liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 72
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Omar, Ruba Kal
    et al.
    Karolinska Inst, Sweden.
    Hagstrom, Anna
    Karolinska Inst, Sweden.
    Dahlander, Simon
    Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital & Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
    Stalhammar, Gustav
    Karolinska Inst, Sweden; St Erik Eye Hosp, Sweden.
    A Prognostic Score for the Prediction of Local Treatment Failure in Plaque Brachytherapy of Uveal Melanoma2023Ingår i: ADVANCES IN RADIATION ONCOLOGY, ISSN 2452-1094, Vol. 8, nr 3, artikel-id 101152Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: To develop a prognostic score that correlates to a low, medium, and high incidence of treatment failure after plaque brachytherapy of uveal melanoma (UM).Methods and Materials: All patients who have received plaque brachytherapy for posterior UM at St. Erik Eye Hospital in Stockholm, Sweden from 1995 through 2019 were included (n = 1636). Treatment failure was defined as tumor recurrence, lack of tumor regression, or any other condition requiring a secondary transpupillary thermotherapy (TTT), plaque brachytherapy, or enucleation. The total sample was randomized into 1 training and 1 validation cohort, and a prognostic score for the risk for treatment failure was developed.Results: In multivariate Cox regression, low visual acuity, tumor distance to the optic disc & LE;2 mm, American Joint Committee on Cancer (AJCC) stage, and a tumor apical thickness of >4 (for Ruthenium-106) or >9 mm (for Iodine-125) were independent predictors of treatment failure. No reliable threshold could be identified for tumor diameter or cancer stage. In competing risk analyses of the validation cohort, the cumulative incidence of treatment failure, as well as of secondary enucleation, increased with the prognostic score: In the low, intermediate, and high-risk classes, the 10-year incidence of treatment failure was 19, 28, and 35% and of secondary enucleation 7, 19, and 25 %, respectively.Conclusions: Low visual acuity, American Joint Committee on Cancer stage, tumor thickness, and tumor distance to the optic disc are independent predictors of treatment failure after plaque brachytherapy for UM. A prognostic score was devised that identifies low, medium, and high risk for treatment failure. & COPY; 2022 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • 2.
    Beaulieu, Luc
    et al.
    CHU Quebec Univ Laval, Canada; Univ Laval, Canada.
    Ballester, Facundo
    IIS La Fe Univ Valencia, Spain.
    Granero, Domingo
    IIS La Fe Univ Valencia, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Haworth, Annette
    Univ Sydney, Australia.
    Lowenstein, Jessica R.
    UT MD Anderson Canc Ctr, TX USA.
    Ma, Yunzhi
    CHU Quebec Univ Laval, Canada; Univ Laval, Canada.
    Mourtada, Firas
    Thomas Jefferson Univ, PA USA.
    Papagiannis, Panagiotis
    Natl & Kapodistrian Univ Athens, Greece.
    Rivard, Mark J.
    Brown Univ, RI USA.
    Siebert, Frank-Andre
    Univ Hosp Schleswig Holstein, Germany.
    Sloboda, Ron S.
    Cross Canc Inst, Canada; Univ Alberta, Canada.
    Smith, Ryan L.
    Alfred Hosp, Australia.
    Thomson, Rowan M.
    Carleton Univ, Canada.
    Verhaegen, Frank
    Maastricht Univ, Netherlands.
    Fonseca, Gabriel
    Maastricht Univ, Netherlands.
    Vijande, Javier
    IIS La Fe Univ Valencia, Spain; IFIC UV CSIC, Spain.
    AAPM WGDCAB Report 372: A joint AAPM, ESTRO, ABG, and ABS report on commissioning of model-based dose calculation algorithms in brachytherapy2023Ingår i: Medical physics (Lancaster), ISSN 0094-2405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for Ir-192-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.

  • 3.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Antaki, Majd
    McGill Univ, Canada.
    Famulari, Gabriel
    McGill Univ, Canada; Ctr Hosp Univ Montreal, Canada.
    Morcos, Marc
    McGill Univ, Canada.
    Larsson, Torbjörn
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Matematiska institutionen, Tillämpad matematik.
    Enger, Shirin A.
    McGill Univ, Canada; Jewish Gen Hosp, Canada.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Dosimetric impact of a robust optimization approach to mitigate effects from rotational uncertainty in prostate intensity‐modulated brachytherapy2023Ingår i: Medical physics (Lancaster), ISSN 0094-2405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BackgroundIntensity-modulated brachytherapy (IMBT) is an emerging technology for cancer treatment, in which radiation sources are shielded to shape the dose distribution. The rotatable shields provide an additional degree of freedom, but also introduce an additional, directional, type of uncertainty, compared to conventional high-dose-rate brachytherapy (HDR BT). PurposeWe propose and evaluate a robust optimization approach to mitigate the effects of rotational uncertainty in the shields with respect to planning criteria. MethodsA previously suggested prototype for platinum-shielded prostate Yb-169-based dynamic IMBT is considered. We study a retrospective patient data set (anatomical contours and catheter placement) from two clinics, consisting of six patients that had previously undergone conventional Ir-192 HDR BT treatment. The Monte Carlo-based treatment planning software RapidBrachyMCTPS is used for dose calculations. In our computational experiments, we investigate systematic rotational shield errors of +/- 10 degrees and +/- 20 degrees, and the same systematic error is applied to all dwell positions in each scenario. This gives us three scenarios, one nominal and two with errors. The robust optimization approach finds a compromise between the average and worst-case scenario outcomes. ResultsWe compare dose plans obtained from standard models and their robust counterparts. With dwell times obtained from a linear penalty model (LPM), for 10 degrees errors, the dose to urethra (D0.1cc) and rectum (D0.1cc and D1cc) increase with up to 5% and 7%, respectively, in the worst-case scenario, while with the robust counterpart, the corresponding increases were 3% and 3%. For all patients and all evaluated criteria, the worst-case scenario outcome with the robust approach had lower deviation compared to the standard model, without compromising target coverage. We also evaluated shield errors up to 20 degrees and while the deviations increased to a large extent with the standard models, the robust models were capable of handling even such large errors. ConclusionsWe conclude that robust optimization can be used to mitigate the effects from rotational uncertainty and to ensure the treatment plan quality of IMBT.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Magnusson, Maria
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten.
    Alm Carlsson, Gudrun
    Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska University Hospital, Stockholm, Sweden .
    Malusek, Alexandr
    Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    On the Choice of Base Materials for Alvarez–Macovski and DIRA Dual-energy Reconstruction Algorithms in CT2023Ingår i: Photon Counting Computed Tomography: Clinical Applications, Image Reconstruction and Material Discrimination / [ed] Scott Hsieh, Krzysztof (Kris) Iniewski, Cham: Springer , 2023, s. 153-175Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. Resulting inaccuracies may lower their diagnostic value, or if the data are used for radiation treatment planning, the accuracy of such plans. The aim of this work is to investigate how the commonly used (water, bone) (WB), (water, iodine) (WI), and (approximate photoelectric effect, Compton scattering) (PC) doublets affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski (AM) method. The performance of this method is also compared to the performance of the dual-energy iterative reconstruction algorithm DIRA. In both cases, the study is performed using simulations.

    The results show that the PC and WB doublets accurately predicted the linear attenuation coefficient (LAC) values for human tissues and elements with Z = 1, …, 20, in the 20–150 keV range, though there was a small (<5% discrepancy in the 20–35 keV range. The WI doublet did not represent the tissues as well as PC and WB; the largest discrepancies (>50% in some cases) were in the 20–40 keV range.

    LACs reconstructed with the AM and DIRA followed this trend. AM produced artifacts when iodine was present in the phantom together with human tissues since AM can only work with one doublet at a time. It was shown that these artifacts could be avoided with DIRA using different doublets at different spatial positions, i.e., WB for soft and bone tissue and WI for the iodine solution.

    Publikationen är tillgänglig i fulltext från 2025-02-11 08:35
  • 5.
    Poder, J.
    et al.
    Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, New South Wales, Australia; School of Physics, University of Sydney, Camperdown, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.
    Rivard, M. J.
    Department of Radiation Oncology, Alpert Medical School of Brown University, Providence, RI, USA.
    Howie, A.
    Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, New South Wales, Australia.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Medical Radiation Physics and Nuclear Medicine, The Karolinska University Hospital, Stockholm, Sweden; Department of Oncology Pathology, The Karolinska Institute, Stockholm, Sweden.
    Haworth, A.
    School of Physics, University of Sydney, Camperdown, New South Wales, Australia.
    Risk and Quality in Brachytherapy From a Technical Perspective2023Ingår i: Clinical Oncology, ISSN 0936-6555, E-ISSN 1433-2981, Vol. 35, nr 8, s. 541-547Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Aims: To provide an overview of the history of incidents in brachytherapy and to describe the pillars in place to ensure that medical physicists deliver high quality brachytherapy. Materials and methods: A review of the literature was carried out to identify reported incidents in brachytherapy, together with an evaluation of the structures and processes in place to ensure that medical physicists deliver high-quality brachytherapy. In particular, the role of education and training, the use of process and technical quality assurance and the role of international guidelines are discussed. Results: There are many human factors in brachytherapy procedures that introduce additional risks into the process. Most of the reported incidents in the literature are related to human factors. Brachytherapy-related education and training initiatives are in place at the societal and departmental level for medical physicists. Additionally, medical physicists have developed process and technical quality assurance procedures, together with international guidelines and protocols. Education and training initiatives, together with quality assurance procedures and international guidelines may reduce the risk of human factors in brachytherapy. Conclusion: Through application of the three pillars (education and training; process control and technical quality assurance; international guidelines), medical physicists will continue to minimise risk and deliver high-quality brachytherapy treatments. & COPY; 2023 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  • 6.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Bokrantz, Rasmus
    RaySearch Labs, Sweden.
    Dohlmar, Frida
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Andersson, Björn
    RaySearch Labs, Sweden.
    Setterquist, Erik
    Medical Radiation Physics.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Technical note: evaluation of a spatial optimization model for prostate high dose‐rate brachytherapy in a clinical treatment planning system2023Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 50, nr 2, s. 688-693Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BackgroundSpatial properties of a dose distribution, such as volumes of contiguous hot spots, are of clinical importance in treatment planning for high dose-rate brachytherapy (HDR BT). We have in an earlier study developed an optimization model that reduces the prevalence of contiguous hot spots by modifying a tentative treatment plan. PurposeThe aim of this study is to incorporate the correction of hot spots in a standard inverse planning workflow and to validate the integrated model in a clinical treatment planning system. The spatial function is included in the objective function for the inverse planning, as opposed to in the previous study where it was applied as a separate post-processing step. Our aim is to demonstrate that fine-adjustments of dose distributions, which are often performed manually in todays clinical practice, can be automated. MethodsA spatial optimization function was introduced in the treatment planning system RayStation (RaySearch Laboratories AB, Stockholm, Sweden) via a research interface. A series of 10 consecutive prostate patients treated with HDR BT was retrospectively replanned with and without the spatial function. ResultsOptimization with the spatial function decreased the volume of the largest contiguous hot spot by on average 31%, compared to if the function was not included. The volume receiving at least 200% of the prescription dose decreased by on average 11%. Target coverage, measured as the fractions of the clinical target volume (CTV) and the planning target volume (PTV) receiving at least the prescription dose, was virtually unchanged (less than a percent change for both metrics). Organs-at-risk received comparable or slightly decreased doses if the spatial function was included in the optimization model. ConclusionsOptimization of spatial properties such as the volume of contiguous hot spots can be integrated in a standard inverse planning workflow for brachytherapy, and need not be conducted as a separate post-processing step.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Dohlmar, Frida
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Morén, Björn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Smedby, Orjan
    KTH Royal Inst Technol, Sweden.
    Valdman, Alexander
    Karolinska Inst, Sweden.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Validation of automated post-adjustments of HDR prostate brachytherapy treatment plans by quantitative measures and oncologist observer study2023Ingår i: Brachytherapy, ISSN 1538-4721, E-ISSN 1873-1449, Vol. 22, nr 3, s. 407-415Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PURPOSE: The aim was to evaluate a postprocessing optimization algorithms ability to improve the spatial properties of a clinical treatment plan while preserving the target coverage and the dose to the organs at risk. The goal was to obtain a more homogenous treatment plan, minimizing the need for manual adjustments after inverse treatment planning. MATERIALS AND METHODS: The study included 25 previously treated prostate cancer pa-tients. The treatment plans were evaluated on dose-volume histogram parameters established clin-ical and quantitative measures of the high dose volumes. The volumes of the four largest hot spots were compared and complemented with a human observer study with visual grading by eight oncologists. Statistical analysis was done using ordinal logistic regression. Weighted kappa and Fleiss kappa were used to evaluate intra-and interobserver reliability. RESULTS: The quantitative analysis showed that there was no change in planning target volume (PTV) coverage and dose to the rectum. There were significant improvements for the adjusted treatment plan in: V150% and V200% for PTV, dose to urethra, conformal index, and dose nonhomogeneity ratio. The three largest hot spots for the adjusted treatment plan were significantly smaller compared to the clinical treatment plan. The observers preferred the adjusted treatment plan in 132 cases and the clinical in 83 cases. The observers preferred the adjusted treatment plan on homogeneity and organs at risk but preferred the clinical plan on PTV coverage. CONCLUSIONS: Quantitative analysis showed that the postadjustment optimization tool could improve the spatial properties of the treatment plans while maintaining the target coverage. (c) 2022 The Authors. Published by Elsevier Inc. on behalf of American Brachytherapy Society. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Perez-Calatayud, Jose
    et al.
    La Fe Hosp, Spain; Clin Benidorm Hosp, Spain; Univ Valencia UV, Spain.
    Ballester, Facundo
    Univ Valencia UV, Spain; Univ Valencia UV, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Karolinska Inst, Sweden; Univ Wisconsin, WI USA.
    DeWerd, Larry A.
    Univ Wisconsin, WI USA.
    Papagiannis, Panagiotis
    Natl & Kapodistrian Univ Athens, Greece.
    Rivard, Mark J.
    Alpert Med Sch Brown Univ, RI USA.
    Siebert, Frank-Andre
    Klin Strahlentherapie Radioonkol, Germany.
    Vijande, Javier
    Univ Valencia UV, Spain.
    GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level2022Ingår i: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 176, s. 108-117Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments. (c) 2022 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology 176 (2022) 108-117 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Kaveckyte, Vaiva
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten.
    Jorgensen, Erik B.
    Aarhus Univ, Denmark; Aarhus Univ Hosp, Denmark.
    Kertzscher, Gustavo
    Aarhus Univ Hosp, Denmark.
    Johansen, Jacob G.
    Aarhus Univ, Denmark; Aarhus Univ Hosp, Denmark.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in Ir-192 brachytherapy2022Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 49, nr 7, s. 4715-4730Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background

    There is increased interest in in vivo dosimetry for 192Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response .

    Purpose

    To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry.

    Methods

    We used a general-purpose Monte Carlo (MC) code PENELOPE for the characterization of high-Z inorganic scintillators with the focus on ZnSe () Z. Two other promising media CsI () and Al2O3 () were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3, characterization phantoms 20 × 20 × 20 cm3, 30 × 30 × 30 cm3, 40 × 40 × 40 cm3, and patient-like elliptic phantom 40 × 30 × 25 cm3). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated.

    Results

    In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11% between limited- and full-scatter conditions for ZnSe, but not for Al2O3. For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9% and 5%, respectively, when placed midway between the source and the detector.

    Conclusions

    Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al. (2021) suggests that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Such information should be provided to the clinic by the detector vendors.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Magnusson, Maria
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Henriksson, Lilian
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Department of Medical Radiation Physics and Nuclear Medicine; Karolinska University Hospital , Stockholm, Sweden.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    ACCURACY OF CT NUMBERS OBTAINED BY DIRA AND MONOENERGETIC PLUS ALGORITHMS IN DUAL-ENERGY COMPUTED TOMOGRAPHY2021Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 195, nr 3-4, s. 212-217Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dual-energy computed tomography (CT) can be used in radiotherapy treatment planning for the calculation of absorbed dose distributions. The aim of this work is to evaluate whether there is room for improvement in the accuracy of the Monoenergetic Plus algorithm by Siemens Healthineers. A Siemens SOMATOM Force scanner was used to scan a cylindrical polymethyl methacrylate phantom with four rod-inserts made of different materials. Images were reconstructed using ADMIRE and processed with Monoenergetic Plus. The resulting CT numbers were compared with tabulated values and values simulated by the proof-of-a-concept algorithm DIRA developed by the authors. Both the Monoenergetic Plus and DIRA algorithms performed well; the accuracy of attenuation coefficients was better than about ±1% at the energy of 70 keV. Compared with DIRA, the worse performance of Monoenergetic Plus was caused by its (i) two-material decomposition to iodine and water and (ii) imperfect suppression of the beam hardening artifact in ADMIRE.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Dohlmar, Frida
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Johansson, Sakarias
    Karolinska Univ Hosp, Sweden.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    An audit of high dose-rate prostate brachytherapy treatment planning at six Swedish clinics2021Ingår i: Journal of Contemporary Brachytherapy, ISSN 1689-832X, E-ISSN 2081-2841, Vol. 13, nr 1, s. 59-71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: High dose-rate prostate brachytherapy has been implemented in Sweden in the late 1980s and early 1990s in six clinics using the same schedule: 20 Gy in two fractions combined with 50 Gy in 25 fractions with external beam radiation therapy. Thirty years have passed and during these years, various aspects of the treatment process have developed, such as ultrasound-guided imaging and treatment planning system. An audit was conducted, including a questionnaire and treatment planning, which aimed to gather knowledge about treatment planning methods in Swedish clinics. Material and methods: A questionnaire and a treatment planning case (non-anatomical images) were sent to six Swedish clinics, in which high-dose-rate prostate brachytherapy is performed. Treatment plans were compared using dosimetric indices and equivalent 2 Gy doses (EQD(2)). Treatment planning system report was used to compare dwell positions and dwell times. Results: For all the clinics, the planning aim for the target was 10.0 Gy, but the volume to receive the dose differed from 95% to 100%. Dose constraints for organs at risk varied with up to 2 Gy. The dose to 90% of target volume ranged from 10.0 Gy to 11.1 Gy, equivalent to 26.0 Gy EQD(2) and 31.3 Gy EQD(2), respectively. Dose non-homogeneity ratio differed from 0.18 to 0.32 for clinical target volume (CTV) in treatment plans and conformity index ranged from 0.52 to 0.59 for CTV. Conclusions: Dose constraints for the organs at risk are showing a larger variation than that reflected in compared treatments plans. In all treatment plans in our audit, at least 10 Gy was administered giving a total treatment of 102 Gy EQD(2), which is in the upper part of the prescription doses published in the GEC/ESTRO recommendations.

    Ladda ner fulltext (pdf)
    fulltext
  • 12.
    Song, William Y.
    et al.
    Virginia Commonwealth Univ, VA 23284 USA.
    Robar, James L.
    Dalhousie Univ, Canada.
    Morén, Björn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Jia, Xun
    Univ Texas Southwestern Med Ctr Dallas, TX 75390 USA.
    Emerging technologies in brachytherapy2021Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 66, nr 23, artikel-id 23TR01Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Brachytherapy is a mature treatment modality. The literature is abundant in terms of review articles and comprehensive books on the latest established as well as evolving clinical practices. The intent of this article is to part ways and look beyond the current state-of-the-art and review emerging technologies that are noteworthy and perhaps may drive the future innovations in the field. There are plenty of candidate topics that deserve a deeper look, of course, but with practical limits in this communicative platform, we explore four topics that perhaps is worthwhile to review in detail at this time. First, intensity modulated brachytherapy (IMBT) is reviewed. The IMBT takes advantage of anisotropic radiation profile generated through intelligent high-density shielding designs incorporated onto sources and applicators such to achieve high quality plans. Second, emerging applications of 3D printing (i.e. additive manufacturing) in brachytherapy are reviewed. With the advent of 3D printing, interest in this technology in brachytherapy has been immense and translation swift due to their potential to tailor applicators and treatments customizable to each individual patient. This is followed by, in third, innovations in treatment planning concerning catheter placement and dwell times where new modelling approaches, solution algorithms, and technological advances are reviewed. And, fourth and lastly, applications of a new machine learning technique, called deep learning, which has the potential to improve and automate all aspects of brachytherapy workflow, are reviewed. We do not expect that all ideas and innovations reviewed in this article will ultimately reach clinic but, nonetheless, this review provides a decent glimpse of what is to come. It would be exciting to monitor as IMBT, 3D printing, novel optimization algorithms, and deep learning technologies evolve over time and translate into pilot testing and sensibly phased clinical trials, and ultimately make a difference for cancer patients. Todays fancy is tomorrows reality. The future is bright for brachytherapy.

  • 13.
    Kaveckyte, Vaiva
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.
    Varea, José María Fernández
    Facultat de Física (FQA and ICC), Universitat de Barcelona, Barcelona, Catalonia, Spain.
    Impact of the I-value of diamond on the energy deposition in different beam qualities2021Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 66, nr 12, artikel-id 125004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Diamond detectors are increasingly employed in dosimetry. Their response has been investigated by means of Monte Carlo (MC) methods, but there is no consensus on what mass density ρ, mean excitation energy I and number of conduction electrons per atom nce to use in the simulations. The ambiguity occurs due to its seeming similarity with graphite (both are carbon allotropes). Contrary to diamond, graphite has been well-characterized. Except for the difference in ρ between crystalline graphite (2.265 g cm-3) and diamond (3.515 g cm-3), their dielectric properties are assumed to be identical. This is incorrect, and the two materials should be distinguished: (ρ = 2.265 g cm-3, I = 81.0 eV, nce = 1) for graphite and (ρ = 3.515 g cm-3, I = 88.5 eV, nce = 0) for diamond. Simulations done with the MC code PENELOPE show that the energy imparted in diamond decreases by up to 1% with respect to 'pseudo-diamond' (ρ = 3.515 g cm-3, I = 81.0 eV, nce = 0) depending on the beam quality and cavity thickness. The energy imparted changed the most in cavities that are small compared with the range of electrons. The difference in the density-effect term relative to graphite was the smallest for diamond owing to an interplay effect that ρ, I and nce have on this term, in contrast to pseudo-diamond media when either ρ or I alone were adjusted. The study also presents a parameterized density-effect correction function for diamond that may be used by MC codes like EGSnrc. The ESTAR program assumes that nce = 2 for all carbon-based materials, hence it delivers an erroneous density-effect correction term for graphite and diamond. Despite the small changes of the energy imparted in diamond simulated with two different I values and expected close-to-negligible deviation from the published small-field output correction data, it is important to pay attention to material properties and model the medium faithfully.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Malusek, Alexandr
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Medicinska fakulteten.
    Henriksson, Lilian
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten.
    Eriksson, Peter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    Dahlström, Nils
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Röntgenkliniken i Linköping.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Medicinska fakulteten. Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
    Uvdal, Kajsa
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär ytfysik och nanovetenskap. Linköpings universitet, Tekniska fakulteten.
    On The Possibility To Resolve Gadolinium- And Cerium-Based Contrast Agents From Their CT Numbers In Dual-Energy Computed Tomography2021Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 195, nr 3-4, s. 225-231Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cerium oxide nanoparticles with integrated gadolinium have been proved to be useful as contrast agents in magnetic resonance imaging. Of question is their performance in dual-energy computed tomography. The aims of this work are to determine (1) the relation between the computed tomography number and the concentration of the I, Gd or Ce contrast agent and (2) under what conditions it is possible to resolve the type of contrast agent. Hounsfield values of iodoacetic acid, gadolinium acetate and cerium acetate dissolved in water at molar concentrations of 10, 50 and 100 mM were measured in a water phantom using the Siemens SOMATOM Definition Force scanner; gadolinium- and cerium acetate were used as substitutes for the gadolinium-integrated cerium oxide nanoparticles. The relation between the molar concentration of the I, Gd or Ce contrast agent and the Hounsfield value was linear. Concentrations had to be sufficiently high to resolve the contrast agents.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Magnusson, Maria
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Department of Medical Radiation Physics and Nuclear Medicine; Karolinska University Hospital, Stockholm, Sweden.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Optimal Selection of Base Materials for Accurate Dual-Energy Computed Tomography: Comparison Between the Alvarez–Macovski Method and DIRA2021Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 195, nr 3-4, s. 218-224Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The choice of the material base to which the material decomposition is performed in dual-energy computed tomography may affect the quality of reconstructed images. The aim of this work is to investigate how the commonly used bases (water, bone), (water, iodine) and (photoelectric effect, Compton scattering) affect the reconstructed linear attenuation coefficient in the case of the Alvarez–Macovski method. The performance of this method is also compared with the performance of the Dual-energy Iterative Reconstruction Algorithm (DIRA). In both cases, the study is performed using simulations. The results show that the Alvarez–Macovski method produced artefacts when iodine was present in the phantom together with human tissues since this method can only work with one doublet. It was shown that these artefacts could be avoided with DIRA using the (water, bone) doublet for tissues and the (water, iodine) doublet for the iodine solution.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Tillämpad matematik. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden.
    Optimization in treatment planning of high dose‐rate brachytherapy: Review and analysis of mathematical models2021Ingår i: Medical Physics, ISSN 2473-4209, Vol. 48, nr 5, s. 2057-2082Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Treatment planning in high dose‐rate brachytherapy has traditionally been conducted with manual forward planning, but inverse planning is today increasingly used in clinical practice. There is a large variety of proposed optimization models and algorithms to model and solve the treatment planning problem. Two major parts of inverse treatment planning for which mathematical optimization can be used are the decisions about catheter placement and dwell time distributions. Both these problems as well as integrated approaches are included in this review. The proposed models include linear penalty models, dose–volume models, mean‐tail dose models, quadratic penalty models, radiobiological models, and multiobjective models. The aim of this survey is twofold: (i) to give a broad overview over mathematical optimization models used for treatment planning of brachytherapy and (ii) to provide mathematical analyses and comparisons between models. New technologies for brachytherapy treatments and methods for treatment planning are also discussed. Of particular interest for future research is a thorough comparison between optimization models and algorithms on the same dataset, and clinical validation of proposed optimization approaches with respect to patient outcome.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Jeuthe, Julius
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten.
    Sánchez, José Carlos González
    Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten.
    Magnusson, Maria
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Semi-Automated 3D Segmentation of Pelvic Region Bones in CT Volumes for the Annotation of Machine Learning Datasets2021Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 195, nr 3-4, s. 172-176Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Automatic segmentation of bones in computed tomography (CT) images is used for instance in beam hardening correction algorithms where it improves the accuracy of resulting CT numbers. Of special interest are pelvic bones, which—because of their strong attenuation—affect the accuracy of brachytherapy in this region. This work evaluated the performance of the JJ2016 algorithm with the performance of MK2014v2 and JS2018 algorithms; all these algorithms were developed by authors. Visual comparison, and, in the latter case, also Dice similarity coefficients derived from the ground truth were used. It was found that the 3D-based JJ2016 performed better than the 2D-based MK2014v2, mainly because of the more accurate hole filling that benefitted from information in adjacent slices. The neural network-based JS2018 outperformed both traditional algorithms. It was, however, limited to the resolution of 1283 owing to the limited amount of memory in the graphical processing unit (GPU).

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Vijande, Javier
    et al.
    Univ Valencia UV, Spain; Univ Valencia UV, Spain; IFIC UV CSIC, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Ballester, Facundo
    Univ Valencia UV, Spain; Univ Valencia UV, Spain.
    Baltas, Dimos
    Univ Freiburg, Germany; German Canc Res Ctr, Germany.
    Papagiannis, Panagiotis
    Natl & Kapodistrian Univ Athens, Greece.
    Rivard, Mark J.
    Brown Univ, RI 02912 USA.
    Siebert, Frank-Andre
    Univ Hosp Schleswig Holstein, Germany.
    De Werd, Larry
    Univ Wisconsin, WI 53706 USA.
    Perez-Calatayud, Jose
    Univ Valencia UV, Spain; La Fe Hosp, Spain; Clin Benidorm, Spain.
    Source strength determination in iridium-192 and cobalt-60 brachytherapy: A European survey on the level of agreement between clinical measurements and manufacturer certificates2021Ingår i: Physics and Imaging in Radiation Oncology, E-ISSN 2405-6316, Vol. 19, s. 108-111Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background and purpose: Brachytherapy treatment outcomes depend on the accuracy of the delivered dose distribution, which is proportional to the reference air-kerma rate (RAKR). Current societal recommendations require the medical physicist to compare the measured RAKR values to the manufacturer source calibration certificate. The purpose of this work was to report agreement observed in current clinical practice in the European Union. Materials and methods: A European survey was performed for high- and pulsed-dose-rate (HDR and PDR) highenergy sources (Ir-192 and Co-60), to quantify observed RAKR differences. Medical physicists at eighteen hospitals from eight European countries were contacted, providing 1,032 data points from 2001 to 2020. Results: Over the survey period, 77% of the Ir-192 measurements used a well chamber instead of the older Krieger phantom method. Mean differences with the manufacturer calibration certificate were 0.01% +/- 1.15% for Ir-192 and -0.1% +/- 1.3% for Co-60. Over 95% of RAKR measurements in the clinic were within 3% of the manufacturer calibration certificate. Conclusions: This study showed that the agreement level was generally better than that reflected in prior societal recommendations positing 5%. Future recommendations on high-energy HDR and PDR source calibrations in the clinic may consider tightened agreements levels.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Lindström, Jan
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska Univ Hosp, Sweden.
    Hulthen, Markus
    Karolinska Univ Hosp, Sweden.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska Univ Hosp, Sweden.
    Development and assessment of a quality assurance device for radiation field-light field congruence testing in diagnostic radiology2020Ingår i: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 7, nr 6, artikel-id 063501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: Existing methods for checking the light field-radiation field congruence on x-ray equipment either do not fully meet the conditions of various quality control standards regarding inherent uncertainty requirements or contain subjective steps, further increasing the uncertainty of the end result. The aim of this work was to develop a method to check the light field-radiation field congruence on all x-ray equipment. The result should have a low uncertainty which is accomplished by eliminating most subjective user steps in the method. A secondary aim was to maintain the same level of usability as of comparable methods but still able to store the result. Approach: A new device has been developed where the light field and corresponding radiation field are monitored through measurements of the field edge locations (in total: 2 x 4 edges). The maximum field size location deviation between light field and radiation field in the new method is constrained by the physical limitations of the sensors used in various versions of the prototype: linear image sensors (LISs) of 25 to 29 mm active sensor length. The LISs were sensitized to x-rays by applying a phosphor strip of Gd2O2S: Tb covering the light sensor input area. Later prototypes of the completed LIS device also have the option of a Bluetooth (100-m range standard) connection, thus increasing the mobility. Results: The developed device has a special feature of localization a field edge without any prior, subjective, alignment procedure of the user, i.e., the signals produced were processed by software storing the associated field edge profiles, localizing the edges in them, and finally displaying the calculated deviation. The uncertainty in field edge location difference was estimated to be &lt;0.1 mm (k = 2). The calculated uncertainty is lower than for other, commercially available, methods for light field-radiation field congruence also presented in this work. Conclusions: A method to check the light field-radiation field congruence of x-ray systems was developed to improve the limitations found in existing methods, such as device detector resolution, subjective operator steps, or the lack of storing results for later analysis. The development work overcame several challenges including mathematically describing real-life edges of light and radiation fields, noise reduction of radiation edges, and mapping/quantification of the rarely observed phenomenon of focal spot wandering. The assessment of the method showed that the listed limitations were overcome, and the aims were accomplished. It is therefore believed that the device can improve the work in quality controls of x-ray systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Lindstrom, Jan
    et al.
    Karolinska Univ Hosp, Sweden.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Wahlin, Erik
    Karolinska Univ Hosp, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden.
    Poludniowski, Gavin
    Karolinska Univ Hosp, Sweden.
    Experimental assessment of a phosphor model for estimating the relative extrinsic efficiency in radioluminescent detectors2020Ingår i: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 76, s. 117-124Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Optimising phosphor screens in dose detectors or imaging sensor designs is a cumbersome and time- consuming work normally involving specialised measuring equipment and advanced modelling. It is known that crucial optical parameters of the same phosphor may vary within a wide range of values. The aim of this work was to experimentally assess a simple previously published model where the case specific optical parameters (scattering and absorption) are instead represented by a fixed, single parameter, the light extinction factor, xi. The term extrinsic efficiency, N, of a phosphor is also introduced, differing from the common denotation "absolute efficiency", after noting that unknown factors (such as temperature dependence) can have an influence during efficiency estimations and hence difficult to claim absoluteness. N is expressed as the ratio of light energy emitted per unit area at the phosphor surface to incident x-ray energy fluence. By focusing on ratios and relative changes in this study, readily available instruments in a Medical Physics Department (i.e. a photometer) could be used. The varying relative extrinsic efficiency for an extended range of particle sizes (7.5 and 25 mu m) and layer thicknesses (220 to 830 mu m) were calculated in the model from the input parameters: the mean particle size of the phosphor, the layer thickness, the light extinction factor and the calculated energy imparted to the layer. In-house manufactured screens (Gd2O2S:Tb) were used for better control of design parameters. The model provided good qualitative agreement to experiment with quantitative deviations in relative extrinsic efficiency within approximately 2%.

  • 21.
    Kaveckyte, Vaiva
    et al.
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden.
    Persson, Linda
    Swedish Radiat Safety Author, Sweden.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Benmakhlouf, Hamza
    Karolinska Univ Hosp, Sweden.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden.
    Investigation of a synthetic diamond detector response in kilovoltage photon beams2020Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 47, nr 3, s. 1268-1279Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose An important characteristic of radiation dosimetry detectors is their energy response which consists of absorbed-dose and intrinsic energy responses. The former can be characterized using Monte Carlo (MC) simulations, whereas the latter (i.e., detector signal per absorbed dose to detector) is extracted from experimental data. Such a characterization is especially relevant when detectors are used in nonrelative measurements at a beam quality that differs from the calibration beam quality. Having in mind the possible application of synthetic diamond detectors (microDiamond PTW 60019, Freiburg, Germany) for nonrelative dosimetry of low-energy brachytherapy (BT) beams, we determined their intrinsic and absorbed-dose energy responses in 25-250 kV beams relative to a Co-60 beam, which is usually the reference beam quality for detector calibration in radiotherapy. Material and Methods Three microDiamond detectors and, for comparison, two silicon diodes (PTW 60017) were calibrated in terms of air-kerma free in air in six x-ray beam qualities (from 25 to 250 kV) and in terms of absorbed dose to water in a Co-60 beam at the national metrology laboratory in Sweden. The PENELOPE/penEasy MC radiation transport code was used to calculate the absorbed-dose energy response of the detectors (modeled based on blueprints) relative to air and water depending on calibration conditions. The MC results were used to extract the relative intrinsic energy response of the detectors from the overall energy response. Measurements using an independent setup with a single ophthalmic BEBIG I25.S16 I-125 BT seed (effective photon energy of 28 keV) were used as a qualitative check of the extracted intrinsic energy response correction factors. Additionally, the impact of the thickness of the active volume as well as the presence of extra-cameral components on the absorbed-dose energy response of a microDiamond detector was studied using MC simulations. Results The relative intrinsic energy response of the microDiamond detectors was higher by a factor of 2 in 25 and 50 kV beams compared to the Co-60 beam. The variation in the relative intrinsic energy response of silicon diodes was within 10% over the investigated photon energy range. The use of relative intrinsic energy response correction factors improved the agreement among the absorbed dose to water values determined using microDiamond detectors and silicon diodes, as well as with the TG-43 formalism-based calculations for the I-125 seed. MC study of microDiamond detector design features provided a possible explanation for inter-detector response variation at low-energy photon beams by differences in the effective thickness of the active volume. Conclusions MicroDiamond detectors had a non-negligible variation in the relative intrinsic energy response (factor of 2) which was comparable to that in the absorbed-dose energy response relative to water at low-energy photon beams. Silicon diodes, in contrast, had an absorbed-dose energy dependence on photon energy that varied by a factor of 6, whereas the intrinsic energy dependence on beam quality was within 10%. It is important to decouple these two responses for a full characterization of detector energy response especially when the user and reference beam qualities differ significantly, and MC alone is not enough.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Sanchez, Jose Carlos Gonzalez
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Magnusson, Maria
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Sandborg, Michael
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för hälsa, medicin och vård, Avdelningen för diagnostik och specialistmedicin. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net2020Ingår i: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 69, s. 241-247Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Deep learning algorithms have improved the speed and quality of segmentation for certain tasks in medical imaging. The aim of this work is to design and evaluate an algorithm capable of segmenting bones in dual-energy CT data sets. A convolutional neural network based on the 3D U-Net architecture was implemented and evaluated using high tube voltage images, mixed images and dual-energy images from 30 patients. The network performed well on all the data sets; the mean Dice coefficient for the test data was larger than 0.963. Of special interest is that it performed better on dual-energy CT volumes compared to mixed images that mimicked images taken at 120 kV. The corresponding increase in the Dice coefficient from 0.965 to 0.966 was small since the enhancements were mainly at the edges of the bones. The method can easily be extended to the segmentation of multi-energy CT data.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Ghazal, Mohammed
    et al.
    Karolinska Univ Hosp, Sweden.
    Westermark, Mathias
    Karolinska Univ Hosp, Sweden.
    Kaveckyte, Vaiva
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden.
    Benmakhlouf, Hamza
    Karolinska Univ Hosp, Sweden.
    6-MV small field output factors: intra-/intermachine comparison and implementation of TRS-483 using various detectors and several linear accelerators2019Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 46, nr 11, s. 5350-5359Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose To investigate the applicability of output correction factors reported in TRS-483 on 6-MV small-field detector-reading ratios using four solid-state detectors. Also, to investigate variations in 6-MV small-field output factors (OF) among nominally matched linear accelerators (linacs). Methods The TRS-483 Code of Practice (CoP) introduced and provided output correction factors to be applied to measured detector-reading ratios to obtain OFs for several small-field detectors. Detector readings for 0.5 cm x 0.5 cm to 8 cm x 8 cm fields were measured and normalized to that of 10 cm x 10 cm field giving the detector-reading ratios. Three silicon diodes, IBA PFD, IBA EFD (IBA, Schwarzenbruck, Germany), PTW T60017, and one microdiamond, PTW T60019 (PTW, Freiburg, Germany), were used. Output correction factors from the CoP were applied to measured detector-reading ratios. Measurements were performed on six Clinac and six TrueBeam linacs (Varian Medical Systems, Palo Alto, USA). An investigation of the relationship between the size of small fields and corresponding detector-reading ratio among the linacs was performed by measuring lateral dose profiles for 0.5 cm x 0.5 cm fields to determine the full width half maximum (FWHM). The relationship between the linacs focal spot size and the small-field detector-reading ratio was investigated by measuring 10 cm x 10 cm lateral dose profiles and determining the penumbra width reflecting the focal spot size. Measurement geometry was as follows: gantry angle = 0 degrees, collimator angle = 0 degrees, source-to surface distance (SSD) = 90 cm, and depth in water = 10 cm. Results For a given linac and 0.5 cm x 0.5 cm field, the deviations in detector-reading ratios among the detectors were 9%-15% for the Clinacs and 4%-5% for the TrueBeams. Use of output correction factors reduced these deviations to 6%-12% and 3%-4%, respectively. For field sizes equal to or larger than 0.8 cm x 0.8 cm, the deviations were corrected to 1% using output correction factors for both Clinacs and TrueBeams. For a given detector and 0.5 cm x 0.5 cm field, the deviations in detector-reading ratios among the linacs were 11%-17% for the Clinacs and 5-6% for the TrueBeams. For 1 cm x 1 cm the deviations were 1%-2% for Clinacs and 1% for TrueBeams. For field sizes larger than 1 cm x 1 cm the deviations were within 1% for both Clinacs and TrueBeams. No relationship between FWHMs and detector-reading ratios for 0.5 cm x 0.5 cm was observed. For Clinacs, larger 10 cm x 10 cm penumbra width yielded lower 0.5 cm x 0.5 cm detector-reading ratio indicating an effect of the focal spot size. For TrueBeams, the spread of penumbra widths was lower compared to Clinacs and no similar relationship was observed. Conclusions Output correction factors from the TRS-483 CoP are not sufficient for accurate determination of OF for 0.5 cm x 0.5 cm fields but are applicable for 0.8 cm x 0.8 cm to 8 cm x 8 cm fields. Nominally matched Clinacs and TrueBeams show large differences in detector-reading ratios for fields smaller than 1 cm x 1 cm.

  • 24.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    A mathematical optimization model for spatial adjustments of dose distributions in high dose-rate brachytherapy2019Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 64, nr 22, artikel-id 225012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High dose-rate brachytherapy is a modality of radiation therapy used for cancer treatment, in which the radiation source is placed within the body. The treatment goal is to give a high enough dose to the tumour while sparing nearby healthy tissue and organs (organs-at-risk). The most common criteria for evaluating dose distributions are dosimetric indices. For the tumour, such an index is the portion of the volume that receives at least a specified dose level (e.g. the prescription dose), while for organs-at-risk it is instead the portion of the volume that receives at most a specified dose level. Dosimetric indices are aggregate criteria and do not consider spatial properties of the dose distribution. Further, there are neither any established evaluation criteria for characterizing spatial properties, nor have such properties been studied in the context of mathematical optimization of brachytherapy. Spatial properties are however of clinical relevance and therefore dose plans are sometimes adjusted manually to improve them. We propose an optimization model for reducing the prevalence of contiguous volumes with a too high dose (hot spots) or a too low dose (cold spots) in a tentative dose plan. This model is independent of the process of constructing the tentative plan. We conduct computational experiments with tentative plans obtained both from optimization models and from clinical practice. The objective function considers pairs of dose points and each pair is given a distance-based penalty if the dose is either too high or too low at both dose points. Constraints are included to retain dosimetric indices at acceptable levels. Our model is designed to automate the manual adjustment step in the planning process. In the automatic adjustment step large-scale optimization models are solved. We show reductions of the volumes of the largest hot and cold spots, and the computing times are feasible in clinical practice.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska University Hospital, Stockholm, Sweden.
    An extended dose-volume model in high dose-rate brachytherapy: Using mean-tail-dose to reduce tumor underdosage2019Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 46, nr 6, s. 2556-2566Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose High dose-rate brachytherapy is a method of radiotherapy for cancer treatment in which the radiation source is placed within the body. In addition to give a high enough dose to a tumor, it is also important to spare nearby healthy organs [organs at risk (OAR)]. Dose plans are commonly evaluated using the so-called dosimetric indices; for the tumor, the portion of the structure that receives a sufficiently high dose is calculated, while for OAR it is instead the portion of the structure that receives a sufficiently low dose that is of interest. Models that include dosimetric indices are referred to as dose-volume models (DVMs) and have received much interest recently. Such models do not take the dose to the coldest (least irradiated) volume of the tumor into account, which is a distinct weakness since research indicates that the treatment effect can be largely impaired by tumor underdosage even to small volumes. Therefore, our aim is to extend a DVM to also consider the dose to the coldest volume. Methods An improved DVM for dose planning is proposed. In addition to optimizing with respect to dosimetric indices, this model also takes mean dose to the coldest volume of the tumor into account. Results Our extended model has been evaluated against a standard DVM in ten prostate geometries. Our results show that the dose to the coldest volume could be increased, while also computing times for the dose planning were improved. Conclusion While the proposed model yields dose plans similar to other models in most aspects, it fulfils its purpose of increasing the dose to cold tumor volumes. An additional benefit is shorter solution times, and especially for clinically relevant times (of minutes) we show major improvements in tumour dosimetric indices.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Magnusson, Maria
    et al.
    Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Björnfot, Magnus
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ, Sweden.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Sandborg, Michael
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    DIRA-3D-a model-based iterative algorithm for accurate dual-energy dual-source 3D helical CT2019Ingår i: Biomedical Engineering & Physics Express, E-ISSN 2057-1976, Vol. 5, nr 6, artikel-id UNSP 065005Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Quantitative dual-energy computed tomography may improve the accuracy of treatment planning in radiation therapy. Of special interest are algorithms that can estimate material composition of the imaged object. One example of such an algorithm is the 2D model-based iterative reconstruction algorithm DIRA. The aim of this work is to extend this algorithm to 3D so that it can be used with cone-beams and helical scanning. In the new algorithm, the parallel FBP method was replaced with the approximate 3D FBP-based PI-method. Its performance was tested using a mathematical phantom consisting of six ellipsoids. The algorithm substantially reduced the beam-hardening artefact and the artefacts caused by approximate reconstruction after six iterations. Compared to Alvarez-Macovskis base material decomposition, DIRA-3D does not require geometrically consistent projections and hence can be used in dual-source CT scanners. Also, it can use several tissue-specific material bases at the same time to represent the imaged object.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Adolfsson, Emelie
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Wesolowska, Paulina
    IAEA, Austria.
    Izewska, Joanna
    IAEA, Austria.
    Lund, Eva
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden.
    END-TO-END AUDIT: COMPARISON OF TLD AND LITHIUM FORMATE EPR DOSIMETRY2019Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 186, nr 1, s. 119-122Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this study was to test two different solid state dosimetry systems for the purpose of end-to-end audits of radiotherapy volumetric modulated arc therapy (VMAT) technique; a lithium formate electron paramagnetic resonance system and a lithium fluoride thermoluminescent dosimetry system. As a complement to the solid state systems, ion chamber measurements were performed. A polystyrene phantom with a planning target volume (PTV) and an organ at risk (OAR) structure was scanned using CT. A VMAT dose plan was optimized to deliver 2 Gy to the target volume and to minimize the dose to the OAR. The different detectors were inserted into the phantom and the planned dose distribution was delivered. The measured doses were compared to the treatment planning system (TPS) calculated doses. Good agreement was found between the TPS calculated and the measured doses, well accepted for the dose determinations in remote dosimetry audits of VMAT treatment technique.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Perez-Calatayud, Jose
    et al.
    Univ and Polytech La Fe Hosp, Spain; IIS La Fe UV, Spain.
    Ballester, Facundo
    IIS La Fe UV, Spain; Univ Valencia, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Rijnders, Alex
    Europe Hosp, Belgium.
    Rivard, Mark J.
    Brown Univ, RI 02912 USA.
    Andrassy, Michael
    RandD Brachytherapy Eckert and Ziegler BEBIG, Germany.
    Niatsetski, Yury
    RandD Elekta Brachytherapy, Netherlands.
    Schneider, Thorsten
    PTB, Germany.
    Siebert, Frank-Andre
    UK S H, Germany.
    GEC-ESTRO ACROP recommendations on calibration and traceability of LE-LDR photon-emitting brachytherapy sources at the hospital level2019Ingår i: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 135, s. 120-129Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Prostate brachytherapy treatment using permanent implantation of low-energy (LE) low-dose rate (LDR) sources is successfully and widely applied in Europe. In addition, seeds are used in other tumour sites, such as ophthalmic tumours, implanted temporarily. The calibration issues for LE-LDR photon emitting sources are specific and different from other sources used in brachytherapy. In this report, the BRAPHYQS (BRAchytherapy PHYsics Quality assurance System) working group of GEC-ESTRO, has developed the present recommendations to assure harmonized and high-quality seed calibration in European clinics. There are practical aspects for which a clarification/procedure is needed, including aspects not specifically accounted for in currently existing AAPM and ESTRO societal recommendations. The aim of this report has been to provide a European wide standard in LE-LDR source calibration at end-user level, in order to keep brachytherapy treatments with high safety and quality levels. The recommendations herein reflect the guidance to the ESTRO brachytherapy users and describe the procedures in a clinic or hospital to ensure the correct calibration of LE-LDR seeds. (C) 2019 The Authors. Published by Elsevier B.V.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Wesolowska, Paulina
    et al.
    IAEA, Austria.
    Georg, Dietmar
    Med Univ Vienna, Austria; Christian Doppler Lab Med Radiat Res Radiat Oncol, Austria.
    Lechner, Wolfgang
    Med Univ Vienna, Austria; Christian Doppler Lab Med Radiat Res Radiat Oncol, Austria.
    Kazantsev, Pavel
    IAEA, Austria.
    Bokulic, Tomislav
    IAEA, Austria.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Diagnostikcentrum, Medicinsk strålningsfysik. Karolinska Univ Hosp, Sweden.
    Adolfsson, Emelie
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Campos, Anna Maria
    Inst Nacl Canc, Brazil.
    Leandro Alves, Victor Gabriel
    Inst Nacl Canc, Brazil.
    Suming, Luo
    Chinese Ctr Dis Control and Prevent, Peoples R China.
    Hao, Wu
    Beijing Canc Hosp, Peoples R China.
    Ekendahl, Daniela
    Natl Radiat Protect Inst, Czech Republic.
    Koniarova, Irena
    Natl Radiat Protect Inst, Czech Republic.
    Bulski, Wojciech
    Maria Sklodowska Curie Mem Canc Ctr and Inst Oncol, Poland.
    Chelminski, Krzysztof
    Maria Sklodowska Curie Mem Canc Ctr and Inst Oncol, Poland.
    Alonso Samper, Jose Luis
    Natl Inst Oncol and Radiobiol, Cuba.
    Vinatha, Sumanth Panyam
    Bhabha Atom Res Ctr Trombay, India.
    Rakshit, Sougata
    Bhabha Atom Res Ctr Trombay, India.
    Siri, Srimanoroth
    SSDL, Thailand.
    Tomsejm, Milan
    Hop Andre Vesale, Belgium.
    Tenhunen, Mikko
    Helsinki Univ Helsinki, Finland.
    Povall, Julie
    Univ Leeds, England.
    Kry, Stephen F.
    Anderson Canc Ctr, TX USA.
    Followill, David S.
    Anderson Canc Ctr, TX USA.
    Thwaites, David I.
    Univ Leeds, England; Univ Sydney, Australia.
    Izewska, Joanna
    IAEA, Austria.
    Testing the methodology for a dosimetric end-to-end audit of IMRT/VMAT: results of IAEA multicentre and national studies2019Ingår i: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 58, nr 12, s. 1731-1739Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction: Within an International Atomic Energy Agency (IAEA) co-ordinated research project (CRP), a remote end-to-end dosimetric quality audit for intensity modulated radiation therapy (IMRT)/ volumetric arc therapy (VMAT) was developed to verify the radiotherapy chain including imaging, treatment planning and dose delivery. The methodology as well as the results obtained in a multicentre pilot study and national trial runs conducted in close cooperation with dosimetry audit networks (DANs) of IAEA Member States are presented. Material and methods: A solid polystyrene phantom containing a dosimetry insert with an irregular solid water planning target volume (PTV) and organ at risk (OAR) was designed for this audit. The insert can be preloaded with radiochromic film and four thermoluminescent dosimeters (TLDs). For the audit, radiotherapy centres were asked to scan the phantom, contour the structures, create an IMRT/VMAT treatment plan and irradiate the phantom. The dose prescription was to deliver 4 Gy to the PTV in two fractions and to limit the OAR dose to a maximum of 2.8 Gy. The TLD measured doses and film measured dose distributions were compared with the TPS calculations. Results: Sixteen hospitals from 13 countries and 64 hospitals from 6 countries participated in the multicenter pilot study and in the national runs, respectively. The TLD results for the PTV were all within +/- 5% acceptance limit for the multicentre pilot study, whereas for national runs, 17 participants failed to meet this criterion. All measured doses in the OAR were below the treatment planning constraint. The film analysis identified seven plans in national runs below the 90% passing rate gamma criteria. Conclusion: The results proved that the methodology of the IMRT/VMAT dosimetric end-to-end audit was feasible for its intended purpose, i.e., the phantom design and materials were suitable; the phantom was easy to use and it was robust enough for shipment. Most importantly the audit methodology was capable of identifying suboptimal IMRT/VMAT delivery.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Persson, Maria
    et al.
    Karolinska Univ Hosp, Sweden.
    Nilsson, Josef
    Karolinska Univ Hosp, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Karolinska Univ Hosp, Sweden.
    Experience of using MOSFET detectors for dose verification measurements in an end-to-end Ir-192 brachytherapy quality assurance system2018Ingår i: Brachytherapy, ISSN 1538-4721, E-ISSN 1873-1449, Vol. 17, nr 1, s. 227-233Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PURPOSE: Establishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors. METHODS AND MATERIALS: A bolus phantom was constructed with two implants, mimicking prostate and head amp; neck treatments, using steel needles and plastic catheters to guide the Ir-192 source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external Co-60 beam. An initial experimental investigation on beam quality differences between Ir-192 and Co-60 is reported. RESULTS: The standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2-7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement. CONCLUSIONS: MOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions. (C) 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  • 31.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Karolinska Univ Hosp, Sweden; Karolinska Inst, Sweden.
    Mathematical optimization of high dose-rate brachytherapy-derivation of a linear penalty model from a dose-volume model2018Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 63, nr 6, artikel-id 065011Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High dose-rate brachytherapy is a method for cancer treatment where the radiation source is placed within the body, inside or close to a tumour. For dose planning, mathematical optimization techniques are being used in practice and the most common approach is to use a linear model which penalizes deviations from specified dose limits for the tumour and for nearby organs. This linear penalty model is easy to solve, but its weakness lies in the poor correlation of its objective value and the dose-volume objectives that are used clinically to evaluate dose distributions. Furthermore, the model contains parameters that have no clear clinical interpretation. Another approach for dose planning is to solve mixed-integer optimization models with explicit dose-volume constraints which include parameters that directly correspond to dose-volume objectives, and which are therefore tangible. The two mentioned models take the overall goals for dose planning into account in fundamentally different ways. We show that there is, however, a mathematical relationship between them by deriving a linear penalty model from a dose-volume model. This relationship has not been established before and improves the understanding of the linear penalty model. In particular, the parameters of the linear penalty model can be interpreted as dual variables in the dose-volume model.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Morén, Björn
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för medicin och hälsa.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Medical Radiation Physics and Nuclear Medicine, Department of Oncology Pathology, Karolinska University Hospital, Solna Sweden.
    Preventing Hot Spots in High Dose-Rate Brachytherapy2018Ingår i: Operations Research Proceedings 2017 / [ed] Kliewer, Natalia; Ehmke, Jan Fabian; Borndörfer, Ralf, Springer International Publishing , 2018, s. 369-375Konferensbidrag (Refereegranskat)
    Abstract [en]

    High dose-rate brachytherapy is a method of radiation cancer treatment, where the radiation source is placed inside the body. The recommended way to evaluate dose plans is based on dosimetric indices which are aggregate measures of the received dose. Insufficient spatial distribution of the dose may however result in hot spots, which are contiguous volumes in the tumour that receive a dose that is much too high. We use mathematical optimization to adjust a dose plan that is acceptable with respect to dosimetric indices to also take spatial distribution of the dose into account. This results in large-scale nonlinear mixed-binary models that are solved using nonlinear approximations. We show that there are substantial degrees of freedom in the dose planning even though the levels of dosimetric indices are maintained, and that it is possible to improve a dose plan with respect to its spatial properties.

  • 33.
    Kaveckyte, Vaiva
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Malusek, Alexandr
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Benmakhlouf, Hamza
    Karolinska Univ Hosp, Sweden.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Suitability of microDiamond detectors for the determination of absorbed dose to water around high-dose-rate Ir-192 brachytherapy sources2018Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 45, nr 1, s. 429-437Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: Experimental dosimetry of high-dose-rate (HDR) Ir-192 brachytherapy (BT) sources is complicated due to high dose and dose-rate gradients, and softening of photon energy spectrum with depth. A single crystal synthetic diamond detector microDiamond (PTW 60019, Freiburg, Germany) has a small active volume, high sensitivity, direct readout, and nearly water-equivalent active volume. The purpose of this study was to evaluate the suitability of microDiamond detectors for the determination of absorbed dose to water around HDR Ir-192 BT sources. Three microDiamond detectors were used, allowing for the comparison of their properties. Methods: In-phantom measurements were performed using microSelectron and VariSource iX HDR Ir-192 BT treatment units. Their treatment planning systems (TPSs), Oncentra (v. 4.3) and BrachyVision (v. 13.6), respectively, were used to create irradiation plans for a cubic PMMA phantom with the microDiamond positioned at one of three source-to-detector distances (SDDs) (1.5, 2.5, and 5.5 cm) at a time. The source was stepped in increments of 0.5 cm over a total length of 6 cm to yield absorbed dose of 2 Gy at the nominal reference-point of the detector. Detectors were calibrated in Co-60 beam in terms of absorbed dose to water, and Monte Carlo (MC) calculated beam quality correction factors were applied to account for absorbed-dose energy dependence. Phantom correction factors were applied to account for differences in dimensions between the measurement phantom and a water phantom used for absorbed dose calculations made with a TPS. The same measurements were made with all three of the detectors. Additionally, dose-rate dependence and stability of the detectors were evaluated in Co-60 beam. Results: The percentage differences between experimentally determined and TPS-calculated absorbed doses to water were from -1.3% to +2.9%. The values agreed to within experimental uncertainties, which were from 1.9% to 4.3% (k = 2) depending on the detector, SDD and treatment delivery unit. No dose-rate or intrinsic energy dependence corrections were applied. All microDiamonds were comparable in terms of preirradiation dose, stability of the readings and energy response, and showed a good agreement. Conclusions: The results indicate that the microDiamond is potentially suitable for the determination of absorbed dose to water around HDR Ir-192 BT sources and may be used for independent verification of TPSs calculations, as well as for QA measurements of HDR Ir-192 BT treatment delivery units at clinical sites. (C) 2017 American Association of Physicists in Medicine

  • 34.
    Ma, Yunzhi
    et al.
    CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    Vijande, Javier
    University of Valencia, Spain; IFIC, Spain.
    Ballester, Facundo
    University of Valencia, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Granero, Domingo
    Hospital Gen University, Spain.
    Haworth, Annette
    University of Sydney, Australia.
    Mourtada, Firas
    Christiana Care Health Syst, DE 19713 USA; Christiana Care Health Syst, DE 19713 USA.
    Paiva Fonseca, Gabriel
    Maastricht University, Netherlands.
    Zourari, Kyveli
    University of Athens, Greece.
    Papagiannis, Panagiotis
    University of Athens, Greece.
    Rivard, Mark J.
    Tufts University, MA 02111 USA.
    Siebert, Frank-Andre
    University Hospital Schleswig Holstein, Germany.
    Sloboda, Ron S.
    Cross Cancer Institute, Canada; University of Alberta, Canada.
    Smith, Ryan
    Alfred Hospital, Australia.
    Chamberland, Marc J. P.
    Carleton University, Canada.
    Thomson, Rowan M.
    Carleton University, Canada.
    Verhaegen, Frank
    Maastricht University, Netherlands.
    Beaulieu, Luc
    CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy2017Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 44, nr 11, s. 5961-5976Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.

  • 35.
    Ahnesjö, Anders
    et al.
    Uppsala University, Sweden.
    van Veelen, Bob
    Elekta Brachytherapy, Netherlands.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Collapsed cone dose calculations for heterogeneous tissues in brachytherapy using primary and scatter separation source data2017Ingår i: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 139, s. 17-29Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background and Objective: Brachytherapy is a form of radiation therapy using sealed radiation sources inserted within or in the vicinity of the tumor of, e.g., gynecological, prostate or head and neck cancers. Accurate dose calculation is a crucial part of the treatment planning. Several reviews have called for clinical software with model-based algorithms that better take into account the effects of patient individual distribution of tissues, source-channel and shielding attenuation than the commonly employed TG-43 formalism which simply map homogeneous water dose distributions onto the patient. In this paper we give a comprehensive and thorough derivation of such an algorithm based on collapsed cone point-kernel superposition, and describe details of its implementation into a commercial treatment planning system for clinical use. Methods: A brachytherapy version of the collapsed-cone algorithm using analytical raytraces of the primary photon radiation followed by successive scattering dose calculation for once and multiply scattered photons is described in detail, including derivation of the corresponding set of recursive equations for energy transport along cone axes/transport lines and the coupling to clinical source modeling. Specific implementation issues for setting up of the calculation grid, handling of intravoxel gradients and voxels partly containing non patient applicator material are given. Results: Sample runs for two clinical cases are shown, one being a gynecological application with a tungsten-shielded applicator and one a breast implant. These two cases demonstrate the impact of improved dose calculation versus TG-43 formalism. Conclusions: Use of model-based dose calculation algorithms for brachytherapy taking the three-dimensional treatment geometry into account increases the dosimetric accuracy in planning and follow up of treatments. The comprehensive description and derivations provided gives a rigid background for further clinical, educational and research applications. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

  • 36.
    Quast, Ulrich
    et al.
    Ex University Hospital, Germany.
    Kaulich, Theodor W.
    University Hospital, Germany.
    Alvarez-Romero, Jose T.
    ININ, Mexico.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Enger, Shirin A.
    McGill University, Canada.
    Medich, David C.
    Worcester Polytech Institute, MA 01609 USA.
    Mourtada, Firas
    Helen F Graham Cancer Centre and Research Institute, DE 19713 USA.
    Perez-Calatayud, Jose
    University Hospital La Fe, Spain; Clin Benidorm, Spain.
    Rivard, Mark J.
    Tufts University, MA 02111 USA.
    Abu Zakaria, G.
    University of Cologne, Germany; Gono University, Bangladesh.
    A brachytherapy photon radiation quality index Q(BT) for probe-type dosimetry2016Ingår i: Physica medica (Testo stampato), ISSN 1120-1797, E-ISSN 1724-191X, Vol. 32, nr 6, s. 741-748Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introduction: In photon brachytherapy (BT), experimental dosimetry is needed to verify treatment plans if planning algorithms neglect varying attenuation, absorption or scattering conditions. The detectors response is energy dependent, including the detector material to water dose ratio and the intrinsic mechanisms. The local mean photon energy E(r) must be known or another equivalent energy quality parameter used. We propose the brachytherapy photon radiation quality index Q(BT) ((E) over bar), to characterize the photon radiation quality in view of measurements of distributions of the absorbed dose to water, D-w, around BT sources. Materials and methods: While the external photon beam radiotherapy (EBRT) radiation quality index Q(EBRT) ((E) over bar) = TPR1020((E) over bar) is not applicable to BT, the authors have applied a novel energy dependent parameter, called brachytherapy photon radiation quality index, defined as Q(BT) ((E) over bar) = D-prim(r = 2 cm; theta(0) = 90 degrees)/D-prim(r(0) = 1 cm; theta(0) = 90 degrees), utilizing precise primary absorbed dose data, D-prim, from source reference databases, without additional MC-calculations. Results and discussion: For BT photon sources used clinically, Q(BT) ((E) over bar) enables to determine the effective mean linear attenuation coefficient (mu) over bar (E) and thus the effective energy of the primary photons E-prim(eff)(r(0), theta(0)) at the TG-43 reference position P-ref (r(0) = 1 cm; theta(0) = 90 degrees) being close to the mean total photon energy (E) over bar (tot)(r(0), theta(0)). If one has calibrated detectors, published (E) over bar (tot)(r) and the BT radiation quality correction factor k(Q, Q0)(BT) ((E) over bar, r, theta) for different BT radiation qualities Q and Q(0), the detectors response can be determined and D-w(r, theta) measured in the vicinity of BT photon sources. Conclusions: This novel brachytherapy photon radiation quality index Q(BT) characterizes sufficiently accurate and precise the primary photon` s penetration probability and scattering potential. (C) 2016 Published by Elsevier Ltd on behalf of Associazione Italiana di Fisica Medica.

  • 37.
    Holm, Åsa
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska fakulteten.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.
    Heuristics for Integrated Optimization of Catheter Positioning and Dwell Time Distribution in Prostate HDR Brachytherapy2016Ingår i: Annals of Operations Research, ISSN 0254-5330, E-ISSN 1572-9338, Vol. 236, nr 2, s. 319-339Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High dose-rate (HDR) brachytherapy is a kind of radiotherapy used to treat, among others, prostate cancer. When applied to prostate cancer a radioactive source is moved through catheters implanted into the prostate. For each patient a treatment plan is constructed that decide for example catheter placement and dwell time distribution, that is where to stop the radioactive source and for how long.

    Mathematical optimization methods has been used to find quality plans with respect to dwell time distribution, however few optimization approaches regarding catheter placement have been studied. In this article we present an integrated optimization model that optimize catheter placement and dwell time distribution simultaneously. Our results show that integrating the two decisions yields greatly improved plans, from 15% to 94% improvement.

    Since the presented model is computationally demanding to solve we also present three heuristics: tabu search, variable neighbourhood search and genetic algorithm. Of these variable neighbourhood search is clearly the best, outperforming a state-of-the-art optimization software (CPLEX) and the two other heuristics.

  • 38.
    Ballester, Facundo
    et al.
    University of Valencia, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Granero, Domingo
    Hospital Gen University, Spain.
    Haworth, Annette
    Peter MacCallum Cancer Centre, Australia; RMIT University, Australia.
    Mourtada, Firas
    Helen F Graham Cancer Centre, DE 19713 USA.
    Paiva Fonseca, Gabriel
    CNEN SP, Brazil; Maastricht University, Netherlands.
    Zourari, Kyveli
    University of Athens, Greece.
    Papagiannis, Panagiotis
    University of Athens, Greece.
    Rivard, Mark J.
    Tufts University, MA 02111 USA.
    Siebert, Frank-Andre
    University Hospital Schleswig Holstein, Germany.
    Sloboda, Ron S.
    Cross Cancer Institute, Canada; University of Alberta, Canada.
    Smith, Ryan L.
    Alfred Hospital, Australia.
    Thomson, Rowan M.
    Carleton University, Canada.
    Verhaegen, Frank
    Maastricht University, Netherlands; McGill University, Canada.
    Vijande, Javier
    University of Valencia, Spain; IFIC CSIC UV, Spain.
    Ma, Yunzhi
    CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    Beaulieu, Luc
    CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    A generic high-dose rate Ir-192 brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism2015Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 42, nr 6, s. 3048-3062Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) Ir-192 source and a virtual water phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR Ir-192 source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic Ir-192 source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra (R) Brachy with advanced collapsed-cone engine (ACE) and BrachyVision AcuRos (TM)]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and pENELopE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201)(3) voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR Ir-192 source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. Results: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ACE algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 +/- 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ACE at clinically relevant distances. Conclusions: A hypothetical, generic HDR Ir-192 source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs. (C) 2015 American Association of Physicists in Medicine.

  • 39.
    Paiva Fonseca, Gabriel
    et al.
    IPEN CNEN SP, Brazil; Maastricht University, Netherlands.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Reniers, Brigitte
    Maastricht University, Netherlands; Hasselt University, Belgium.
    Nilsson, Josef
    Karolinska University Hospital, Sweden.
    Persson, Maria
    Karolinska University Hospital, Sweden.
    Yoriyaz, Helio
    IPEN CNEN SP, Brazil.
    Verhaegen, Frank
    Maastricht University, Netherlands; McGill University, Canada.
    Dose specification for Ir-192 high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium2015Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 60, nr 11, s. 4565-4579Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dose calculation in high dose rate brachytherapy with Ir-192 is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-inmedium (D-m,D-m) and dose-to-water-in-medium (D-w,D-m). The relation between D-m,D-m and D-w,D-m for Ir-192 is the main goal of this study, in particular the dependence of D-w,D-m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: D-m,D-m, D-w,D-m (LCT), mean photon energy and photon fluence. D-w,D-m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between D-m,D-m and D-w,D-m (SCT or LCT) can be negligible (less than1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between D-w,D-m (SCT) and D-w,D-m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between D-m,D-m and D-w,D-m (SCT) mainly depend on tissue type, differences between D-m,D-m and D-w,D-m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  • 40.
    Candela-Juan, C.
    et al.
    La Fe University of and Polytech Hospital, Spain; University of Valencia, Spain.
    Karlsson, Mattias
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten.
    Lundell, M.
    Karolinska University Hospital, Sweden; Karolinska Institute, Sweden.
    Ballester, F.
    University of Valencia, Spain.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Swedish Radiat Safety Author, Sweden.
    Dosimetric characterization of two radium sources for retrospective dosimetry studies2015Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 42, nr 5, s. 2132-2142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: During the first part of the 20th century, Ra-226 was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two Ra-226 sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose-effect studies. Methods: An 8 mg Ra-226 tube and a 10 mg Ra-226 needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a Ra-226 point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including gL(r), F(r,theta), Lambda, and s(K)] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%-15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%-25%. Conclusions: The results provided here facilitate retrospective dosimetry studies of Ra-226 using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.

  • 41.
    Adolfsson, Emelie
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    White, Shane
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Landry, Guillaume
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Lund, Eva
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Gustafsson, Håkan
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Medicinsk teknik i Östergötland.
    Verhaegen, Frank
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Reniers, Brigitte
    Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center, The Netherlands.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Measurement of absorbed dose to water around an electronic brachytherapy source: Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film2015Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 60, nr 9, s. 3869-3882Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film.

    Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water.

    Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison.

    This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.

  • 42.
    Lindborg, Lennart
    et al.
    Karolinska Institute, Sweden.
    Hultqvist, Martha
    RaySearch Labs, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Swedish Radiat Safety Author, Sweden.
    Nikjoo, Hooshang
    Karolinska Institute, Sweden.
    Nanodosimetry and RBE values in radiotherapy2015Ingår i: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 166, nr 1-4, s. 339-342Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In a recent paper, the authors reported that the dose mean lineal energy, (y) over bar (D) in a volume of about 10-15 nm is approximately proportional to the alpha-parameter in the linear-quadratic relation used in fractionated radiotherapy in both low- and high-LET beams. This was concluded after analyses of reported radiation weighting factors, W-isoE (clinical RBE values), and (y) over bar (D) values in a large range of volumes. Usually, microdosimetry measurements in the nanometer range are difficult; therefore, model calculations become necessary. In this paper, the authors discuss the calculation method. A combination of condensed history Monte Carlo and track structure techniques for calculation of mean lineal energy values turned out to be quite useful. Briefly, the method consists in weighting the relative dose fractions of the primary and secondary charged particles with their respective energy-dependent dose mean lineal energies. The latter were obtained using a large database of Monte Carlo track structure calculations.

  • 43.
    Lundell, Marie
    et al.
    Karolinska University Hospital, Sweden; Karolinska Institute, Sweden.
    Karlsson, Mattias
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Karolinska University Hospital, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Karolinska University Hospital, Sweden.
    New dosimetry for childhood skin hemangioma treatments with Ra-226 needles or tubes2015Ingår i: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 116, nr 1, s. 139-142Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: The Stockholm Hemangioma Cohort is important for evaluation of late effects after exposure to ionizing radiation during childhood. Dose estimates in this cohort were based on both measurements and calculations using an old treatment planning system. Methods: We compare previously published and calculated dose estimates with new ones, obtained by Monte Carlo simulations, which mimic the hemangioma treatments with Ra-226 needles and tubes. The distances between the Ra-226 sources and the thyroid and breasts, respectively, were reassessed. Result:. The Monte Carlo calculations showed significantly lower dose values than those obtained earlier. The differences depended both on the modeling of the sources and on further individualized distances from the sources. The mean value of the new calculated doses was 25% of the old breast doses and 46% of the old thyroid doses. Conclusion: New dosimetry for hemangioma treatments gives significantly lower organ doses for the few cases receiving the highest absorbed dose values. This implies that radiation risk estimates will increase and have to be recalculated. For retrospective studies it is now possible to calculate organ doses from radium treatments using modern treatment planning systems by modeling the source geometry carefully and apply the TG-43 formalism. It is important to be aware of the large uncertainties in calculated absorbed dose values.

  • 44.
    Carlsson Tedgren, Åsa
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Medicinska fakulteten. Region Östergötland, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Karolinska University Hospital, Sweden.
    Plamondon, Mathieu
    CHU Quebec, Canada; CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    Beaulieu, Luc
    CHU Quebec, Canada; CHU Quebec, Canada; University of Laval, Canada; University of Laval, Canada.
    The collapsed cone algorithm for Ir-192 dosimetry using phantom-size adaptive multiple-scatter point kernels2015Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 60, nr 13, s. 5313-5323Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.

  • 45.
    Adolfsson, Emelie
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Gustafsson, Håkan
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Medicinsk teknik i Östergötland.
    Lund, Eva
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Olsson, Sara
    Medical Physics and Technology, Växjö Central Hospital, Växjö, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    A system for remote dosimetry audit of 3D-CRT, IMRT and VMAT based on lithium formate dosimetry2014Ingår i: Radiotherapy and Oncology, ISSN 0167-8140, E-ISSN 1879-0887, Vol. 113, nr 2, s. 279-282Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The aim of this work was to develop and test a remote end-to-end audit system using lithium formate EPR dosimeters. Four clinics were included in a pilot study, absorbed doses determined in the PTV agreed with TPS calculated doses within ±5% for 3D-CRT and ±7% (k=1) for IMRT/VMAT dose plans.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Carlsson Tedgren, Åsa
    et al.
    Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US. Swedish Radiation Safety Authority, Stockholm, Sweden.
    Bjerke, Hans
    Norwegian Radiation Protection Authority, Österås, Norway.
    Grindborg, Jan-Erik
    Swedish Radiation Safety Authority, Stockholm, Sweden.
    Hetland, Per-Otto
    Norwegian Radiation Protection Authority, Österås, Norway.
    Kosunen, Antti
    STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland.
    Paulsen Hellebust, Taran
    Oslo University Hospital, Norway; University of Oslo, Norway .
    Persson, Linda
    Swedish Radiation Safety Authority, Stockholm, Sweden.
    Sipila, Petri
    TUK-Radiation and Nuclear Safety Authority, Helsinki, Finland.
    Comparison of high-dose-rate Ir-192 source strength measurements using equipment with traceability to different standards2014Ingår i: Brachytherapy, ISSN 1538-4721, E-ISSN 1873-1449, Vol. 13, nr 4, s. 420-423Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PURPOSE:

    According to the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism used for dose calculation in brachytherapy treatment planning systems, the absolute level of absorbed dose is determined through coupling with the measurable quantity air-kerma strength or the numerically equal reference air-kerma rate (RAKR). Traceability to established standards is important for accurate dosimetry in laying the ground for reliable comparisons of results and safety in adoption of new treatment protocols. The purpose of this work was to compare the source strength for a high-dose rate (HDR) (192)Ir source as measured using equipment traceable to different standard laboratories in Europe and the United States.

    METHODS AND MATERIALS:

    Source strength was determined for one HDR (192)Ir source using four independent systems, all with traceability to different primary or interim standards in the United States and Europe.

    RESULTS:

    The measured HDR (192)Ir source strengths varied by 0.8% and differed on average from the vendor value by 0.3%. Measurements with the well chambers were 0.5% ± 0.1% higher than the vendor-provided source strength. Measurements with the Farmer chamber were 0.7% lower than the average well chamber results and 0.2% lower than the vendor-provided source strength. All of these results were less than the reported source calibration uncertainties (k=2) of each measurement system.

    CONCLUSIONS:

    In view of the uncertainties in ion chamber calibration factors, the maximum difference in source strength found in this study is small and confirms the consistency between calibration standards in use for HDR (192)Ir brachytherapy.

  • 47.
    Karlsson, Mattias
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Nilsson, Josef
    Karolinska University Hospital, Sweden.
    Lundell, Marie
    Karolinska University Hospital, Sweden; Karolinska Institute, Sweden.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Monte Carlo dosimetry of the eye plaque design used at the St. Erik Eye Hospital for I-125 brachytherapy2014Ingår i: Brachytherapy, ISSN 1538-4721, E-ISSN 1873-1449, Vol. 13, nr 6, s. 651-656Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PURPOSE: At St. Erik Eye Hospital in Stockholm, Sweden, ocular tumors of apical height above 6 mm are treated with brachytherapy, using iodine-125 seeds attached to a gold alloy plaque while the treatment planning is performed assuming homogeneous water surroundings. The aim of this work was to investigate the dose-modifying effects of the plaque and the seed fixating silicone rubber glue. METHODS AND MATERIALS: The impact of the gold plaque and silicone rubber glue was studied with the Monte Carlo N-particle transport code, version 5. RESULTS: For the 2 cm most proximal to the plaque surface along the plaques central axis, the eyeball received 104.6-93.0% of the dose in all-water conditions. CONCLUSIONS: The 0.3 mm thick layer of silicone rubber glue, used for seed fixation, attenuates photons little enough to allow characteristic X-rays from the gold alloy plaque to reach the eyeball. Close to the plaque, the dose rates were higher with the plaque and glue present, than in homogeneous water conditions. This is in contrast to what has been reported for more commonly used eye plaques, demonstrating the importance of investigating the dosimetry of individual treatment systems.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Adolfsson, Emelie
    et al.
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Alm Carlsson, Gudrun
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Gustafsson, Håkan
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Diagnostikcentrum, Medicinsk teknik i Östergötland.
    Lund, Eva
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet.
    Optimisation of an EPR dosimetry system for robust and high precision dosimetry2014Ingår i: Radiation Measurements, ISSN 1350-4487, E-ISSN 1879-0925, Vol. 70, s. 21-28Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Clinical applications of electron paramagnetic resonance (EPR) dosimetry systems demand high accuracy causing time consuming analysis. The need for high spatial resolution dose measurements in regions with steep dose gradients demands small sized dosimeters. An optimization of the analysis was therefore needed to limit the time consumption. The aim of this work was to introduce a new smaller lithium formate dosimeter model (diameter reduced from standard diameter 4.5 mm to 3 mm and height from 4.8 mm to 3 mm). To compensate for reduced homogeneity in a batch of the smaller dosimeters, a method for individual sensitivity correction suitable for EPR dosimetry was tested. Sensitivity and repeatability was also tested for a standard EPR resonator and a super high Q (SHQE) one. The aim was also to optimize the performance of the dosimetry system for better efficiency regarding measurement time and precision. A systematic investigation of the relationship between measurement uncertainty and number of readouts per dosimeter was performed. The conclusions drawn from this work were that it is possible to decrease the dosimeter size with maintained measurement precision by using the SHQE resonator and introducing individual calibration factors for dosimeter batches. It was also shown that it is possible reduce the number of readouts per dosimeter without significantly decreasing the accuracy in measurements.

  • 49.
    Holm, Åsa
    et al.
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.
    Larsson, Torbjörn
    Linköpings universitet, Matematiska institutionen, Optimeringslära. Linköpings universitet, Tekniska högskolan.
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för radiologiska vetenskaper. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail2013Ingår i: Medical physics (Lancaster), ISSN 0094-2405, Vol. 40, nr 8Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier. less thanbrgreater than less thanbrgreater thanMethods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions. less thanbrgreater than less thanbrgreater thanResults: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality. less thanbrgreater than less thanbrgreater thanConclusions: The authors new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  • 50.
    Lindborg, L
    et al.
    Karolinska Institute, Sweden .
    Hultqvist, M
    Stockholm University, Sweden .
    Carlsson Tedgren, Åsa
    Linköpings universitet, Institutionen för medicin och hälsa, Medicinsk radiofysik. Linköpings universitet, Hälsouniversitetet. Östergötlands Läns Landsting, Centrum för kirurgi, ortopedi och cancervård, Radiofysikavdelningen US.
    Nikjoo, H
    Karolinska Institute, Sweden .
    Lineal energy and radiation quality in radiation therapy: model calculations and comparison with experiment2013Ingår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 58, nr 10, s. 3089-3105Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Microdosimetry is a recommended method for characterizing radiation quality in situations when the biological effectiveness under test is not well known. In such situations, the radiation beams are described by their lineal energy probability distributions. Results from radiobiological investigations in the beams are then used to establish response functions that relate the lineal energy to the relative biological effectiveness (RBE). In this paper we present the influence of the size of the simulated volume on the relation to the clinical RBE values (or weighting factors). A single event probability distribution of the lineal energy is approximated by its dose average lineal energy ((y) over bar (D)) which can be measured or calculated for volumes from a few micrometres down to a few nanometres. The clinical RBE values were approximated as the ratio of the alpha-values derived from the LQ-relation. Model calculations are presented and discussed for the SOBP of a C-12 ion (290 MeV u(-1)) and the reference Co-60 gamma therapy beam. Results were compared with those for a conventional x-ray therapy beam, a 290 MeV proton beam and a neutron therapy beam. It is concluded that for a simulated volume of about 10 nm, the alpha-ratio increases approximately linearly with the (y) over bar (D)-ratio for all the investigated beams. The correlation between y and alpha provides the evidence to characterize a radiation therapy beam by the lineal energy when, for instance, weighting factors are to be estimated.

12 1 - 50 av 72
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf