liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Mustafa, Elfatih Mohammed
    et al.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten.
    Dawi, E. A.
    Ajman Univ, U Arab Emirates.
    Ibupoto, Z. H.
    Univ Sindh, Pakistan.
    Ibrahim, A. M. M.
    Jazan Univ, Saudi Arabia.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Liu, Xianjie
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Tahira, A.
    Shah Abdul Latif Univ Khairpur Mirs, Pakistan.
    Elhadi Adam, Rania Elhadi
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten.
    Willander, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten.
    Nur, Omer
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik, elektroteknik och matematik. Linköpings universitet, Tekniska fakulteten.
    Efficient CuO/Ag2WO4 photoelectrodes for photoelectrochemical water splitting using solar visible radiation2023Ingår i: RSC Advances, E-ISSN 2046-2069, Vol. 13, nr 17, s. 11297-11310Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Water splitting energy production relies heavily on the development of high-performance photoelectrochemical cells (PECs). Among the most highly regarded semiconductor materials, cupric oxide (CuO) is an excellent photocathode material. Pristine CuO does not perform well as a photocathode due to its tendency to recombine electrons and holes rapidly. Photocathodes with high efficiency can be produced by developing CuO-based composite systems. The aim of our research is to develop an Ag2WO4/CuO composite by incorporating silver tungstate (Ag2WO4) nanoparticles onto hydrothermally grown CuO nanoleaves (NLs) by successive ionic layer adsorption and reaction (SILAR). To prepare CuO/Ag2WO4 composites, SILAR was used in conjunction with different Ag2WO4 nanoparticle deposition cycles. Physicochemical characterization reveals well-defined nanoleaves morphologies with tailored surface compositions. Composite CuO/Ag2WO4 crystal structures are governed by the monoclinic phase of CuO and the hexagonal phase of Ag2WO4. It has been demonstrated that the CuO/Ag2WO4 composite has outstanding performance in the PEC water splitting process when used with five cycles. In the CuO/Ag2WO4 photocathode, water splitting activity is observed at low overpotential and high photocurrent density, indicating that the reaction takes place at low energy barriers. Several factors contribute to PEC performance in composites. These factors include the high density of surface active sites, the high charge separation rate, the presence of favourable surface defects, and the synergy of CuO and Ag2WO4 photoreaction. By using SILAR, silver tungstate can be deposited onto semiconducting materials with strong visible absorption, enabling the development of energy-efficient photocathodes.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Ziashahabi, Azin
    et al.
    Tech Univ Denmark, Denmark.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Nilsson, Sara
    Chalmers Univ Technol, Sweden.
    Beleggia, Marco
    Tech Univ Denmark, Denmark; Univ Modena & Reggio Emilia, Italy.
    Jorgensen, Peter Stanley
    Univ Modena & Reggio Emilia, Italy.
    Langhammer, Christoph
    Chalmers Univ Technol, Sweden.
    Kadkhodazadeh, Shima
    Tech Univ Denmark, Denmark.
    Electron Beam Induced Enhancement and Suppression of Oxidation in Cu Nanoparticles in Environmental Scanning Transmission Electron Microscopy2023Ingår i: ACS Nanoscience Au, E-ISSN 2694-2496Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have investigated the effects of high-energy electronirradiationon the oxidation of copper nanoparticles in environmental scanningtransmission electron microscopy (ESTEM). The hemispherically shapedparticles were oxidized in 3 mbar of O-2 in a temperaturerange 100-200 & DEG;C. The evolution of the particles was recordedwith sub-nanometer spatial resolution in situ in ESTEM. The oxidationencompasses the formation of outer and inner oxide shells on the nanoparticles,arising from the concurrent diffusion of copper and oxygen out ofand into the nanoparticles, respectively. Our results reveal thatthe electron beam actively influences the reaction and overall acceleratesthe oxidation of the nanoparticles when compared to particles oxidizedwithout exposure to the electron beam. However, the extent of thiselectron beam-assisted acceleration of oxidation diminishes at highertemperatures. Moreover, we observe that while oxidation through theoutward diffusion of Cu+ cations is enhanced, the electronbeam appears to hinder oxidation through the inward diffusion of O2- anions. Our results suggest that the impact of thehigh-energy electrons in ESTEM oxidation of Cu nanoparticles is mostlyrelated to kinetic energy transfer, charging, and ionization of thegas environment, and the beam can both enhance and suppress reactionrates.

  • 3.
    Zhu, Yongbin
    et al.
    Southern Univ Sci & Technol, Peoples R China.
    Shu, Rui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Jiang, Feng
    Southern Univ Sci & Technol, Peoples R China.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Liu, Weishu
    Southern Univ Sci & Technol, Peoples R China; Southern Univ Sci & Technol, Peoples R China.
    Enhanced Thermoelectric Properties of Mg2Sn-Mg3Sb2 Nanocomposites by Tailoring Matrix/Inclusion Interface toward Energy Harvesting Applications2023Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, nr 7, s. 6133-6140Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanocomposites have been long exploited for achieving balanced material properties. Here, we synthesized nominal (Mg2Sn0.85Sb0.15)1-x-(Mg3Sb2)x (x = 0-0.15) nano-composites, achieving a significant reduction of the lattice thermal conductivity of Mg2Sn0.85Sb0.15 from 2.03 Wm-1K-1 to 1.38 Wm-1K-1 due to phonon scattering by VMg point defects, Mg3Sb2 nanoparticles, and heterogeneous interfaces. Hence, a significantly enhanced thermoelectric figure of merit, ZT, is achieved. At 773 K, the sample of x = 0.075 reaches a ZT of 1.4, corresponding to a 14% enhancement compared to the Mg2Sn0.85Sb0.15 (x = 0) sample. The strategy of introducing heterogeneous structures has important implications for reducing thermal conductivity for other solid-solution thermoelectric systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Ekström, Erik
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hurand, Simon
    Univ Poitiers, France.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sharma, Geetu
    Rensselaer Polytech Inst, NY 12180 USA.
    Voznyy, Oleksandr
    Univ Toronto Scarborough, Canada.
    Sangiovanni, Davide
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Microstructure control and property switching in stress-free van der Waals epitaxial VO2 films on mica2023Ingår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 229, artikel-id 111864Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Realizing stress-free inorganic epitaxial films on weakly bonding substrates is of importance for applications that require film transfer onto surfaces that do not seed epitaxy. Film-substrate bonding is usually weakened by harnessing natural van der Waals layers (e.g., graphene) on substrate surfaces, but this is difficult to achieve in non-layered materials. Here, we demonstrate van der Waals epitaxy of stress-free films of a non-layered material VO2 on mica. The films exhibit out-of-plane 010 texture with three inplane orientations inherited from the crystallographic domains of the substrate. The lattice parameters are invariant with film thickness, indicating weak film-substrate bonding and complete interfacial stress relaxation. The out-of-plane domain size scales monotonically with film thickness, but the in-plane domain size exhibits a minimum, indicating that the nucleation of large in-plane domains supports subsequent island growth. Complementary ab initio investigations suggest that VO2 nucleation and van der Waals epitaxy involves subtle polarization effects around, and the active participation of, surface potassium atoms on the mica surface. The VO2 films show a narrow domain-size-sensitive electrical-conductiv ity-temperature hysteresis. These results offer promise for tuning the properties of stress-free van der Waals epitaxial films of non-layered materials such as VO2 through microstructure control (C) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • 5.
    Wang, Ji
    et al.
    Ningbo Univ, Peoples R China.
    Shu, Rui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Gangaprasad Rao, Smita
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Chai, Jianlong
    Chinese Acad Sci, Peoples R China.
    Zhu, Yabin
    Chinese Acad Sci, Peoples R China.
    Yao, Cunfeng
    Chinese Acad Sci, Peoples R China.
    Persson, Per O Å
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Structural stability under Xe-ion irradiation of TiZrNbTaV-based high-entropy alloy and nitride films2023Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 454, artikel-id 129198Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Refractory high-entropy protective coatings are of interest for nuclear fuel cladding applications due to their corrosion resistant properties and irradiation resistance at elevated temperature. Here, TiZrNbTaV metallic and (TiZrNbTaV)N films were deposited by magnetron co-sputtering. The metal elemental contents of both films were nearly equiatomic. These films were irradiated by Xe ions at room temperature and 500 degrees C, and examined by X-ray diffraction and transmission electron microscopy. The as-deposited (TiZrNbTaV)N film showed a single NaCl-type fcc phase and a pronounced columnar growth structure, which could remain intact after irradiation treatments. In contrast, the as-deposited TiZrNbTaV film exhibited an amorphous structure and formed a bcc phase structure after irradiation at 500 degrees C. The TiZrNbTaV film after irradiation at 500 degrees C composed of depth -dependent size of grains. This distribution of grain size is consistent with simulated displacement damage. The stable structure of (TiZrNbTaV)N film under high temperature irradiation indicates that these materials have potential for use as protective coatings for nuclear fuel claddings.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Singh, Niraj Kumar
    et al.
    Indian Inst Technol Mandi, India.
    Rawat, Divya
    Indian Inst Technol Mandi, India.
    Dey, Dibyendu
    Univ Maine, ME 04469 USA.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Taraphder, A.
    Indian Inst Technol Kharagpur, India.
    Soni, Ajay
    Indian Inst Technol Mandi, India.
    Electron-phonon coupling and quantum correction to topological magnetoconductivity in Bi2GeTe42022Ingår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 105, nr 4, artikel-id 045134Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report structure, vibrational properties, and weak antilocalization-induced quantum correction to magnetoconductivity in single-crystal Bi2GeTe4. Surface band-structure calculations show a single Dirac cone corresponding to topological surface states in Bi2GeTe4. An estimated phase coherence length, lΦ ~ to 143 nm and prefactor α~-1.54 from Hikami-Larkin-Nagaoka fitting of magnetoconductivity describe the quantum correction to conductivity. An anomalous temperature dependence of A1g Raman modes confirms enhanced electron-phonon interactions. Our results establish that electrons of the topological state can interact with the phonons involving the vibrations of Bi-Te in Bi2GeTe4.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Xin, Binbin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ekström, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Shih, Yueh-Ting
    Rensselaer Polytech Inst, NY 12180 USA.
    Huang, Liping
    Rensselaer Polytech Inst, NY 12180 USA.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Yun
    Rensselaer Polytech Inst, NY 12180 USA.
    Zhu, Wenkai
    Rensselaer Polytech Inst, NY 12180 USA.
    Borca-Tasciuc, Theodorian
    Rensselaer Polytech Inst, NY 12180 USA.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Engineering thermoelectric and mechanical properties by nanoporosity in calcium cobaltate films from reactions of Ca(OH)(2)/Co3O4 multilayers2022Ingår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, nr 16, s. 3353-3361Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)(2)/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b(t)). Our results show that doubling b(t), e.g., from 12 to 26 nm, more than triples the average pore size from similar to 120 nm to similar to 400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of sigma similar to 90 S cm(-1) and a high Seebeck coefficient of alpha similar to 135 mu V K-1, but also a thermal conductivity as low as kappa similar to 0.87 W m(-1) K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Ekström, Erik
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Grasland, Justine
    IUT BloisUniv Francois Rabelais Tours, France.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Rensselaer Polytech Inst, NY 12180 USA.
    Persson, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Epitaxial Growth of CaMnO3-y Films on LaAlO3 (112 over bar 0) by Pulsed Direct Current Reactive Magnetron Sputtering2022Ingår i: Physica Status Solidi. Rapid Research Letters, ISSN 1862-6254, E-ISSN 1862-6270, Vol. 16, nr 4, artikel-id 2100504Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    CaMnO3 is a perovskite with attractive magnetic and thermoelectric properties. CaMnO3 films are usually grown by pulsed laser deposition or radio frequency magnetron sputtering from ceramic targets. Herein, epitaxial growth of CaMnO3-y (002) films on a (112 over bar 0)-oriented LaAlO3 substrate using pulsed direct current reactive magnetron sputtering is demonstrated, which is more suitable for industrial scale depositions. The CaMnO3-y shows growth with a small in-plane tilt of <approximate to 0.2 degrees toward the (200) plane of CaMnO3-y and the (1 over bar 104) with respect to the LaAlO3 (112 over bar 0) substrate. X-ray photoelectron spectroscopy of the electronic core levels shows an oxygen deficiency described by CaMnO2.58 that yields a lower Seebeck coefficient and a higher electrical resistivity when compared to stoichiometric CaMnO3. The LaAlO3 (112 over bar 0) substrate promotes tensile-strained growth of single crystals. Scanning transmission electron microscopy and electron energy loss spectroscopy reveal antiphase boundaries composed of Ca on Mn sites along and , forming stacking faults.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Xin, Binbin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Wang, Lei
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Mechanically Flexible Thermoelectric Hybrid Thin Films by Introduction of PEDOT:PSS in Nanoporous Ca3Co4O92022Ingår i: ACS Omega, E-ISSN 2470-1343, Vol. 7, nr 27, s. 23988-23994Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanoporous Ca3Co4O9 exhibits high thermoelectric properties and low thermal conductivity and can be made mechanically flexible by nanostructural design. To improve the mechanical flexibility with retained thermoelectric properties near room temperature, however, it is desirable to incorporate an organic filler in this nanoporous inorganic matrix material. Here, double-layer nanoporous Ca3Co4O9/PEDOT:PSS thin films were synthesized by spin-coating PEDOT:PSS into the nanopores. The obtained hybrid films exhibit high Seebeck coefficient (~+130 mu V/K) and thermoelectric power factor (0.75 mu W cm(-1) K-2) at room temperature with no deterioration in electrical properties after cyclic bending tests (98% preservation of electrical conductivity after 1000 cycles bending to a bending radius of 3 mm). Compared with the nanoporous Ca3Co4O9 thin film, the mechanical flexibility of the hybrid film can be effectively improved after hybrid with PEDOT:PSS with only a slight decrease of the thermoelectric properties.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Shu, Rui
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Southern Univ Sci & Technol, Peoples R China.
    Han, Zhijia
    Southern Univ Sci & Technol, Peoples R China.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhu, Yongbin
    Southern Univ Sci & Technol, Peoples R China.
    Qin, Peng
    Southern Univ Sci & Technol, Peoples R China.
    Jiang, Feng
    Southern Univ Sci & Technol, Peoples R China.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Wenqing
    Southern Univ Sci & Technol, Peoples R China.
    Cojocaru-Miredin, Oana
    Rhein Westfal TH Aachen, Germany.
    Yu, Yuan
    Rhein Westfal TH Aachen, Germany.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Liu, Weishu
    Southern Univ Sci & Technol, Peoples R China; Southern Univ Sci & Technol, Peoples R China.
    Solid-State Janus Nanoprecipitation Enables Amorphous-Like Heat Conduction in Crystalline Mg3Sb2-Based Thermoelectric Materials2022Ingår i: Advanced Science, E-ISSN 2198-3844, Vol. 9, nr 25, artikel-id 2202594Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Solid-state precipitation can be used to tailor material properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, unconventional Janus-type nanoprecipitates are uncovered in Mg3Sb1.5Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local comelting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Zhang, Xiaofu
    et al.
    Chinese Acad Sci, Peoples R China; CAS Ctr Excellence Superconducting Elect, Peoples R China.
    Shu, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Liu, Huanlong
    Univ Zurich, Switzerland.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Schilling, Andreas
    Univ Zurich, Switzerland.
    von Rohr, Fabian O.
    Univ Zurich, Switzerland.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Suppression of the transition to superconductivity in crystal/glass high-entropy alloy nanocomposites2022Ingår i: Communications Physics, E-ISSN 2399-3650, Vol. 5, nr 1, artikel-id 282Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High entropy alloys are multielement materials exhibiting enhanced properties compared to their binary or ternary equivalents. Here, the authors investigate the influence of microstructure and elemental distribution on the transport and superconducting properties of (TaNb)(1-x)(ZrHfTi)(x) thin films. Superconducting high entropy alloys (HEAs) may combine extraordinary mechanical properties with robust superconductivity. They are suitable model systems for the investigation of the interplay of disorder and superconductivity. Here, we report on the superconductivity in (TaNb)(1-x)(ZrHfTi)(x) thin films. Beyond the near-equimolar region, the films comprise hundreds-of-nanometer-sized crystalline grains and show robust bulk superconductivity. However, the superconducting transitions in these nanocomposites are dramatically suppressed in the near-equimolar configurations, i.e., 0.45 < x < 0.64, where elemental distributions are equivalently homogeneous. Crystal/glass high entropy alloy nanocomposite phase separation was observed for the films in the near-equimolar region, which yields a broadened two-step normal to superconducting transition. Furthermore, the diamagnetic shielding in these films is only observed far below the onset temperature of superconductivity. As these unusual superconducting transitions are observed only in the samples with the high mixing entropy, this compositional range influences the collective electronic properties in these materials.

  • 12.
    Xin, Binbin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Shu, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Venkataramani, Venkat
    Rensselaer Polytech Inst, NY 12180 USA.
    Shi, Yunfeng
    Rensselaer Polytech Inst, NY 12180 USA.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Engineering Faceted Nanoporosity by Reactions in Thin-Film Oxide Multilayers in Crystallographically Layered Calcium Cobaltate for Thermoelectrics2021Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, nr 9, s. 9904-9911Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introducing porosity is attractive for tailoring electronic, thermal, and mechanical properties of inorganic materials. Nanoporosity is typically either inherent in crystallographic channels in the structure or obtained by external templating during synthesis and sintering. However, controllably engineering porosity in materials with laminated crystal structures without channels remains a challenge. Here, we demonstrate the realization of faceted and oriented nanopores in textured Ca3Co4O9-a laminated ceramic with a misfit-layered structure of importance for thermoelectric applications-from chemical reactions in CaO/Co3O4 multilayers. We show that CaO conversion to Ca(OH)(2) and the cobalt oxide stoichiometry are key determinants of nanoporosity. Adjusting the unreacted CaO fraction alters the nanopore size and fraction and the thermoelectric properties of Ca3Co4O9. The preferred orientation of Ca3Co4O9 is underpinned by the texture of the reactant multilayers and reactant-product crystallographic relationships and density difference. Oriented pore formation is attributed to basal plane removal driven by local densification of textured Ca3Co4O9 nuclei through growth and impingement. These findings point to possibilities for controllably engineering nanoporosity and properties in a variety of inorganic materials with laminated crystal structures.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Alnoor, Hatim
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Ingemar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tseng, Eric Nestor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Exploring MXenes and their MAX phase precursors by electron microscopy2021Ingår i: Materials Today Advances, E-ISSN 2590-0498, Vol. 9, artikel-id 100123Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This review celebrates the width and depth of electron microscopy methods and how these have enabled massive research efforts on MXenes. MXenes constitute a powerful recent addition to 2-dimensional materials, derived from their parent family of nanolaminated materials known as MAX phases. Owing to their rich chemistry, MXenes exhibit properties that have revolutionized ranges of applications, including energy storage, electromagnetic interference shielding, water filtering, sensors, and catalysis. Few other methods have been more essential in MXene research and development of corresponding applications, compared with electron microscopy, which enables structural and chemical identification at the atomic scale. In the following, the electron microscopy methods that have been applied to MXene and MAX phase precursor research are presented together with research examples and are discussed with respect to advantages and challenges.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Halim, Joseph
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Etman, Ahmed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Polcik, Peter
    Plansee Composite Mat GmbH, Germany.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Barsoum, Michel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Drexel Univ, PA 19104 USA.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tailored synthesis approach of (Mo2/3Y1/3)(2)AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: enhancing the yield, quality, and performance in supercapacitor applications2021Ingår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 13, nr 1, s. 311-319Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)(2)AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)(2)AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)(2)AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm(-3)) and gravimetric (436 F g(-1)) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Wang, Lei
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Xin, Binbin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Solin, Niclas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Elektroniska och fotoniska material. Linköpings universitet, Tekniska fakulteten.
    Mechanochemical Formation of Protein Nanofibril: Graphene Nanoplatelet Hybrids and Their Thermoelectric Properties2020Ingår i: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 8, nr 47, s. 17368-17378Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hybrids between biopolymeric materials and low-cost conductive carbon-based materials are interesting materials for applications in electronics, potentially reducing the need for materials that generate environmentally harmful electronic waste. Herein we investigate a scalable ball-milling method to form graphene nanoplatelets (GNPs) by milling graphite flakes with aqueous dispersions of proteins or protein nanofibrils (PNFs). Aqueous GNP dispersions with high concentrations (up to 3.2 mg mL(-1)) are obtained under appropriate conditions. The PNFs/proteins help to exfoliate graphite and stabilize the resulting GNP dispersions by electrostatic repulsion. PNFs are prepared from hen egg white lysozyme (HEWL) and beta-lactoglobulin (BLG). The GNP dispersions can be processed into free-standing films having an electrical conductivity of up to 110 S m(-1). Alternatively, the GNP dispersions can be drop-cast on PET substrates, resulting in mechanically flexible films having an electrical conductivity of up to 65 S m(-1). The drop-cast films are investigated regarding their thermoelectric properties, having Seebeck coefficients of about 50 mu V K-1. By annealing drop-cast films and thus carbonizing residual PNFs, an increase of electrical conductivity, coupled with a modest decrease in Seebeck coefficient, is obtained resulting in materials displaying power factors of up to 4.6 mu W m(-1) K-2.

    Ladda ner fulltext (pdf)
    fulltext
1 - 15 av 15
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf