liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
123 1 - 50 av 132
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Parvini Ahmadi, Shervin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Distributed optimal control of nonlinear systems using a second-order augmented Lagrangian method2023Ingår i: European Journal of Control, ISSN 0947-3580, E-ISSN 1435-5671, Vol. 70, artikel-id 100768Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we propose a distributed second-order augmented Lagrangian method for distributed optimal control problems, which can be exploited for distributed model predictive control. We employ a primal-dual interior-point approach for the inner iteration of the augmented Lagrangian and distribute the corresponding computations using message passing over what is known as the clique tree of the problem. The algorithm converges to its centralized counterpart and it requires fewer communications between sub-systems as compared to algorithms such as the alternating direction method of multipliers. We illustrate the efficiency of the framework when applied to randomly generated interconnected sub-systems as well as to a vehicle platooning problem.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Forsling, Robin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Gustafsson, Fredrik
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Sjanic, Zoran
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Löfberg, Johan
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Conservative Linear Unbiased Estimation Under Partially Known Covariances2022Ingår i: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 70, s. 3123-3135Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mean square error optimal estimation requires the full correlation structure to be available. Unfortunately, it is not always possible to maintain full knowledge about the correlations. One example is decentralized data fusion where the cross-correlations between estimates are unknown, partly due to information sharing. To avoid underestimating the covariance of an estimate in such situations, conservative estimation is one option. In this paper the conservative linear unbiased estimator is formalized including optimality criteria. Fundamental bounds of the optimal conservative linear unbiased estimator are derived. A main contribution is a general approach for computing the proposed estimator based on robust optimization. Furthermore, it is shown that several existing estimation algorithms are special cases of the optimal conservative linear unbiased estimator. An evaluation verifies the theoretical considerations and shows that the optimization based approach performs better than existing conservative estimation methods in certain cases.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Cederberg, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Rantzer, Anders
    Lund Univ, Sweden.
    Synthesis of Minimax Adaptive Controller for a Finite Set of Linear Systems2022Ingår i: 2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), IEEE , 2022, s. 1380-1384Konferensbidrag (Refereegranskat)
    Abstract [en]

    The design of an adaptive controller with bounded L-2-gain from disturbances to errors for linear time-invariant systems with uncertain parameters restricted to a finite set is investigated. The synthesis of the controller requires finding matrices satisfying non-convex matrix inequalities. We propose an approach for finding these matrices based on repeatedly linearizing the terms that cause the non-convexity of the inequalities. Empirical evidence suggests that the approach leads to adaptive controllers with significantly smaller upper bound on the L-2-gain.

  • 4.
    Ahmadi, Shervin Parvini
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    A Distributed Second-Order Augmented Lagrangian Method for Distributed Model Predictive Control2021Ingår i: IFAC PAPERSONLINE, ELSEVIER , 2021, Vol. 54, nr 6, s. 192-199Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we present a distributed second-order augmented Lagrangian method for distributed model predictive control. We distribute the computations for search direction, step size, and termination criteria over what is known as the clique tree of the problem and calculate each of them using message passing. The algorithm converges to its centralized counterpart and it requires fewer communications between sub-systems as compared to algorithms such as the alternating direction method of multipliers. Results from a simulation study confirm the efficiency of the framework. Copyright (C) 2021 The Authors.

  • 5.
    Ahmadi, Shervin Parvini
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Pakazad, Sina Khoshfetrat
    C3 Ai, CA USA.
    Distributed localization using Levenberg-Marquardt algorithm2021Ingår i: EURASIP Journal on Advances in Signal Processing, ISSN 1687-6172, E-ISSN 1687-6180, Vol. 2021, nr 1, artikel-id 74Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we propose a distributed algorithm for sensor network localization based on a maximum likelihood formulation. It relies on the Levenberg-Marquardt algorithm where the computations are distributed among different computational agents using message passing, or equivalently dynamic programming. The resulting algorithm provides a good localization accuracy, and it converges to the same solution as its centralized counterpart. Moreover, it requires fewer iterations and communications between computational agents as compared to first-order methods. The performance of the algorithm is demonstrated with extensive simulations in Julia in which it is shown that our method outperforms distributed methods that are based on approximate maximum likelihood formulations.

  • 6.
    Egidio, Lucas N.
    et al.
    Catholic Univ Louvain, Belgium.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Wahlberg, Bo
    KTH Royal Inst Technol, Sweden.
    Learning the Step-size Policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm2021Ingår i: 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), IEEE , 2021Konferensbidrag (Refereegranskat)
    Abstract [en]

    We consider the problem to learn a step-size policy for the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. This is a limited computational memory quasi-Newton method widely used for deterministic unconstrained optimization. However, L-BFGS is currently avoided in large-scale problems for requiring step sizes to be provided at each iteration. Current methodologies for the step size selection for L-BFGS use heuristic tuning of design parameters and massive re-evaluations of the objective function and gradient to find appropriate step-lengths. We propose a neural network architecture with local information of the current iterate as the input. The step-length policy is learned from data of similar optimization problems, avoids additional evaluations of the objective function, and guarantees that the output step remains inside a pre-defined interval. The corresponding training procedure is formulated as a stochastic optimization problem using the backpropagation through time algorithm. The performance of the proposed method is evaluated on the training of image classifiers for the MNIST database for handwritten digits and for CIFAR-10. The results show that the proposed algorithm outperforms heuristically tuned optimizers such as ADAM, RMSprop, L-BFGS with a backtracking line search, and L-BFGS with a constant step size. The numerical results also show that a learned policy can be used as a warm-start to train new policies for different problems after a few additional training steps, highlighting its potential use in multiple large-scale optimization problems.

  • 7.
    Ljung, Lennart
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Glad, Torkel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Modeling and identification of dynamic systems2021 (uppl. 2)Bok (Övrigt vetenskapligt)
    Abstract [en]

    Mathematical models of real life systems and processes are essential in today’s industrial work. To be able to construct such models is therefore a fundamental skill in modern engineering...

  • 8.
    Egidio, Lucas
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. Catholic Univ Louvain, Belgium.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    On the Search for Equilibrium Points of Switched Affine Systems2021Ingår i: IFAC PAPERSONLINE, ELSEVIER , 2021, Vol. 54, nr 5, s. 301-306Konferensbidrag (Refereegranskat)
    Abstract [en]

    One of the main aspects of switched affine systems that makes their stabilizability study intricate is the existence of (generally) infinitely many attainable equilibrium points in the state space. Thus, prior to designing the switched control, the user must specify one of these equilibrium points to be the goal or reference. This can be a cumbersome task, especially if this goal is partially given or only defined as a set of constraints. To tackle this issue, in this paper we describe algorithms that can determine whether a given goal is an equilibrium point of the system and also jointly search for equilibrium points and design stabilizing switching functions. Copyright (C) 2021 The Authors.

  • 9.
    Haghshenas, Hamed
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Norrlöf, Mikael
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. ABB AB, Sweden.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    A Convex Optimization Approach to Time-Optimal Path Tracking Problem for Cooperative Manipulators2019Ingår i: IFAC PAPERSONLINE, ELSEVIER , 2019, Vol. 52, nr 10, s. 400-405Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper studies the time-optimal path tracking problem for a cooperative robotic system. The considered system is composed of two two-link planar manipulators with non-actuated end-effectors rigidly grasping a bar. Given a predefined geometric path, the objective is to cooperatively move the bar along the path in minimum time subject to inequality constraints on the joint torques. We show that this problem can be cast as a convex optimization problem by using the existing results for a single manipulator, and also the fact that the desired motion of the bar can be achieved by incorporating its dynamics into the manipulators dynamics. We illustrate our results in simulation. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  • 10.
    Ahmadi, Shervin Parvini
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Pakazad, Sina Khoshfetrat
    C3 IoT, CA USA.
    Efficient Robust Model Predictive Control using Chordality2019Ingår i: 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), IEEE , 2019, s. 4270-4275Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we show that chordal structure can be used to devise efficient optimization methods for robust model predictive control problems. To this end, first the problem is converted to an equivalent robust quadratic programming formulation. We then illustrate how the chordal structure can be used to distribute the computations in a primal-dual interior-point method among computational agents, which in turn allows us to accelerate the algorithm by efficient parallel computations. We investigate performance of the framework in Julia using numerical examples.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Doelman, Reinier
    et al.
    Delft Univ Technol, Netherlands.
    Klingspor, Måns
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Löfberg, Johan
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Verhaegen, Michel
    Delft Univ Technol, Netherlands.
    Identification of the dynamics of time-varying phase aberrations from time histories of the point-spread function2019Ingår i: Optical Society of America. Journal A: Optics, Image Science, and Vision, ISSN 1084-7529, E-ISSN 1520-8532, Vol. 36, nr 5, s. 809-817Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To optimally compensate for time-varying phase aberrations with adaptive optics, a model of the dynamics of the aberrations is required to predict the phase aberration at the next time step. We model the time-varying behavior of a phase aberration, expressed in Zernike modes, by assuming that the temporal dynamics of the Zernike coefficients can be described by a vector-valued autoregressive (VAR) model. We propose an iterative method based on a convex heuristic for a rank-constrained optimization problem, to jointly estimate the parameters of the VAR model and the Zernike coefficients from a time series of measurements of the point-spread function (PSF) of the optical system. By assuming the phase aberration is small, the relation between aberration and PSF measurements can be approximated by a quadratic function. As such, our method is a blind identification method for linear dynamics in a stochastic Wiener system with a quadratic nonlinearity at the output and a phase retrieval method that uses a time-evolution-model constraint and a single image at every time step. (c) 2019 Optical Society of America.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Khoshfetratpakazad, Sina
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Andersen, Martin S.
    Tech Univ Denmark, Denmark.
    Rantzer, Anders
    Lund Univ, Sweden.
    Distributed Semidefinite Programming With Application to Large-Scale System Analysis2018Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 63, nr 4, s. 1045-1058Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Distributed algorithms for solving coupled semidefinite programs commonly require many iterations to converge. They also put high computational demand on the computational agents. In this paper, we show that in case the coupled problem has an inherent tree structure, it is possible to devise an efficient distributed algorithm for solving such problems. The proposed algorithm relies on predictor- corrector primal-dual interior-point methods, where we use a message-passing algorithm to compute the search directions distributedly. Message passing here is closely related to dynamic programming over trees. This allows us to compute the exact search directions in a finite number of steps. This is because computing the search directions requires a recursion over the tree structure and, hence, terminates after an upward and downward pass through the tree. Furthermore, this number can be computed a priori and only depends on the coupling structure of the problem. We use the proposed algorithm for analyzing robustness of large-scale uncertain systems distributedly. We test the performance of this algorithm using numerical examples.

  • 13.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Khoshfetrat Pakazad, Sina
    C3 IoTRedwood cityUSA.
    Exploiting chordality in optimization algorithms for model predictive control2018Ingår i: Large-scale and distributed optimization, Cham: Springer, 2018, Vol. 2227, s. 11-32Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In this chapter we show that chordal structure can be used to devise efficient optimization methods for many common model predictive control problems. The chordal structure is used both for computing search directions efficiently as well as for distributing all the other computations in an interior-point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.

  • 14.
    Klingspor, Måns
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Löfberg, Johan
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Input selection in ARX model estimation using group lasso regularization2018Ingår i: 18th IFAC Symposium on System Identification (SYSID), Proceedings, ELSEVIER SCIENCE BV , 2018, Vol. 51, nr 15, s. 897-902Konferensbidrag (Refereegranskat)
    Abstract [en]

    In system identification, input selection is a challenging problem. Since less complex models are desireable, non-relevant inputs should be methodically and correctly discarded before or under the estimation process. In this paper we investigate an input selection extension in least-squares ARX estimation and show that better model estimates are achieved compared to the least-square ssolution, in particular, for short batches of estimation data. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  • 15.
    Ahmadi, Shervin Parvini
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Parallel Exploitation for Tree-Structured Coupled Quadratic Programming in Julia2018Ingår i: Proceedings of the 22nd International Conference on System Theory, Control and Computing, IEEE, 2018, s. 597-602Konferensbidrag (Refereegranskat)
    Abstract [en]

    The main idea in this paper is to implement a distributed primal-dual interior-point algorithm for loosely coupled Quadratic Programming problems. We implement this in Julia and show how can we exploit parallelism in order to increase the computational speed. We investigate the performance of the algorithm on a Model Predictive Control problem.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Yu, Chengpu
    et al.
    Beijing Inst Technol, Peoples R China; Delft Univ Technol, Netherlands.
    Verhaegen, Michel
    Delft Univ Technol, Netherlands.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Subspace Identification of Local Systems in One-Dimensional Homogeneous Networks2018Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 63, nr 4, s. 1126-1131Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This note considers the identification of large-scale one-dimensional networks consisting of identical LTI dynamical systems. A subspace identification method is developed that only uses local input-output information and does not rely on knowledge about the local state interaction. The proposed identification method estimates the Markov parameters of a locally lifted system, following the state-space realization of a single subsystem. The Markov-parameter estimation is formulated as a rank minimization problem by exploiting the low-rank property and the two-layer Toeplitz structural property in the data equation, whereas the state-space realization of a single subsystem is formulated as a structured low-rank matrix-factorization problem. The effectiveness of the proposed identification method is demonstrated by simulation examples.

  • 17.
    Pakazad, Sina Khoshfetrat
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Andersen, Martin S.
    Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
    Nielsen, Isak
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Distributed primal-€dual interior-point methods for solving tree-structured coupled convex problems using message-passing2017Ingår i: Optimization Methods and Software, ISSN 1055-6788, E-ISSN 1029-4937, s. 1-35Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we propose a distributed algorithm for solving coupled problems with chordal sparsity or an inherent tree structure which relies on primal–dual interior-point methods. We achieve this by distributing the computations at each iteration, using message-passing. In comparison to existing distributed algorithms for solving such problems, this algorithm requires far fewer iterations to converge to a solution with high accuracy. Furthermore, it is possible to compute an upper-bound for the number of required iterations which, unlike existing methods, only depends on the coupling structure in the problem. We illustrate the performance of our proposed method using a set of numerical examples.

  • 18.
    Klingspor, Måns
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Reglerteknik.
    Löfberg, Johan
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Verhaegen, Michel
    Delft Univ Technol, Netherlands.
    Input selection in N2SID using group lasso regularization2017Ingår i: IFAC PAPERSONLINE, ELSEVIER SCIENCE BV , 2017, Vol. 50, nr 1, s. 9474-9479Konferensbidrag (Refereegranskat)
    Abstract [en]

    Input selection is an important and oftentimes difficult challenge in system identification. In order to achieve less complex models, irrelevant inputs should be methodically and correctly discarded before or under the estimation process. In this paper we introduce a novel method of input selection that is carried out as a natural extension in a subspace method. We show that the method robustly and accurately performs input selection at various noise levels and that it provides good model estimates. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  • 19.
    Kok, Manon
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Schön, Thomas
    Uppsala University, Sweden.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hol, Jeroen
    Xsens Technologies B.V., Enschede, Netherlands.
    A Scalable and Distributed Solution to the Inertial Motion Capture Problem2016Ingår i: Proceedings of the 19th International Conference on Information Fusion, Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 1348-1355Konferensbidrag (Refereegranskat)
    Abstract [en]

    In inertial motion capture, a multitude of body segments are equipped with inertial sensors, consisting of 3D accelerometers and 3D gyroscopes. Using an optimization-based approach to solve the motion capture problem allows for natural inclusion of biomechanical constraints and for modeling the connection of the body segments at the joint locations. The computational complexity of solving this problem grows both with the length of the data set and with the number of sensors and body segments considered. In this work, we present a scalable and distributed solution to this problem using tailored message passing, capable of exploiting the structure that is inherent in the problem. As a proof-of-concept we apply our algorithm to data from a lower body configuration. 

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Verhaegen, Michel
    et al.
    Delft University of Technology, Netherlands.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    N2SID: Nuclear norm subspace identification of innovation models2016Ingår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 72, s. 57-63Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed from the Markov parameters of the unknown observer. The classical use of instrumental variables to remove the influence of the innovation term on the data equation in subspace identification is avoided. The avoidance of the instrumental variable projection step has the potential to improve the accuracy of the estimated model predictions, especially for short data length sequences. (C) 2016 Elsevier Ltd. All rights reserved.

  • 21. Karami, Farzaneh
    et al.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Afshar, Ahmad
    Automated Model Generation for Analysis of Large-scale Interconnected Uncertain Systems2015Rapport (Övrigt vetenskapligt)
    Abstract [en]

    The first challenge in robustness analysis of large-scale interconnected uncertain systems is to provide a model of such systems in a standard-form that is required within different analysis frameworks. This becomes particularly important for large-scale systems, as analysis tools that can handle such systems heavily rely on the special structure within such model descriptions. We here propose an automated framework for providing such models of large-scale interconnected uncertain systems that are used in Integral Quadratic Constraint (IQC) analysis. Specifically, in this paper we put forth a methodological way to provide such models from a block-diagram and nested description of interconnected uncertain systems. We describe the details of this automated framework using an example.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Khoshfetrat Pakazad, Sina
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Andersen, Martin S.
    Technical University of Denmark, Kongens Lyngby, Denmark.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Distributed solutions for loosely coupled feasibility problems using proximal splitting methods2015Ingår i: Optimization Methods and Software, ISSN 1055-6788, E-ISSN 1029-4937, Vol. 30, nr 1, s. 128-161Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we consider convex feasibility problems (CFPs) where the underlying sets are loosely coupled, and we propose several algorithms to solve such problems in a distributed manner. These algorithms are obtained by applying proximal splitting methods to convex minimization reformulations of CFPs. We also put forth distributed convergence tests which enable us to establish feasibility or infeasibility of the problem distributedly, and we provide convergence rate results. Under the assumption that the problem is feasible and boundedly linearly regular, these convergence results are given in terms of the distance of the iterates to the feasible set, which are similar to those of classical projection methods. In case the feasibility problem is infeasible, we provide convergence rate results that concern the convergence of certain error bounds.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Khoshfetrat Pakazad, Sina
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Andersen, Martin S.
    Technical University of Denmark, Lyngby, Denmark.
    Distributed Interior-point Method for Loosely Coupled Problems2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we put forth distributed algorithms for solving loosely coupled unconstrained and constrained optimization problems. Such problems are usually solved using algorithms that are based on a combination of decomposition and first order methods. These algorithms are commonly very slow and require many iterations to converge. In order to alleviate this issue, we propose algorithms that combine the Newton and interior-point methods with proximal splitting methods for solving such problems. Particularly, the algorithm for solving unconstrained loosely coupled problems, is based on Newton's method and utilizes proximal splitting to distribute the computations for calculating the Newton step at each iteration. A combination of this algorithm and the interior-point method is then used to introduce a distributed algorithm for solving constrained loosely coupled problems. We also provide guidelines on how to implement the proposed methods efficiently and briefly discuss the properties of the resulting solutions.

  • 24.
    Khoshfetrat Pakazad, Sina
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Andersen, Martin S.
    Technical University of Denmark, Lyngby, Denmark.
    Rantzer, Anders
    Lund University, Sweden.
    Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition2014Ingår i: Proceedings of the 19th IFAC World Congress, 2014 / [ed] Edward Boje and Xiaohua Xia, International Federation of Automatic Control , 2014, s. 2594-2599Konferensbidrag (Refereegranskat)
    Abstract [en]

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of solving centralized robust stability analysis techniques, privacy requirements in the network can also introduce further issues. In this paper, we utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment.

  • 25.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Verhaegen, Michel
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Distributed system identification with ADMM2014Ingår i: Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, 2014, s. 290-295Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents identification of both network connected systems as well as distributed systems governed by PDEs in the framework of distributed optimization via the Alternating Direction Method of Multipliers. This approach opens first the possibility to identify distributed models in a global manner using all available data sequences and second the possibility for a distributed implementation. The latter will make the application to large scale complex systems possible. In addition to outlining a new large scale identification method, illustrations are shown for identifying both network connected systems and discretized PDEs.

  • 26.
    Thomas, J.
    et al.
    Department of Automatic Control, FIE, Beni-Suef UniversityBeni-Suef, Egypt.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Enumerative nonlinear model predictive control for linear induction motor using load observer2014Ingår i: 2014 UKACC International Conference on Control, CONTROL 2014 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2014, nr 6915169, s. 373-377Konferensbidrag (Refereegranskat)
    Abstract [en]

    Enumerative nonlinear model predictive control for speed tracking problem of linear induction motors has been presented in [1], where the authors show that this control scheme has better performance as compared to direct torque control. In this paper, the authors show that using a load observer for integral action, the performance can be further improved. Specifically simulation results show that a load observer results in better tracking properties and offers more robust control.

  • 27.
    Wallin, Ragnar
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Maximum likelihood estimation of linear SISO models subject to missing output data and missing input data2014Ingår i: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 87, nr 11, s. 2354-2364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we describe an approach to maximum likelihood estimation of linear single input single output (SISO) models when both input and output data are missing. The criterion minimised in the algorithms is the Euclidean norm of the prediction error vector scaled by a particular function of the covariance matrix of the observed output data. We also provide insight into when simpler and in general sub-optimal schemes are indeed optimal. The algorithm has been prototyped in MATLAB, and we report numerical results that support the theory.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Verhaegen, Michel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Nuclear norm subspace identification (N2SID) for short data batches2014Ingår i: Proceedings of IFAC 2014 World Congress, Cape Town, 2014, s. 9528-9533Konferensbidrag (Refereegranskat)
    Abstract [en]

    Subspace identification is revisited in the scope of nuclear norm minimization methods. It is shown that essential structural knowledge about the unknown data matrices in the data equation that relates Hankel matrices constructed from input and output data can be used in the first step of the numerical solution presented. The structural knowledge comprises the low rank property of a matrix that is the product of the extended observability matrix and the state sequence and the Toeplitz structure of the matrix of Markov parameters (of the system in innovation form). The new subspace identification method is referred to as the N2SID (twice the N of Nuclear Norm and SID for Subspace IDentification) method. In addition to include key structural knowledge in the solution it integrates the subspace calculation with minimization of a classical prediction error cost function. The nuclear norm relaxation enables us to perform such integration while preserving convexity. The advantages of N2SID are demonstrated in a numerical open- and closed-loop simulation study. Here a comparison is made with another widely used SID method, i.e. N4SID. The comparison focusses on the identification with short data batches, i.e. where the number of measurements is a small multiple of the system order.

  • 29.
    Axehill, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Parallel implementation of hybrid MPC2014Ingår i: Distributed Model Predictive Control Made Easy / [ed] José M. Maestre and Rudy R. Negenborn, Springer Netherlands, 2014, s. 375-392Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    In this chapter parallel implementations of hybrid MPC will be discussed. Different methods for achieving parallelism at different levels of the algorithms will be surveyed. It will be seen that there are many possible ways of obtaining parallelism for hybrid MPC, and it is by no means clear which possibilities that should be utilized to achieve the best possible performance. To answer this question is a challenge for future research.

  • 30.
    Andersen, Martin S.
    et al.
    Technical University of Denmark, Lyngby, Denmark .
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Vandenberghe, Lieven
    University of California (UCLA), Los Angeles, CA, USA.
    Reduced-Complexity Semidefinite Relaxations of Optimal Power Flow Problems2014Ingår i: IEEE Transactions on Power Systems, ISSN 0885-8950, E-ISSN 1558-0679, Vol. 29, nr 4, s. 1855-1863Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We propose a new method for generating semidefinite relaxations of optimal power flow problems. The method is based on chordal conversion techniques: by dropping some equality constraints in the conversion, we obtain semidefinite relaxations that are computationally cheaper, but potentially weaker, than the standard semidefinite relaxation. Our numerical results show that the new relaxations often produce the same results as the standard semidefinite relaxation, but at a lower computational cost.

    Ladda ner fulltext (pdf)
    fulltext
  • 31.
    Andersen, Martin S.
    et al.
    Technical University of Denmark, Lyngby, Denmark.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Rantzer, Anders
    Lund University, Sweden.
    Robust stability analysis of sparsely interconnected uncertain systems2014Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 59, nr 8, s. 2151-2156Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we consider robust stability analysis of large-scale sparsely interconnected uncertain systems. By modeling the interconnections among the subsystems with integral quadratic constraints, we show that robust stability analysis of such systems can be performed by solving a set of sparse linear matrix inequalities. We also show that a sparse formulation of the analysis problem is equivalent to the classical formulation of the robustness analysis problem and hence does not introduce any additional conservativeness. The sparse formulation of the analysis problem allows us to apply methods that rely on efficient sparse factorization techniques, and our numerical results illustrate the effectiveness of this approach compared to methods that are based on the standard formulation of the analysis problem.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Vandenberghe, Lieven
    University of Calif Los Angeles, CA 90024 USA .
    Sampling method for semidefinite programmes with non-negative Popov function constraints2014Ingår i: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820, Vol. 87, nr 2, s. 330-345Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An important class of optimisation problems in control and signal processing involves the constraint that a Popov function is non-negative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finite-dimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality reformulation requires an auxiliary matrix variable and often results in a very large semidefinite programming problem. Several recently published methods exploit problem structure in these semidefinite programmes to alleviate the computational cost associated with the large matrix variable. These algorithms are capable of solving much larger problems than general-purpose semidefinite programming packages. In this paper, we address the same problem by presenting an alternative to the linear matrix inequality formulation of the non-negative Popov function constraint. We sample the constraint to obtain an equivalent set of inequalities of low dimension, thus avoiding the large matrix variable in the linear matrix inequality formulation. Moreover, the resulting semidefinite programme has constraints with low-rank structure, which allows the problems to be solved efficiently by existing semidefinite programming packages. The sampling formulation is obtained by first expressing the Popov function inequality as a sum-of-squares condition imposed on a polynomial matrix and then converting the constraint into an equivalent finite set of interpolation constraints. A complexity analysis and numerical examples are provided to demonstrate the performance improvement over existing techniques.

    Ladda ner fulltext (pdf)
    fulltext
  • 33.
    Khoshfetrat Pakazad, Sina
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    S. Andersen, Martin
    Technical University of Denmark.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Rantzer, Anders
    Lund University.
    Decomposition and Projection Methods for Distributed Robustness Analysis of Interconnected Uncertain Systems2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    We consider a class of convex feasibility problems where the constraints that describe the feasible set are loosely coupled. These problems arise in robust stability analysis of large, weakly interconnected uncertain systems. To facilitate distributed implementation of robust stability analysis of such systems, we describe two algorithms based on decomposition and simultaneous projections. The first algorithm is a nonlinear variant of Cimmino's mean projection algorithm, but by taking the structure of the constraints into account, we can obtain a faster rate of convergence. The second algorithm is devised by applying the alternating direction method of multipliers to a convex minimization reformulation of the convex feasibility problem. We use numerical results to show that both algorithms require far less iterations than the accelerated nonlinear Cimmino algorithm.

    Ladda ner fulltext (pdf)
    fulltext
  • 34.
    Liu, Zhang
    et al.
    Northrop Grumman Corp, CA USA.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Vandenberghe, Lieven
    University of Calif Los Angeles, CA USA.
    Nuclear norm system identification with missing inputs and outputs2013Ingår i: Systems & control letters (Print), ISSN 0167-6911, E-ISSN 1872-7956, Vol. 62, nr 8, s. 605-612Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a system identification method for problems with partially missing inputs and outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing input and output values as the optimization variables. We also present a fast implementation of the alternating direction method of multipliers (ADMM) to solve regularized or non-regularized nuclear norm optimization problems with Hankel structure. This makes it possible to solve quite large system identification problems. Experimental results show that the nuclear norm optimization approach to subspace identification is comparable to the standard subspace methods when no inputs and outputs are missing, and that the performance degrades gracefully as the percentage of missing inputs and outputs increases.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Garulli, Andrea
    et al.
    Dipartimento di Ingegneria dell'Informazione Universita' degli Studi di Siena, Italy.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Masi, Alfio
    Dipartimento di Ingegneria dell'Informazione Universita' degli Studi di Siena, Italy.
    Wallin, Ragnar
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Robust finite-frequency H2 analysis of uncertain systems with application to flight comfort analysis2013Ingår i: Control Engineering Practice, ISSN 0967-0661, E-ISSN 1873-6939, Vol. 21, nr 6, s. 887-897Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In many applications, design or analysis is performed over a finite-frequency range of interest. The importance of the H2 norm highlights the necessity of computing this norm accordingly. This paper provides different methods for computing upper bounds of the robust finite-frequency H2 norm for systems with structured uncertainties. An application of the robust finite-frequency H2 norm for a comfort analysis problem of an aero-elastic model of an aircraft is also presented.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Thomas, Jean
    et al.
    Division of Automatic Control, Beni-Suef University, Egypt.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Speed Tracking of a Linear Induction Motor-Enumerative Nonlinear Model Predictive Control2013Ingår i: IEEE Transactions on Control Systems Technology, ISSN 1063-6536, E-ISSN 1558-0865, Vol. 21, nr 5, s. 1956-1962Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct torque control (DTC) is considered as one of the most efficient techniques for speed and/or position tracking control of induction motor drives. However, this control scheme has several drawbacks: the switching frequency may exceed the maximum allowable switching frequency of the inverters, and the ripples in current and torque, especially at low speed tracking, may be too large. In this brief, we propose a new approach that overcomes these problems. The suggested controller is a model predictive controller, which directly controls the inverter switches. It is easy to implement in real time and it outperforms all previous approaches. Simulation results show that the new approach has as good tracking properties as any other scheme, and that it reduces the average inverter switching frequency about 95% as compared to classical DTC.

    Ladda ner fulltext (pdf)
    fulltext
  • 37.
    Falkeborn, Rikard
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    A Decomposition Algorithm for KYP-SDPs2012Ingår i: European Journal of Control, ISSN 0947-3580, E-ISSN 1435-5671, Vol. 18, nr 3, s. 249-256Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, a structure exploiting algorithm for semidefinite programs derived from the Kalman–Yakubovich– Popov lemma, where some of the constraints appear as complicating constraints is presented. A decomposition algorithm is proposed, where the structure of the problem can be utilized. In a numerical example, where a controller that minimizes the sum of the H2-norm and the H∞-norm is designed, the algorithm is shown to be faster than SeDuMi and the special purpose solver KYPD.

  • 38.
    Ankelhed, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    A Partially Augmented Lagrangian Method for Low Order H-Infinity Controller Synthesis Using Rational Constraints2012Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 57, nr 11, s. 2901-2905Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This technical note proposes a method for low order H-infinity synthesis where the constraint on the order of the controller is formulated as a rational equation. The resulting nonconvex optimization problem is then solved by applying a partially augmented Lagrangian method. The proposed method is evaluated together with two well-known methods from the literature. The results indicate that the proposed method has comparable performance and speed.

  • 39.
    Wallin, Ragnar
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Garuli, Andrea
    Università di Siena, Italy.
    Masi, Alfio
    Università di Siena, Italy.
    Applications of IQC-Based Analysis Techniques for Clearance2012Ingår i: Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application / [ed] Andreas Varga, Anders Hansson and Guilhem Puyou, Springer Berlin/Heidelberg, 2012, s. 277-297Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    Results for stability analysis of the nonlinear rigid aircraft model and comfort and loads analysis of the integral aircraft model are presented in this chapter. The analysis is based on the theory for integral quadratic constraints and relies on linear fractional representations (LFRs) of the underlying closed-loop aircraft models. To alleviate the high computational demands associated with the usage of IQC based analysis to large order LFRs, two approaches have been employed aiming a trade-off between computational complexity and conservatism. First, the partitioning of the flight envelope in several smaller regions allows to use lower order LFRs in the analysis, and second, IQCs with lower computational demands have been used whenever possible. The obtained results illustrate the applicability of the IQCs based analysis techniques to solve highly complex analysis problems with an acceptable level of conservativeness.

  • 40.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Menard, Philippe
    Airbus Operation SAS, France.
    Concluding Remarks and Industrial Perspective2012Ingår i: Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application / [ed] Andreas Varga, Anders Hansson and Guilhem Puyou, Springer Berlin/Heidelberg, 2012, s. 359-365Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.

  • 41.
    Andersen, Martin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Khoshfetrat Pakazad, Sina
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Rantzer, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Distributed Robust Stability Analysis of Interconnected Uncertain Systems2012Ingår i: Proceedings of the 51st IEEE Conference on Decision and Control, 2012, s. 1548-1553Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper considers robust stability analysis of a large network of interconnected uncertain systems. To avoid analyzing the entire network as a single large, lumped system, we model the network interconnections with integral quadratic constraints. This approach yields a sparse linear matrix inequality which can be decomposed into a set of smaller, coupled linear matrix inequalities. This allows us to solve the analysis problem efficiently and in a distributed manner. We also show that the decomposed problem is equivalent to the original robustness analysis problem, and hence our method does not introduce additional conservativeness.

  • 42.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Varga, Andreas
    German Aerospace Center, Germany.
    Introduction2012Ingår i: Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application / [ed] Andreas Varga, Anders Hansson, Guilhem Puyou, Springer Berlin/Heidelberg, 2012, s. 3-9Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.

  • 43. Papageorgiou, Christos
    et al.
    Falkeborn, Rikard
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    IQC-Based Analysis Techniques for Clearance2012Ingår i: Optimization Based Clearance of Flight Control Laws: A Civil Aircraft Application / [ed] Andreas Varga, Anders Hansson, Guilhem Puyou, Springer, 2012, s. 179-201Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry.

  • 44.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Wallin, Ragnar
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Maximum Likelihood Estimation of Gaussian Models with Missing Data: Eight Equivalent Formulations2012Ingår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 48, nr 9, s. 1955-1962Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper we derive the maximum likelihood problem for missing data from a Gaussian model. We present in total eight different equivalent formulations of the resulting optimization problem, four out of which are nonlinear least squares formulations. Among these formulations are also formulations based on the expectation-maximization algorithm. Expressions for the derivatives needed in order to solve the optimization problems are presented. We also present numerical comparisons for two of the formulations for an ARMAX model.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Hansson, Anders
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Liu, Zhang
    Northrop Grumman Corporation, San Diego, USA.
    Vandenberghe, Lieven
    UCLA, Los Angels, USA.
    Subspace System Identification via Weighted Nuclear Norm Optimization in 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), vol , issue , pp 3439-34442012Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a subspace system identification method based on weighted nuclear norm approximation. The weight matrices used in the nuclear norm minimization are the same weights as used in standard subspace identification methods. We show that the inclusion of the weights improves the performance in terms of fit on validation data. Experimental results from randomly generated examples as well as from the Daisy benchmark collection are reported. The key to an efficient implementation is the use of the alternating direction method of multipliers to solve the optimization problem.

  • 46.
    Axehill, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Towards Parallel Implementation of Hybrid MPC: A Survey and Directions for Future Research2012Ingår i: Distributed decision making and control / [ed] Rolf Johansson and Anders Rantzer, Springer London, 2012, s. 313-338Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this chapter parallel implementations of hybrid MPC will be discussed. Different methods for achieving parallelism at different levels of the algorithms will be surveyed. It will be seen that there are many possible ways of obtaining parallelism for hybrid MPC, and it is by no means clear which possibilities that should be utilized to achieve the best possible performance. To answer this question is a challenge for future research.

  • 47.
    Ankelhed, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    A Partially Augmented Lagrangian Method for Low Order H-Infinity Controller Synthesis Using Rational Constraints2011Rapport (Övrigt vetenskapligt)
    Abstract [en]

    When designing robust controllers, H-infinity synthesis is a common tool touse. The controllers that result from these algorithms are typically of very high order, which complicates implementation. However, if a constraint on the maximum order of the controller is set, that is lower than the order of the (augmented) system, the problem becomes nonconvex and it is relatively hard to solve. These problems become very complex, even when the order of the system is low.

    The approach used in this work is based on formulating the constraint onthe maximum order of the controller as a polynomial (or rational) equation.This equality constraint is added to the optimization problem of minimizingan upper bound on the H-innity norm of the closed loop system subjectto linear matrix inequality (LMI) constraints. The problem is then solvedby reformulating it as a partially augmented Lagrangian problem where theequality constraint is put into the objective function, but where the LMIsare kept as constraints.

    The proposed method is evaluated together with two well-known methodsfrom the literature. The results indicate that the proposed method hascomparable performance in most cases, especially if the synthesized con-troller has many parameters, which is the case if the system to be controlledhas many input and output signals.

    Ladda ner fulltext (pdf)
    A partially augmented Lagrangian method for low order H-infinity controller synthesis using rational constraints
    Ladda ner fulltext (pdf)
    FULLTEXT03
  • 48.
    Ankelhed, Daniel
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    A Quasi-Newton Interior Point Method for Low Order H-Infinity Controller Synthesis2011Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 56, nr 6, s. 1462-1467Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This technical note proposes a method for low order H-infinity synthesis where the constraint on the order of the controller is formulated as a rational equation. The resulting nonconvex optimization problem is then solved by applying a quasi-Newton primal-dual interior point method. The proposed method is evaluated together with a well-known method from the literature. The results indicate that the proposed method has comparable performance and speed.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Wallin, Ragnar
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    A Unified Approach to Identification of Linear SISO Models Subject to Missing Output Data and Missing Input Data2011Rapport (Övrigt vetenskapligt)
    Abstract [en]

    When output data is missing in a system identification scenario, it is not the Euclidean norm of the prediction error vector per se that should be minimized. Doing so will almost always yield biased parameter estimates. Two algorithms for estimation of the parameters, which can handle both missing output data and missing input data, are presented. The criterion minimized in the algorithms is the Euclidean norm of the prediction error vector scaled by a particular function of the covariance matrix of the observed output data. The algorithms yield a maximum likelihood estimate of the parameters under certain conditions.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 50.
    Ardeshiri, Tohid
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Norrlöf, Mikael
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Löfberg, Johan
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Hansson, Anders
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Convex Optimization Approach for Time-Optimal Path Tracking of Robots with Speed Dependent Constraints2011Ingår i: Proceedings of the 18th IFAC World Congress, IFAC , 2011, s. 14648-14653Konferensbidrag (Refereegranskat)
    Abstract [en]

    The task of generating time optimal trajectories for a six degrees of freedom industrial robot is discussed and an existing convex optimization formulation of the problem is extended to include new types of constraints. The new constraints are speed dependent and can be motivated from physical modeling of the motors and the drive system. It is shown how the speed dependent constraints should be added in order to keep the convexity of the overall problem. A method to, conservatively, approximate the linear speed dependent constraints by a convex constraint is also proposed. A numerical example proves versatility of the extension proposed in this paper.

    Ladda ner fulltext (pdf)
    T-Optimal_IFAC-WC2011
123 1 - 50 av 132
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf