used a previously described generic flow cytometry assay; incubation of cells with NPs at 4 and 37C. Cell-NP interaction is confirmed by cellular fluorescence after 37C incubation, and NP-dye retention is confirmed when no cellular fluorescence is detected at 4C. Three different NP-platforms labeled with six different dyes were screened, and a great variability in dye retention was observed. Surprisingly, incorporation of trace amounts of certain dyes was found to reduce or even inhibit NP uptake. This work highlights the importance of thoroughly evaluating every dye-NP combination before pursuing NP-based applications. © 2016 International Society for Advancement of Cytometry.

  • 29.
    Öberg, Elisabet
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Non-fused Phospholes as Fluorescent Probes for Imaging of Lipid Droplets in Living Cells2017In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 5, article id 28Article in journal (Refereed)
    Abstract [en]

    Molecular tools for fluorescent imaging of specific compartments in cells are essential for understanding the function and activity of cells. Here, we report the synthesis of a series of pyridyl- and thienyl-substituted phospholes and the evaluation of these dyes for fluorescent imaging of cells. The thienyl-substituted phospholes proved to be successful for staining of cultured normal and malignant cells due to their fluorescent properties and low toxicity. Co-staining experiments demonstrated that these probes target lipid droplets, which are, lipid-storage organelles found in the cytosol of nearly all cell types. Our findings confirm that thienyl-substituted phospholes can be utilized as fluorescent tools for vital staining of cells, and we foresee that these fluorescent dyes might be used in studies to unravel the roles that lipid droplets play in cellular physiology and in diseases.

  • 30.
    Loffler, S.
    et al.
    Karolinska Institute, Sweden.
    Melican, K.
    Karolinska Institute, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Richter-Dahlfors, A.
    Karolinska Institute, Sweden.
    Organic bioelectronics in medicine2017In: Journal of Internal Medicine, ISSN 0954-6820, E-ISSN 1365-2796, Vol. 282, no 1, p. 24-36Article in journal (Refereed)
    Abstract [en]

    A major challenge in the growing field of bioelectronic medicine is the development of tissue interface technologies promoting device integration with biological tissues. Materials based on organic bioelectronics show great promise due to a unique combination of electronic and ionic conductivity properties. In this review, we outline exciting developments in the field of organic bioelectronics and demonstrate the medical importance of these active, electronically controllable materials. Importantly, organic bioelectronics offer a means to control cell-surface attachment as required for many device-tissue applications. Experiments have shown that cells readily attach and proliferate on reduced but not oxidized organic bioelectronic materials. In another application, the active properties of organic bioelectronics were used to develop electronically triggered systems for drug release. After incorporating drugs by advanced loading strategies, small compound drugs were released upon electrochemical trigger, independent of charge. Another type of delivery device was used to achieve well-controlled, spatiotemporal delivery of cationic drugs. Via electrophoretic transport within a polymer, cations were delivered with single-cell precision. Finally, organic bioelectronic materials are commonly used as electrode coatings improving the electrical properties of recording and stimulation electrodes. Because such coatings drastically reduce the electrode impedance, smaller electrodes with improved signal-to-noise ratio can be fabricated. Thus, rapid technological advancement combined with the creation of tiny electronic devices reacting to changes in the tissue environment helps to promote the transition from standard pharmaceutical therapy to treatment based on electroceuticals. Moreover, the widening repertoire of organic bioelectronics will expand the options for true biological interfaces, providing the basis for personalized bioelectronic medicine.

  • 31.
    Aguilar-Calvo, Patricia
    et al.
    University of Calif San Diego, CA 92093 USA; University of Calif San Diego, CA 92093 USA.
    Xiao, Xiangzhu
    Case Western Reserve University, OH 44116 USA.
    Bett, Cyrus
    University of Calif San Diego, CA 92093 USA; University of Calif San Diego, CA 92093 USA; US FDA, MD USA.
    Erana, Hasier
    CIC bioGUNE, Spain.
    Soldau, Katrin
    University of Calif San Diego, CA 92093 USA.
    Castilla, Joaquin
    University of Calif San Diego, CA 92093 USA; CIC bioGUNE, Spain; Ikerbasque, Spain.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Surewicz, Witold K.
    Case Western Reserve University, OH 44116 USA.
    Sigurdson, Christina J.
    University of Calif San Diego, CA 92093 USA; University of Calif San Diego, CA 92093 USA; University of Calif Davis, CA 95616 USA.
    Post-translational modifications in PrP expand the conformational diversity of prions in vivo2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 43295Article in journal (Refereed)
    Abstract [en]

    Misfolded prion protein aggregates (PrPSc) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-beta, tau, alpha-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)anchorless prion protein, PrPC, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how posttranslational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPIanchorless PrPSc is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of beta-sheets that encompass residues 139 and 186 of PrPSc. These findings show how variation in posttranslational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.

  • 32.
    Nyström, Sofie
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Vahdat Shariat Panahi, Aida
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Westermark, Per
    d Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden.
    Westermark, Gunilla T.
    e Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Lundmark, Katarzyna
    Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Clinical pathology.
    Seed-dependent templating of murine AA amyloidosis2017In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 24, no sup1, p. 140-141Article in journal (Other academic)
    Abstract [en]

    n/a

  • 33.
    Appelqvist, Hanna
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Stranius, Kati
    University of Gothenburg, Sweden.
    Börjesson, Karl
    University of Gothenburg, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Dyrager, Christine
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Specific Imaging of Intracellular Lipid Droplets Using a Benzothiadiazole Derivative with Solvatochromic Properties2017In: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 28, no 5, p. 1363-1370Article in journal (Refereed)
    Abstract [en]

    Altered lipid metabolism and extensive lipid storage in cells have been associated with various medical disorders, including cancer. The development of fluorescent probes that specifically accumulate in lipid deposits is therefore of great interest in order to study pathological processes that are linked to dysregulated lipogenesis. In the present study, we present a small fluorescent benzothiadiazole dye that specifically stains lipid droplets in living and fixated cells. The photophysical characterization of the probe revealed strong solvatochromic behavior, large Stokes shifts, and high fluorescent quantum yields in hydrophobic solvents. In addition, the fluorophore exhibits a nontoxic profile and a high signal-to-noise ratio in cells (i.e., lipid droplets vs cytosol), which make it an excellent candidate for studying lipid biology using confocal fluorescent microscopy.

  • 34.
    Storr, Tim
    et al.
    Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
    Dyrager, Christine
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
    Pinto Vieira, Rafael
    Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada(1);Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil(3);CAPES Foundation, Ministry of Education of Brazil, 70040-020 Brasília, DF, Brazil.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Synthesis and evaluation of benzothiazole-triazole and benzothiadiazole-triazole scaffolds as potential molecular probes for amyloid-β aggregation.2017In: New Journal of Chemistry, ISSN 1144-0546, E-ISSN 1369-9261, Vol. 41, no 4, p. 8p. 1566-1573Article in journal (Refereed)
    Abstract [en]

    Small-molecule ligands that bind to misfolded protein aggregates are essential tools for the study and detection of pathological hallmarks in neurodegenerative disorders, such as Alzheimer's disease (AD). In the present study, three compounds (one benzothiazole-triazole, L1, and two benzothiadiazole-triazoles, L2 and L3) were synthesized via a modular approach (azide–alkyne cycloaddition) and evaluated as potential ligands for amyloid-β (Aβ) aggregates. The binding to amyloid-like fibrils, generated from recombinant Aβ1–42, were studied and the binding specificity to amyloid deposits was evaluated in brain sections from transgenic mice with AD pathology. All three derivatives showed significant reduced emission in the presence of recombinant Aβ1–42 amyloid fibrils. In addition, the observed binding to Aβ deposits in tissue sections suggests that the benzothiazole-triazole and benzothiadiazole-triazole structures are promising molecular scaffolds that can be modified for binding to specific protein aggregates. [ABSTRACT FROM AUTHOR]

  • 35.
    Shirani, Hamid
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Klingstedt, Therése
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Cairns, Nigel J.
    Washington University, MO USA.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Synthesis of Thiophene-Based Optical Ligands That Selectively Detect Tau Pathology in Alzheimers Disease2017In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 67, p. 17127-17135Article in journal (Refereed)
    Abstract [en]

    The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the development of molecular ligands able to detect these pathological hallmarks is essential. Here, the synthesis of thiophene based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs) that can be utilized for selective assignment of tau aggregates in brain tissue with Alzheimers disease (AD) pathology is reported. The ability of the ligands to selectively distinguish tau deposits from the other AD associated pathological hallmark, senile plaques consisting of aggregated amyloid- (A) peptide, was reduced when the chemical composition of the ligands was altered, verifying that specific molecular interactions between the ligands and the aggregates are necessary for the selective detection of tau deposits. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species consisting of different proteins. In addition, the bTVBT scaffold might be utilized to create powerful practical research tools for studying the underlying molecular events of tau aggregation and for creating novel agents for clinical imaging of tau pathology in AD.

  • 36.
    Burns, R. E.
    et al.
    University of Calif San Diego, CA 92103 USA.
    Gaffney, P. M.
    University of Calif San Diego, CA 92103 USA.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Armien, A. G.
    University of Minnesota, MN 55108 USA.
    Pessier, A. P.
    University of Calif San Diego, CA 92103 USA.
    Systemic Amyloidosis in an African Tiger Snake (Telescopus semiannulatus)2017In: Journal of Comparative Pathology, ISSN 0021-9975, E-ISSN 1532-3129, Vol. 157, no 2-3, p. 136-140Article in journal (Refereed)
    Abstract [en]

    An adult male African tiger snake (Telescopts semiannulatus) was diagnosed with disseminated mycobacteriosis and a hepatic biliary cystadenocarcinoma. Histologically, the spleen was largely replaced by extracellular deposits of eosinophilic, fibrillar to hyaline material. Similar material was also present in the testicular interstitium and occasional blood vessel walls. This material was congophilic with strong green birefringence under polarized light and emitted fluorescence when bound to the luminescent-conjugated oligothiophene, h-FTAA, an amyloid binding probe. Ultrastructurally, deposits were composed of aggregates of haphazardly arranged, non-branching fibrils up to 8 nm in diameter and of indeterminate length. These findings all supported a diagnosis of amyloidosis, most likely amyloid A (AA) type based on concurrent inflammatory disease in this snake. However, immunohistochemistry for serum amyloid A was negative. There are only rare previous reports of amyloidosis in reptiles and many have been incompletely characterized. This case presents a thorough investigation into an occurrence of systemic amyloidosis in a snake, including a novel use of luminescent-conjugated oligothiophene binding in a reptile to confirm the diagnosis. (C) 2017 Elsevier Ltd. All rights reserved.

  • 37.
    Nordeman, Patrik
    et al.
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    Johansson, Leif B. G.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Estrada, Sergio
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden..
    Hall, Håkan
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden..
    Sjölander, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Westermark, Gunilla T.
    Department of Medicinal Cell Biology, Uppsala University, Uppsala, Sweden.
    Westermark, Per
    Department of Immunology, Genetics and Pathology, Uppsala University, UppsalaSweden.
    Nilsson, Lars
    Department of Pharmacology, University of Oslo, Oslo, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, K. Peter R.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Antoni, Gunnar
    Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
    11C and 18FRadiolabeling of Tetra- and Pentathiophenes as PET-ligands for Amyloid Protein Aggregates2016In: ACS Medicinal Chemistry Letters, ISSN 1948-5875, E-ISSN 1948-5875, Vol. 7, no 4, p. 368-373Article in journal (Refereed)
    Abstract [en]

    Three oligothiophenes were evaluated as PET tracers for the study of local and systemic amyloidosis ex vivo using tissue from patients with amyloid deposits and in vivo using healthy animals and PET-CT. The ex vivo binding studies revealed that all three labeled compounds bound specifically to human amyloid deposits. Specific binding was found in the heart, kidney, liver and spleen. To verify the specificity of the oligothiophenes towards amyloid deposits, tissue sections with amyloid pathology were stained using the fluorescence exhibited by the compounds and evaluated with multiphoton microscopy. Furthermore, in vivo rat and monkey PET-CT studies showed very low uptake in the brain, pancreas and heart of the healthy animals indicating low non-specific binding to healthy tissue. The biological evaluations indicated that this is a promising group of compounds for the visualization of systemic and localized amyloidosis.

  • 38.
    Bäck, Marcus
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    LeVine, Harry III
    University of Kentucky, KY 40536 USA.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Anionic Oligothiophenes Compete for Binding of X-34 but not PIB to Recombinant A beta Amyloid Fibrils and Alzheimers Disease Brain-Derived A beta2016In: CHEMISTRY-A EUROPEAN JOURNAL, ISSN 0947-6539, Vol. 22, no 51, p. 18335-18338Article in journal (Refereed)
    Abstract [en]

    Deposits comprised of amyloid- (A) are one of the pathological hallmarks of Alzheimers disease (AD) and small hydrophobic ligands targeting these aggregated species are used clinically for the diagnosis of AD. Herein, we observed that anionic oligothiophenes efficiently displaced X-34, a Congo Red analogue, but not Pittsburgh compoundB (PIB) from recombinant A amyloid fibrils and Alzheimers disease brain-derived A. Overall, we foresee that the oligothiophene scaffold offers the possibility to develop novel high-affinity ligands for A pathology only found in human AD brain, targeting a different site than PIB.

  • 39.
    Novotny, Renata
    et al.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany; University of Tubingen, Germany.
    Langer, Franziska
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Mahler, Jasmin
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany; University of Tubingen, Germany.
    Skodras, Angelos
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Vlachos, Andreas
    Goethe University of Frankfurt, Germany.
    Wegenast-Braun, Bettina M.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Kaeser, Stephan A.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Neher, Jonas J.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Eisele, Yvonne S.
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Pietrowski, Marie J.
    University of Freiburg, Germany.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Deller, Thomas
    Goethe University of Frankfurt, Germany.
    Staufenbiel, Matthias
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Heimrich, Bernd
    University of Freiburg, Germany.
    Jucker, Mathias
    University of Tubingen, Germany; German Centre Neurodegenerat Disease, Germany.
    Conversion of Synthetic A beta to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model2016In: Journal of Neuroscience, ISSN 0270-6474, E-ISSN 1529-2401, Vol. 36, no 18, p. 5084-5093Article in journal (Refereed)
    Abstract [en]

    The aggregation of amyloid-beta peptide (A beta) inbrain is an early event and hallmark of Alzheimers disease (AD). We combined the advantages of in vitro and in vivo approaches to study cerebral beta-amyloidosis by establishing a long-term hippocampal slice culture(HSC) model. While no A beta deposition was noted in untreated HSCs of postnatal A beta precursor protein transgenic (APP tg) mice, A beta deposition emerged in HSCs when cultures were treated once with brain extract from aged APP tg mice and the culture medium was continuously supplemented with synthetic A beta. Seeded A beta deposition was also observed under the same conditions in HSCs derived from wild-type or App-null mice but in no comparable way when HSCs were fixed before cultivation. Both the nature of the brain extract and the synthetic A beta species determined the conformational characteristics of HSCA beta deposition. HSCA beta deposits induced a microglia response, spine loss, and neuritic dystrophy but no obvious neuron loss. Remarkably, in contrast to in vitro aggregated synthetic A beta, homogenates of A beta deposits containing HSCs induced cerebral beta-amyloidosis upon intracerebral inoculation into young APP tg mice. Our results demonstrate that a living cellular environment promotes the seeded conversion of synthetic A beta into a potent in vivo seeding-active form.

  • 40.
    Gallardo, Rodrigo
    et al.
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Ramakers, Meine
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    De Smet, Frederik
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Claes, Filip
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Khodaparast, Ladan
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Khodaparast, Laleh
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Couceiro, Jose R.
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Langenberg, Tobias
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Siemons, Maxime
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Young, Laurence J.
    University of Cambridge, England; University of Leeds, England; University of Leeds, England.
    Laine, Romain F.
    University of Cambridge, England.
    Young, Lydia
    University of Cambridge, England; University of Leeds, England; University of Leeds, England.
    Radaelli, Enrico
    VIB Centre Biol Disease, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Benilova, Iryna
    VIB Centre Biol Disease, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Kumar, Manoj
    Katholieke University of Leuven, Belgium.
    Staes, An
    VIB, Belgium; University of Ghent, Belgium.
    Desager, Matyas
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Beerens, Manu
    Katholieke University of Leuven, Belgium.
    Vandervoort, Petra
    Katholieke University of Leuven, Belgium.
    Luttun, Aernout
    Katholieke University of Leuven, Belgium.
    Gevaert, Kris
    VIB, Belgium; University of Ghent, Belgium.
    Bormans, Guy
    Katholieke University of Leuven, Belgium.
    Dewerchin, Mieke
    Katholieke University of Leuven, Belgium; VIB, Belgium.
    Van Eldere, Johan
    Katholieke University of Leuven, Belgium.
    Carmeliet, Peter
    Katholieke University of Leuven, Belgium; VIB, Belgium.
    Vande Velde, Greetje
    Katholieke University of Leuven, Belgium.
    Verfaillie, Catherine
    Katholieke University of Leuven, Belgium.
    Kaminski, Clemens F.
    University of Cambridge, England.
    De Strooper, Bart
    VIB Centre Biol Disease, Belgium; Katholieke University of Leuven, Belgium; Katholieke University of Leuven, Belgium.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Serpell, Louise
    University of Sussex, England.
    Schymkowitz, Joost
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    Rousseau, Frederic
    VIB Switch Lab, Belgium; Katholieke University of Leuven, Belgium.
    De novo design of a biologically active amyloid2016In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 354, no 6313, p. 720-+Article in journal (Refereed)
    Abstract [en]

    Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction. We found that amyloid toxicity is observed only in cells that both express VEGFR2 and are dependent on VEGFR2 activity for survival. Thus, amyloid toxicity here appears to be both protein-specific and conditional-determined by VEGFR2 loss of function in a biological context in which target protein function is essential.

  • 41.
    Sjölander, Daniel
    et al.
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Roecken, Christoph
    University of Kiel, Germany.
    Westermark, Per
    Uppsala University, Sweden.
    Westermark, Gunilla T.
    Uppsala University, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Establishing the fluorescent amyloid ligand h-FTAA for studying human tissues with systemic and localized amyloid2016In: Amyloid: Journal of Protein Folding Disorders, ISSN 1350-6129, E-ISSN 1744-2818, Vol. 23, no 2, p. 98-108Article in journal (Refereed)
    Abstract [en]

    Rapid and accurate detection of amyloid deposits in routine surgical pathology settings are of great importance. The use of fluorescence microscopy in combination with appropriate amyloid specific dyes is very promising in this regard. Here we report that a luminescent conjugated oligothiophene, h-FTAA, rapidly and with high sensitivity and selectivity detects amyloid deposits in verified clinical samples from systemic amyloidosis patients with AA, AL and ATTR types; as well as in tissues laden with localized amyloidosis of AANF, AIAPP and ASem1 type. The probe h-FTAA emitted yellow red fluorescence on binding to amyloid deposits, whereas no apparent staining was observed in surrounding tissue. The only functional structure stained with h-FTAA showing the amyloidotypic fluorescence spectrum was Paneth cell granules in intestine. Screening of 114 amyloid containing tissues derived from 107 verified (Congo red birefringence and/or immunohistochemistry) amyloidosis patients revealed complete correlation between h-FTAA and Congo red fluorescence (107/107, 100% sensitivity). The majority of Congo red negative control cases (27 of 32, 85% specificity) were negative with h-FTAA. Small Congo red negative aggregates in kidney, liver, pancreas and duodenum were found by h-FTAA fluorescence in five control patients aged 72-83 years suffering from diverse diseases. The clinical significance of these false-positive lesions is currently not known. Because h-FTAA fluorescence is one magnitude brighter than Congo red and as the staining is performed four magnitudes lower than the concentration of dye, we believe that these inclusions are beyond detection by Congo red. We conclude that h-FTAA is a fluorescent hypersensitive, rapid and powerful tool for identifying amyloid deposits in tissue sections. Use of h-FTAA can be exploited as a rapid complementary technique for accurate detection of amyloid in routine surgical pathology settings. Our results also implicate the potential of the technique for detection of prodromal amyloidosis as well as for discovery of new amyloid-like protein aggregates in humans.

  • 42.
    Psonka-Antonczyk, Katarzyna M.
    et al.
    Department of Physics, Norwegian University of Science and Technology NTNU, Trondheim, Norway.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Johansson, Leif
    Linköping University, Faculty of Science & Engineering. Linköping University, Department of Physics, Chemistry and Biology, Chemistry.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Department of Physics, Norwegian University of Science and Technology NTNU, Trondheim, Norway.
    Stokke, Björn T.
    Department of Physics, Norwegian University of Science and Technology NTNU, Trondheim, Norway.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nyström, Sofie
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nanoscale Structure and Spectroscopic Probing of A beta 1-40 Fibril Bundle Formation2016In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 4, article id 44Article in journal (Refereed)
    Abstract [en]

    Amyloid plaques composed of fibrillar Amyloid-beta (A beta) are hallmarks of Alzheimers disease. However, A beta fibrils are morphologically heterogeneous. Conformation sensitive luminescent conjugated oligothiophenes (LCOs) are versatile tools for monitoring such fibril polymorphism in vivo and in vitro. Biophysical methods applied on in vitro generated A beta fibrils, stained with LCOs with different binding and fluorescence properties, can be used to characterize the A beta fibrillation in depth, far beyond that possible for in vivo generated amyloid plaques. In this study, in vitro fibrillation of the A beta 1-40 peptide was monitored by time-lapse transmission electron microscopy, LCO fluorescence, and atomic force microscopy. Differences in the LCO binding in combination with nanoscale imaging revealed that spectral variation correlated with fibrils transforming from solitary filaments (empty set similar to 2.5 nm) into higher order bundled structures (empty set similar to 5 nm). These detailed in vitro experiments can be used to derive data that reflects the heterogeneity of in vivo generated A beta plaques observed by LCO fluorescence. Our work provides new structural basis for targeted drug design and molecular probe development for amyloid imaging.

  • 43.
    Choong, Ferdinand X.
    et al.
    Karolinska Institute, Sweden.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Steiner, Svava E.
    Karolinska Institute, Sweden.
    Melican, Keira
    Karolinska Institute, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Edlund, Ulrica
    KTH Royal Institute Technology, Sweden.
    Richter-Dahlfors, Agneta
    Karolinska Institute, Sweden.
    Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 35578Article in journal (Refereed)
    Abstract [en]

    Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.

  • 44.
    Bednarska, Natalia G.
    et al.
    KULeuven, Belgium; VIB, Belgium.
    van Eldere, Johan
    KULeuven, Belgium.
    Gallardo, Rodrigo
    VIB, Belgium; KULeuven, Belgium.
    Ganesan, Ashok
    VIB, Belgium; KULeuven, Belgium.
    Ramakers, Meine
    VIB, Belgium; KULeuven, Belgium.
    Vogel, Isabel
    KULeuven, Belgium.
    Baatsen, Pieter
    VIB11, Belgium; KULeuven, Belgium.
    Staes, An
    VIB, Belgium; University of Ghent, Belgium.
    Goethals, Marc
    VIB, Belgium; University of Ghent, Belgium.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Gevaert, Kris
    VIB, Belgium; University of Ghent, Belgium.
    Schymkowitz, Joost
    VIB, Belgium; KULeuven, Belgium.
    Rousseau, Frederic
    VIB, Belgium; KULeuven, Belgium.
    Protein aggregation as an antibiotic design strategy2016In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 99, no 5, p. 849-865Article in journal (Refereed)
    Abstract [en]

    Taking advantage of the xenobiotic nature of bacterial infections, we tested whether the cytotoxicity of protein aggregation can be targeted to bacterial pathogens without affecting their mammalian hosts. In particular, we examined if peptides encoding aggregation-prone sequence segments of bacterial proteins can display antimicrobial activity by initiating toxic protein aggregation in bacteria, but not in mammalian cells. Unbiased in vitro screening of aggregating peptide sequences from bacterial genomes lead to the identification of several peptides that are strongly bactericidal against methicillin-resistant Staphylococcus aureus. Upon parenteral administration in vivo, the peptides cured mice from bacterial sepsis without apparent toxic side effects as judged from histological and hematological evaluation. We found that the peptides enter and accumulate in the bacterial cytosol where they cause aggregation of bacterial polypeptides. Although the precise chain of events that leads to cell death remains to be elucidated, the ability to tap into aggregation-prone sequences of bacterial proteomes to elicit antimicrobial activity represents a rich and unexplored chemical space to be mined in search of novel therapeutic strategies to fight infectious diseases.

  • 45.
    Choong, Ferdinand
    et al.
    Karolinska Institutet, Stockholm, Sweden.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Fahlen, Sara
    Karolinska Institutet, Stockholm, Sweden.
    Johansson, Leif B. G.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Melican, Keira
    Karolinska Institutet, Stockholm, Sweden.
    Rhen, Mikael
    Karolinska Institutet, Stockholm, Sweden.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Richter-Dahlfors, Agneta
    Karolinska Institutet, Stockholm, Sweden.
    Real-time opto-tracing of curli and cellulose in live Salmonella biofilms using conjugated oligothiophenes2016In: npj Biofilms and Microbiomes, ISSN 2055-5008, Vol. 2, article id 16024Article in journal (Refereed)
    Abstract [en]

    Extracellular matrix (ECM) is the protein- and polysaccharide-rich backbone of bacterial biofilms that provides a defensive barrier in clinical, environmental and industrial settings. Understanding the dynamics of biofilm formation in native environments has been hindered by a lack of research tools. Here we report a method for simultaneous, real-time, in situ detection and differentiation of the Salmonella ECM components curli and cellulose, using non-toxic, luminescent conjugated oligothiophenes (LCOs). These flexible conjugated polymers emit a conformation-dependent fluorescence spectrum, which we use to kinetically define extracellular appearance of curli fibres and cellulose polysaccharides during bacterial growth. The scope of this technique is demonstrated by defining biofilm morphotypes of Salmonella enterica serovars Enteritidis and Typhimurium, and their isogenic mutants in liquid culture and on solid media, and by visualising the ECM components in native biofilms. Our reported use of LCOs across a number of platforms, including intracellular cellulose production in eukaryotic cells and in infected tissues, demonstrates the versatility of this optotracing technology, and its ability to redefine biofilm research.

  • 46.
    Gabrielsson, Erik
    et al.
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Armgarth, Astrid
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Hammarström, Per
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Berggren, Magnus
    Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
    Spatiotemporal Control of Amyloid-Like A Plaque Formation Using a Multichannel Organic Electronic Device2016In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 301, no 4, p. 359-363Article in journal (Refereed)
    Abstract [en]

    We herein report on an iontronic device to drive and control A1-40 and A1-42 fibril formation. This system allows kinetic control of A aggregation by regulation of H+ flows. The formed aggregates show both nanometer-sized fibril structure and microscopic growth, thus mimicking senile plaques, at the H+-outlet. Mechanistically we observed initial accumulation of A1-40 likely driven by electrophoretic migration which preceded nucleation of amyloid structures in the accumulated peptide cluster.

  • 47.
    Shirani, Hamid
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.
    Sigurdson, Christina J.
    University of Calif San Diego, CA 92093 USA.
    Lindgren, Mikael
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Chemistry. Linköping University, Faculty of Science & Engineering.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    A Palette of Fluorescent Thiophene-Based Ligands for the Identification of Protein Aggregates2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 43, p. 15133-15137Article in journal (Refereed)
    Abstract [en]

    By replacing the central thiophene unit of an anionic pentameric oligothiophene with other heterocyclic moities, a palette of pentameric thiophene-based ligands with distinct fluorescent properties were synthesized. All ligands displayed superior selectivity towards recombinant amyloid fibrils as well as disease-associated protein aggregates in tissue sections.

  • 48.
    Johansson, Leif B. G.
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Simon, Rozalyn
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Bergström, Gunnar
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, The Institute of Technology.
    Eriksson, Mikaela
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Prokop, Stefan
    Charite, Germany.
    Mandenius, Carl-Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, The Institute of Technology.
    Heppner, Frank L.
    Charite, Germany.
    Åslund, Andreas
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    An azide functionalized oligothiophene ligand - A versatile tool for multimodal detection of disease associated protein aggregates2015In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 63, p. 204-211Article in journal (Refereed)
    Abstract [en]

    Ligands for identifying protein aggregates are of great interest as such deposits are the pathological hallmark of a wide range of severe diseases including Alzheimers and Parkinsons disease. Here we report the synthesis of an azide functionalized fluorescent pentameric oligothiophene that can be utilized as a ligand for multimodal detection of disease-associated protein aggregates. The azide functionalization allows for attachment of the ligand to a surface by conventional click chemistry without disturbing selective interaction with protein aggregates and the oligothiophene-aggregate interaction can be detected by fluorescence or surface plasmon resonance. In addition, a methodology where the oligothiophene ligand is employed as a capturing molecule selective for aggregated proteins in combination with an antibody detecting a distinct peptide/protein is also presented. We foresee that this methodology will offer the possibility to create a variety of multiplex sensing systems for sensitive and selective detection of protein aggregates, the pathological hallmarks of several neurodegenerative diseases.

  • 49.
    Magnusson, Karin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Cieślar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Bäck, Marcus
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Kågedal, Bertil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Jonasson, Jon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Los, Marek J.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences.
    Nilsson, Peter R.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    An imidazole functionalized pentameric thiophene displays different staining patterns in normal and malignant cells2015In: Frontiers in Chemistry, E-ISSN 2296-2646, Vol. 3, article id 58Article in journal (Refereed)
    Abstract [en]

    Molecular tools for fluorescent imaging of cells and their components are vital for understanding the function and activity of cells. Here, we report an imidazole functionalized pentameric oligothiophene, p-HTIm, that can be utilized for fluorescent imaging of cells. p-HTIm fluorescence in normal cells appeared in a peripheral punctate pattern partially co-localized with lysosomes, whereas a one-sided perinuclear Golgi associated localization of the dye was observed in malignant cells. The uptake of p-HTIm was temperature dependent and the intracellular target was reached within 1 h after staining. The ability of p-HTIm to stain cells was reduced when the imidazole side chain was chemically altered, verifying that specific imidazole side-chain functionalities are necessary for achieving the observed cellular staining. Our findings confirm that properly functionalized oligothiophenes can be utilized as fluorescent tools for vital staining of cells and that the selectivity towards distinct intracellular targets are highly dependent on the side-chain functionalities along the conjugated thiophene backbone.

  • 50.
    Magnusson, Karin
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Appelqvist, Hanna
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Cieslar-Pobuda, Artur
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Institute of Automatic Control, Silesian University of of TechnologyGliwice, Poland.
    Wigenius, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology. Carl Zeiss AB, Sweden.
    Karlsson, Thommie
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Application Specialist Confocal Microscopy at Leica MicrosystemsIL, United States.
    Los, Marek Jan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences. Department of Pathology, Pomeranian Medical UniversitySzczecin, Poland.
    Kågedal, Bertil
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Diagnostics, Department of Clinical Chemistry.
    Jonasson, Jon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Pathology and Clinical Genetics.
    Nilsson, Peter
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
    Differential vital staining of normal fibroblasts and melanoma cells by an anionic conjugated polyelectrolyte2015In: Cytometry Part A, ISSN 1552-4922, E-ISSN 1552-4930, Vol. 87, no 3, p. 262-272Article in journal (Refereed)
    Abstract [en]

    Molecular probes for imaging of live cells are of great interest for studying biological and pathological processes. The anionic luminescent conjugated polythiophene (LCP) polythiophene acetic acid (PTAA), has previously been used for vital staining of cultured fibroblasts as well as transformed cells with results indicating differential staining due to cell phenotype. Herein, we investigated the behavior of PTAA in two normal and five transformed cells lines. PTAA fluorescence in normal cells appeared in a peripheral punctated pattern whereas the probe was more concentrated in a one-sided perinuclear localization in the five transformed cell lines. In fibroblasts, PTAA fluorescence was initially associated with fibronectin and after 24 h partially localized to lysosomes. The uptake and intracellular target in malignant melanoma cells was more ambiguous and the intracellular target of PTAA in melanoma cells is still elusive. PTAA was well tolerated by both fibroblasts and melanoma cells, and microscopic analysis as well as viability assays showed no signs of negative influence on growth. Stained cells maintained their proliferation rate for at least 12 generations. Although the probe itself was nontoxic, photoinduced cellular toxicity was observed in both cell lines upon irradiation directly after staining. However, no cytotoxicity was detected when the cells were irradiated 24 h after staining, indicating that the photoinduced toxicity is dependent on the cellular location of the probe. Overall, these studies certified PTAA as a useful agent for vital staining of cells, and that PTAA can potentially be used to study cancer-related biological and pathological processes.

1234 1 - 50 of 155
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf