liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Beställ onlineKöp publikationen >>
    Balachandran, Arvind
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Battery Integrated Modular Multilevel Converter Topologies for Automotive Applications2023Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Electric vehicles are rapidly developing in response to the need for increasing sustainable energy sources. The range and lifetime of an electric vehicle are limited by the battery pack. A pack comprises modules with several parallel and/or series-connected cells. Differences in leakage currents and cell in-homogeneities cause individual cell voltage and state-of-charge distribution among the cells to be non-homogeneous. As a result, over time, some cells discharge faster than other cells, thus limiting the total energy delivered by the pack. In order to maximize the energy delivered by the pack, individual cell control is desirable. As a solution, battery-integrated modular multi-level converter (BI-MMC) topologies are proposed, presented, and evaluated. BI-MMC topology consists of either one or two arms per phase, and each arm comprises several cascaded stages of DC–AC converters and is commonly referred to as submodules. BI-MMCs provide increased controllability and potential improvement in the lifetime of the battery pack. Furthermore, BI-MMCs have low output total harmonic distortion, further improving the powertrain efficiency.

    The first contribution is the design and evaluation of 3-phase and 6-phase BI-MMCs; comparisons are made against a conventional 2-level inverter for a 40-ton 400 kW commercial vehicle. The evaluation considers the total number of submodules, energy rating of the DC-link capacitors, battery losses, capacitor losses, and semiconductor losses. The evaluation showed that the BI-MMCs have lower semiconductor losses than the conventional 2-level inverter. However, the BI-MMCs have higher capacitor and battery losses. The second contribution is the investigation of the impact that the number of series connected cells per submodule has on the total losses of the BI-MMC. The study showed that 5- to 6-series connected cells have the lowest losses. The third contribution is the design principles for optimization of the DC-link capacitors and the MOSFET switching frequency; this is supported by experimental validation for the loss distribution within a submodule. The fourth contribution is a methodology for determining the battery impedance using the full-load converter current. In a conventional battery pack, the battery is connected directly to the fast charger’s DC supply. However, in a BI-MMC, the battery and the inverter are integrated, potentially increasing the DC charging capabilities because higher voltages can be achieved during charging than during operation. The fifth contribution is thus the derivation and investigation of the maximum DC charging power of BI-MMCs assuming the same submodule semiconductor losses during traction. The analysis showed that most BI-MMCs have a maximum DC charging power of about 1MW.

    Delarbeten
    1. Design and Analysis of Battery-Integrated Modular Multilevel Converters for Automotive Powertrain Applications
    Öppna denna publikation i ny flik eller fönster >>Design and Analysis of Battery-Integrated Modular Multilevel Converters for Automotive Powertrain Applications
    2021 (Engelska)Ingår i: 2021 23RD EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE21 ECCE EUROPE), IEEE , 2021Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    The automotive industry has grown considerably over the last century consequently increasing green-house gas emissions and thus contributing towards increase in the average global temperature. It is thus of paramount importance to increase the use of alternative energy sources. Electric vehicles have gained popularity over the last decade. However, a major concern with electric vehicles is their range. The range of an electric vehicle is limited by the battery pack, in particular, the weakest cell of the pack. One method of increasing the available energy from the battery pack is by introducing more electronics. Modular multilevel converters, with their modular concept, could be a viable solution. The concept of battery-integrated modular multilevel converters (BI-MMC) for automotive applications is explored. In particular, the impact of the number of cascaded cells per submodule is investigated, considering battery losses, DC-link capacitor losses, and the converter losses. Furthermore, an optimization of the DC-link capacitors and the selection of MOSFET switching frequency is presented in order to minimize the total losses.

    Ort, förlag, år, upplaga, sidor
    IEEE, 2021
    Serie
    European Conference on Power Electronics and Applications, ISSN 2325-0313
    Nyckelord
    DC-AC converters, Modular Multilevel Converters, Power converters for EV, Electric vehicle, Hybrid Electric Vehicle (HEV)
    Nationell ämneskategori
    Annan elektroteknik och elektronik
    Identifikatorer
    urn:nbn:se:liu:diva-187241 (URN)10.23919/EPE21ECCEEurope50061.2021.9570570 (DOI)000832143901075 ()9789075815375 (ISBN)9781665433846 (ISBN)
    Konferens
    23rd European Conference on Power Electronics and Applications (EPE ECCE Europe), ELECTR NETWORK, sep 06-10, 2021
    Tillgänglig från: 2022-08-15 Skapad: 2022-08-15 Senast uppdaterad: 2023-09-19
    2. Experimental Evaluation of Battery Impedance and Submodule Loss Distribution for Battery Integrated Modular Multilevel Converters
    Öppna denna publikation i ny flik eller fönster >>Experimental Evaluation of Battery Impedance and Submodule Loss Distribution for Battery Integrated Modular Multilevel Converters
    2022 (Engelska)Ingår i: 2022 24TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE22 ECCE EUROPE), Institute of Electrical and Electronics Engineers (IEEE), 2022Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Greenhouse gas emissions and the increase in average global temperature are growing concerns now more so than ever. Therefore it is of importance to increase the use of alternative energy sources, especially in the automotive industry. Battery electric vehicles (BEV) have gained popularity over the past several years. However, the performance of a BEV is limited by the battery pack, in particular, the weakest cell in the pack. Therefore, improved cell controllability and high efficiency are seen as important directions for research and development and one direction where it can be achieved is through using battery-integrated modular multilevel converters (BI-MMC). The battery current in BI-MMCs contains additional harmonics and the frequency dependent losses of these harmonics are determined by the resonance between the battery and the DC-link capacitor bank. The paper presents an experimental validation of previously published theoretical results for both harmonic allocations and loss distribution at the switching frequency within the BI-MMC submodule. Furthermore, a methodology for measuring the battery impedance using the full-load converter switching currents is presented.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2022
    Serie
    European Conference on Power Electronics and Applications, ISSN 2325-0313
    Nyckelord
    Modular Multilevel Converters (MMC); Power converters for EV; Batteries; DC-AC converters; Automotive application
    Nationell ämneskategori
    Annan elektroteknik och elektronik
    Identifikatorer
    urn:nbn:se:liu:diva-187242 (URN)000886231600101 ()9789075815399 (ISBN)9781665487009 (ISBN)
    Konferens
    24th European Conference on Power Electronics and Applications (EPE ECCE Europe), Hanover, GERMANY, sep 05-09, 2022
    Tillgänglig från: 2022-08-15 Skapad: 2022-08-15 Senast uppdaterad: 2023-10-12Bibliografiskt granskad
    3. DC Charging Capabilities of Battery-Integrated Modular Multilevel Converters Based on Maximum Tractive Power
    Öppna denna publikation i ny flik eller fönster >>DC Charging Capabilities of Battery-Integrated Modular Multilevel Converters Based on Maximum Tractive Power
    2023 (Engelska)Ingår i: Electricity, E-ISSN 2673-4826, Vol. 4, nr 1, s. 62-77Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    The increase in the average global temperature is a consequence of high greenhouse gas emissions. Therefore, using alternative energy carriers that can replace fossil fuels, especially for automotive applications, is of high importance. Introducing more electronics into an automotive battery pack provides more precise control and increases the available energy from the pack. Battery-integrated modular multilevel converters (BI-MMCs) have high efficiency, improved controllability, and better fault isolation capability. However, integrating the battery and inverter influences the maximum DC charging power. Therefore, the DC charging capabilities of 5 3-phase BI-MMCs for a 40-ton commercial vehicle designed for a maximum tractive power of 400 kW was investigated. Two continuous DC charging scenarios are considered for two cases: the first considers the total number of submodules during traction, and the second increases the total number of submodules to ensure a maximum DC charging voltage of 1250 V. The investigation shows that both DC charging scenarios have similar maximum power between 1 and 3 MW. Altering the number of submodules increases the maximum DC charging power at the cost of increased losses.

    Ort, förlag, år, upplaga, sidor
    MDPI, 2023
    Nationell ämneskategori
    Energisystem
    Identifikatorer
    urn:nbn:se:liu:diva-191802 (URN)10.3390/electricity4010005 (DOI)
    Tillgänglig från: 2023-02-15 Skapad: 2023-02-15 Senast uppdaterad: 2023-03-16Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 2.
    Balachandran, Arvind
    et al.
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Tomas Uno
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten. Scania AB, Södertalje, Sweden.
    Eriksson, Lars
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    DC Charging Capabilities of Battery-Integrated Modular Multilevel Converters Based on Maximum Tractive Power2023Ingår i: Electricity, E-ISSN 2673-4826, Vol. 4, nr 1, s. 62-77Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The increase in the average global temperature is a consequence of high greenhouse gas emissions. Therefore, using alternative energy carriers that can replace fossil fuels, especially for automotive applications, is of high importance. Introducing more electronics into an automotive battery pack provides more precise control and increases the available energy from the pack. Battery-integrated modular multilevel converters (BI-MMCs) have high efficiency, improved controllability, and better fault isolation capability. However, integrating the battery and inverter influences the maximum DC charging power. Therefore, the DC charging capabilities of 5 3-phase BI-MMCs for a 40-ton commercial vehicle designed for a maximum tractive power of 400 kW was investigated. Two continuous DC charging scenarios are considered for two cases: the first considers the total number of submodules during traction, and the second increases the total number of submodules to ensure a maximum DC charging voltage of 1250 V. The investigation shows that both DC charging scenarios have similar maximum power between 1 and 3 MW. Altering the number of submodules increases the maximum DC charging power at the cost of increased losses.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Balachandran, Arvind
    et al.
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Tomas
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten. Scania, Södertalje, Sweden.
    Eriksson, Lars
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Larsson, Anders
    Scania, Södertalje, Sweden.
    Experimental Evaluation of Battery Impedance and Submodule Loss Distribution for Battery Integrated Modular Multilevel Converters2022Ingår i: 2022 24TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE22 ECCE EUROPE), Institute of Electrical and Electronics Engineers (IEEE), 2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    Greenhouse gas emissions and the increase in average global temperature are growing concerns now more so than ever. Therefore it is of importance to increase the use of alternative energy sources, especially in the automotive industry. Battery electric vehicles (BEV) have gained popularity over the past several years. However, the performance of a BEV is limited by the battery pack, in particular, the weakest cell in the pack. Therefore, improved cell controllability and high efficiency are seen as important directions for research and development and one direction where it can be achieved is through using battery-integrated modular multilevel converters (BI-MMC). The battery current in BI-MMCs contains additional harmonics and the frequency dependent losses of these harmonics are determined by the resonance between the battery and the DC-link capacitor bank. The paper presents an experimental validation of previously published theoretical results for both harmonic allocations and loss distribution at the switching frequency within the BI-MMC submodule. Furthermore, a methodology for measuring the battery impedance using the full-load converter switching currents is presented.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Balachandran, Arvind
    et al.
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Jonsson, Tomas
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Lars
    Linköpings universitet, Institutionen för systemteknik, Fordonssystem. Linköpings universitet, Tekniska fakulteten.
    Design and Analysis of Battery-Integrated Modular Multilevel Converters for Automotive Powertrain Applications2021Ingår i: 2021 23RD EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE21 ECCE EUROPE), IEEE , 2021Konferensbidrag (Refereegranskat)
    Abstract [en]

    The automotive industry has grown considerably over the last century consequently increasing green-house gas emissions and thus contributing towards increase in the average global temperature. It is thus of paramount importance to increase the use of alternative energy sources. Electric vehicles have gained popularity over the last decade. However, a major concern with electric vehicles is their range. The range of an electric vehicle is limited by the battery pack, in particular, the weakest cell of the pack. One method of increasing the available energy from the battery pack is by introducing more electronics. Modular multilevel converters, with their modular concept, could be a viable solution. The concept of battery-integrated modular multilevel converters (BI-MMC) for automotive applications is explored. In particular, the impact of the number of cascaded cells per submodule is investigated, considering battery losses, DC-link capacitor losses, and the converter losses. Furthermore, an optimization of the DC-link capacitors and the selection of MOSFET switching frequency is presented in order to minimize the total losses.

    Ladda ner fulltext (pdf)
    fulltext
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf