liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 67
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Renner, Max
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Rhein Westfal TH Aachen, Germany.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Medicinska fakulteten. Evatec AG, Switzerland.
    Hajihoseini, H.
    Univ Twente, Netherlands.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Rudolph, M.
    Leibniz Inst Surface Engn IOM, Germany.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Angular distribution of titanium ions and neutrals in high-power impulse magnetron sputtering discharges2023Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, nr 3, artikel-id 033009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The angular dependence of the deposition rates due to ions and neutrals in high-power impulse magnetron sputtering (HiPIMS) discharges with a titanium target were determined experimentally using a magnetically shielded and charge-selective quartz crystal microbalance (or ionmeter). These rates have been established as a function of the argon working gas pressure, the peak discharge current density, and the pulse length. For all explored cases, the total deposition rate exhibits a heart-shaped profile and the ionized flux fraction peaks on the discharge axis normal to the cathode target surface. This heart-shaped pattern is found to be amplified at increasing current densities and reduced at increased working gas pressures. Furthermore, it is confirmed that a low working gas pressure is beneficial for achieving high deposition rates and high ionized flux fractions in HiPIMS operation.

    Ladda ner fulltext (pdf)
    fulltext
  • 2.
    Niiranen, Pentti
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Nadhom, Hama
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Zanaska, Michal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Sortica, Mauricio
    Uppsala Univ, Sweden.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Biased quartz crystal microbalance method for studies of chemical vapor deposition surface chemistry induced by plasma electrons2023Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 94, nr 2, artikel-id 023902Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A recently presented chemical vapor deposition (CVD) method involves using plasma electrons as reducing agents for deposition of metals. The plasma electrons are attracted to the substrate surface by a positive substrate bias. Here, we present how a standard quartz crystal microbalance (QCM) system can be modified to allow applying a DC bias to the QCM sensor to attract plasma electrons to it and thereby also enable in situ growth monitoring during the electron-assisted CVD method. We show initial results from mass gain evolution over time during deposition of iron films using the biased QCM and how the biased QCM can be used for process development and provide insight into the surface chemistry by time-resolving the CVD method. Post-deposition analyses of the QCM crystals by cross-section electron microscopy and high-resolution x-ray photoelectron spectroscopy show that the QCM crystals are coated by an iron-containing film and thus function as substrates in the CVD process. A comparison of the areal mass density given by the QCM crystal and the areal mass density from elastic recoil detection analysis and Rutherford backscattering spectrometry was done to verify the function of the QCM setup. Time-resolved CVD experiments show that this biased QCM method holds great promise as one of the tools for understanding the surface chemistry of the newly developed CVD method.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Du, Hao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Guizhou Univ, Peoples R China; Guizhou Univ, Peoples R China.
    Shu, Rui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sortica, Mauricio A.
    Uppsala Univ, Sweden.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden; Uppsala Univ, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Corundum-structured AlCrNbTi oxide film grown using high-energy early-arriving ion irradiation in high-power impulse magnetron sputtering2023Ingår i: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 234, artikel-id 115578Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Multicomponent or high-entropy oxide films are of interest due to their remarkable structure and properties. Here, energetic ion irradiation is utilized for controlling the phase formation and structure of AlCrNbTi oxide at growth temperature of 500 degrees C. The ion acceleration is achieved by using a high-power impulse magnetron sputtering (HiPIMS) discharge, accompanied by a 10 & mu;s-long synchronized substrate bias (Usync), to minimize the surface charging effect and accelerate early-arriving ions, mainly Al+, O+, Ar2+, and Al2+. By increasing the magnitude of Usync from-100 V to-500 V, the film structure changes from amorphous to single-phase corundum, followed by the formation of high-number-density stacking faults (or nanotwins) at Usync =-500 V. This approach paves the way to tailor the high-temperature-phase and defect formation of oxide films at low growth temperature, with prospects for use in protective-coating and dielectric applications.

  • 4.
    Honnali, Sanath Kumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Poterie, Charlotte
    Univ Poitiers, France.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Effect of tilted closed-field magnetron design on the microstructure and mechanical properties of TiZrNbTaN coatings2023Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, nr 4, artikel-id 043402Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A common design of sputtering systems is to integrate many magnetron sources in a tilted closed-field configuration, which can drastically affect the magnetic field in the chamber and thus plasma characteristics. To study this effect explicitly, multicomponent TiZrNbTaN coatings were deposited at room temperature using direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS) with different substrate biases. The coatings were characterized by x-ray diffraction, scanning electron microscopy, nano-indentation, and energy dispersive x-ray spectroscopy. Magnetic field simulations revealed ten times higher magnetic field strengths at the substrate in single-magnetron configuration when compared to the closed-field. As a result, the substrate ion current increased similar to 3 and 1.8 times for DCMS and HiPIMS, respectively. The film microstructure changed with the discharge type, in that DCMS coatings showed large sized columnar structures and HiPIMS coatings show globular nanosized structures with (111) orientation with a closed-field design. Coatings deposited from a single source showed dense columnar structures irrespective of the discharge type and developed (200) orientation only with HiPIMS. Coatings deposited with closed-field design by DCMS had low stress (0.8 to -1 GPa) and hardness in the range from 13 to 18 GPa. Use of HiPIMS resulted in higher stress (-3.6 to -4.3 GPa) and hardness (26-29 GPa). For coatings deposited with single source by DCMS, the stress (-0.15 to -3.7 GPa) and hardness were higher (18-26 GPa) than for coatings grown in the closed-field design. With HiPIMS and single source, the stress was in the range of -2.3 to -4.2 GPa with a similar to 6% drop in the hardness (24-27 GPa).

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Du, Hao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Guizhou Univ, Peoples R China; Guizhou Univ, Peoples R China.
    Shu, Rui
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Laboratoriet för organisk elektronik. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Evolution of microstructure and properties of TiNbCrAlHfN films grown by unipolar and bipolar high-power impulse magnetron co-sputtering: The role of growth temperature and ion bombardment2023Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 459, artikel-id 129389Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Growth temperature (Ts) and ion irradiation energy (Ei) are important factors that influence film growth as well as their properties. In this study, we investigate the evolution of crystal structure and residual stress of TiNb-CrAlHfN films under various Ts and Ei conditions, where the latter is mainly controlled by tuning the flux of sputtered Hf ions using bipolar high-power impulse magnetron (BP-HiPIMS). The results show that TiNbCrAlHfN films exhibit the typical FCC NaCl-type structure. By increasing Ts from room temperature to 600 degrees C, the film texture changes from high-surface-energy (111) to low-surface-energy (100) accompanied by a higher crystal-linity in the out-of-plane direction and a more disordered growth tilt angle to the surface plane. In addition, compressive stress decreases with increasing Ts, which is ascribed to changes in the film growth both in the early and post-coalescence stages and more tensile thermal stress at elevated Ts. In contrast, a clear texture transition window is seen under various Ei of Hf+ ions, i.e., high-surface-energy planes change to low-surface-energy planes as Ei exceeds-110 eV, while low-surface-energy planes gradually transform back to high-surface-energy planes when Ei increases from 210 to 260 eV, indicating renucleation events for Ei > 210 eV. Compressive stress in-creases with increasing Ei but is still lower than that of a reference series with DC substrate bias UDC =-100 V. The study shows that it is possible to tailor properties of FCC-structured high-entropy nitrides by varying Ts and Ei in a similar fashion to conventional transition metal nitrides using the approach of unipolar and bipolar HiPIMS co-sputtering.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Babu, Swetha Suresh
    et al.
    Univ Iceland, Iceland.
    Rudolph, Martin
    Leibniz Inst Surface Engn IOM, Germany.
    Ryan, Peter John
    Univ Liverpool, England.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Bradley, James W.
    Univ Liverpool, England.
    Gudmundsson, Jon Tomas
    Univ Iceland, Iceland; KTH Royal Inst Technol, Sweden.
    High power impulse magnetron sputtering of tungsten: a comparison of experimental and modelling results2023Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 32, nr 3, artikel-id 034003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Here, we compare the ionization region model (IRM) against experimental measurements of particle densities and electron temperature in a high power impulse magnetron sputtering discharge with a tungsten target. The semi-empirical model provides volume-averaged temporal variations of the various species densities as well as the electron energy for a particular cathode target material, when given the measured discharge current and voltage waveforms. The model results are compared to the temporal evolution of the electron density and the electron temperature determined by Thomson scattering measurements and the temporal evolution of the relative neutral and ion densities determined by optical emission spectrometry. While the model underestimates the electron density and overestimates the electron temperature, the temporal trends of the species densities and the electron temperature are well captured by the IRM.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Chang, Jui-Che
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Tseng, Eric Nestor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lo, Yi-Ling
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Nayak, Sanjay Kumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Nanostrukturerade material. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O. Å.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Horng, Ray-Hua
    National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hsiao, Ching-Lien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate2023Ingår i: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 217, artikel-id 112553Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Antunes, V. G.
    et al.
    Univ Paris Saclay, France; Univ Grenoble Alpes, France.
    Rudolph, M.
    Leibniz Inst Surface Engn IOM, Germany.
    Kapran, A.
    Acad Sci Czech Republ, Czech Republic.
    Hajihoseini, H.
    Univ Twente, Netherlands.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Minea, T.
    Univ Paris Saclay, France.
    Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges2023Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 32, nr 7, artikel-id 075016Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The high power impulse magnetron sputtering (HiPIMS) discharge brings about increased ionization of the sputtered atoms due to an increased electron density and efficient electron energization during the active period of the pulse. The ionization is effective mainly within the electron trapping zone, an ionization region (IR), defined by the magnet configuration. Here, the average extension and the volume of the IR are determined based on measuring the optical emission from an excited level of the argon working gas atoms. For particular HiPIMS conditions, argon species ionization and excitation processes are assumed to be proportional. Hence, the light emission from certain excited atoms is assumed to reflect the IR extension. The light emission was recorded above a 100 mm diameter titanium target through a 763 nm bandpass filter using a gated camera. The recorded images directly indicate the effect of the magnet configuration on the average IR size. It is observed that the shape of the IR matches the shape of the magnetic field lines rather well. The IR is found to expand from 10 and 17 mm from the target surface when the parallel magnetic field strength 11 mm above the racetrack is lowered from 24 to 12 mT at a constant peak discharge current.

    Publikationen är tillgänglig i fulltext från 2024-07-28 00:00
  • 9.
    Du, Hao
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Guizhou Univ, Peoples R China; Guizhou Univ, Peoples R China.
    Zanaska, Michal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    On selective ion acceleration in bipolar HiPIMS: A case study of (Al,Cr)2O3 film growth2023Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 454, artikel-id 129153Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Selective ion acceleration using a synchronized substrate bias is a common way to tailor the microstructure and intrinsic stress of films grown by high-power impulse magnetron sputtering (HiPIMS), owing to the high degree of sputtered metal ionization and the inherent time separation between different ionic species in the ion fluxes at the substrate position. Here we show that it is possible to achieve selective acceleration of ionic species with different ion masses by employing a synchronized positive reversed pulse (Urev) on the sputtering target itself, after the end of the main HiPIMS pulse, i.e., bipolar HiPIMS (BP-HiPIMS), if the substrate is grounded. The evidence is provided by growing (Al,Cr)2O3 films using BP-HiPIMS where the time delay (Delta tau acc) between the HiPIMS-pulse and the positive reversed pulse as well as the length of the positive reversed pulse (tau acc) are varied. In this way, both film stresses and film crystal structures are altered. The obvious drawback of BP-HiPIMS, that the ion-accelerating potential cannot be applied during the HiPIMS-pulse itself, has been minimized by using short HiPIMS pulses of 20 mu s during which the peak of the substrate ion current density (Js) occurs well after the end of the HiPIMS-pulse indicating that the main portion of the ion fluxes can be accelerated by Urev. An important observation is that the temporal evolution of Js did not change as the different reversed pulse pa-rameters (Urev, Delta tau acc, and tau acc) were altered. This is evidence, that in these experiments, the dominating ion-acceleration occurs in the plasma sheath at the substrate, i.e., similar to the case when synchronized substrate bias is utilized.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Hajihoseini, H.
    et al.
    Univ Twente, Netherlands.
    Brenning, N.
    KTH Royal Inst Technol, Sweden.
    Rudolph, M.
    Leibniz Inst Surface Engn IOM, Germany.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Minea, T. M.
    Univ Paris Saclay, France.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Target ion and neutral spread in high power impulse magnetron sputtering2023Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 41, nr 1, artikel-id 013002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In magnetron sputtering, only a fraction of the sputtered target material leaving the ionization region is directed toward the substrate. This fraction may be different for ions and neutrals of the target material as the neutrals and ions can exhibit a different spread as they travel from the target surface toward the substrate. This difference can be significant in high power impulse magnetron sputtering (HiPIMS) where a substantial fraction of the sputtered material is known to be ionized. Geometrical factors or transport parameters that account for the loss of produced film-forming species to the chamber walls are needed for experimental characterization and modeling of the magnetron sputtering discharge. Here, we experimentally determine transport parameters for ions and neutral atoms in a HiPIMS discharge with a titanium target for various magnet configurations. Transport parameters are determined to a typical substrate, with the same diameter (100 mm) as the cathode target, and located at a distance 70 mm from the target surface. As the magnet configuration and/or the discharge current are changed, the transport parameter for neutral atoms xi(tn) remains roughly the same, while transport parameters for ions xi(ti) vary greatly. Furthermore, the relative ion-to-neutral transport factors, xi(ti)/xi(tn), that describe the relative deposited fractions of target material ions and neutrals onto the substrate, are determined to be in the range from 0.4 to 1.1.

    Ladda ner fulltext (pdf)
    fulltext
  • 11.
    Klein, P.
    et al.
    Masaryk Univ, Czech Republic.
    Hnilica, J.
    Masaryk Univ, Czech Republic.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Dvorak, P.
    Masaryk Univ, Czech Republic.
    Zanaska, Michal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Vasina, P.
    Masaryk Univ, Czech Republic.
    Temporal, spatial and spectroscopic study of plasma emission on Cu target in bipolar HiPIMS2023Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 32, nr 7, artikel-id 075019Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Bipolar high power impulse magnetron sputtering introduces new possibilities to affect positive ions created during the negative discharge pulse in order to tailor thin films with specific parameters. This paper studies plasma emission in different experimental conditions during different phases of the positive pulse with spectral, spatial and temporal resolution. It is found that predominantly the working gas gives rise to plasma emission during the positive pulse. The plasma emission is observed only in regions of low magnetic confinement, forming a mushroom-like shape in the middle of the target or a dome-like shape on the outer parts of the target. An explanation of the discharge kinetics is proposed based on the acquired data.

  • 12.
    Zanaska, Michal
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Brenning, Nils
    KTH Royal Inst Technol, Sweden.
    Du, Hao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Guizhou Univ, Peoples R China.
    Dvorak, Pavel
    Masaryk Univ, Czech Republic.
    Vasina, Petr
    Masaryk Univ, Czech Republic.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Dynamics of bipolar HiPIMS discharges by plasma potential probe measurements2022Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 31, nr 2, artikel-id 025007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The plasma potential at a typical substrate position is studied during the positive pulse of a bipolar high-power impulse magnetron sputtering (bipolar HiPIMS) discharge with a Cu target. The goal of the study is to identify suitable conditions for achieving ion acceleration independent on substrate grounding. We find that the time-evolution of the plasma potential during the positive pulse can be separated into several distinct phases, which are highly dependent on the discharge conditions. This includes exploring the influence of the working gas pressure (0.3-2 Pa), HiPIMS peak current (10-70 A corresponding to 0.5-3.5 A cm(-2)), HiPIMS pulse length (5-60 mu s) and the amplitude of the positive voltage U (+) applied during the positive pulse (0-150 V). At low enough pressure, high enough HiPIMS peak current and long enough HiPIMS pulse length, the plasma potential at a typical substrate position is seen to be close to 0 V for a certain time interval (denoted phase B) during the positive pulse. At the same time, spatial mapping of the plasma potential inside the magnetic trap region revealed an elevated value of the plasma potential during phase B. These two plasma potential characteristics are identified as suitable for achieving ion acceleration in the target region. Moreover, by investigating the target current and ion saturation current at the chamber walls, we describe a simple theory linking the value of the plasma potential profile to the ratio of the available target electron current and ion saturation current at the wall.

    Ladda ner fulltext (pdf)
    fulltext
  • 13.
    Rudolph, M.
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Hajihoseini, H.
    Univ Twente, Netherlands.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Minea, T. M.
    Univ Paris Saclay, France.
    Anders, A.
    Leibniz Inst Surface Engn IOM, Germany; Univ Leipzig, Germany.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Influence of the magnetic field on the discharge physics of a high power impulse magnetron sputtering discharge2022Ingår i: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 55, nr 1, artikel-id 015202Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The magnetic field is a key feature that distinguishes magnetron sputtering from simple diode sputtering. It effectively increases the residence time of electrons close to the cathode surface and by that increases the energy efficiency of the discharge. This becomes apparent in high power impulse magnetron sputtering (HiPIMS) discharges, as small changes in the magnetic field can result in large variations in the discharge characteristics, notably the peak discharge current and/or the discharge voltage during a pulse. Here, we analyze the influence of the magnetic field on the electron density and temperature, how the discharge voltage is split between the cathode sheath and the ionization region, and the electron heating mechanism in a HiPIMS discharge. We relate the results to the energy efficiency of the discharge and discuss them in terms of the probability of target species ionization. The energy efficiency of the discharge is related to the fraction of pulse power absorbed by the electrons. Ohmic heating of electrons in the ionization region leads to higher energy efficiency than electron energization in the sheath. We find that the electron density and ionization probability of the sputtered species depend largely on the discharge current. The results suggest ways to adjust electron density and electron temperature using the discharge current and the magnetic field, respectively, and how they influence the ionization probability.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Gudmundsson, J. T.
    et al.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Evatec AG, Switzerland.
    Hinriksson, B. P.
    Univ Iceland, Iceland.
    Rudolph, M.
    Leibniz Inst Surface Engn IOM, Germany.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Ionization region model of high power impulse magnetron sputtering of copper2022Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 442, artikel-id 128189Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ionization region model (IRM) is applied to model high power impulse magnetron sputtering (HiPIMS) discharges with a Cu target. We apply the model to three discharges that were experimentally explored in the past, or applied to deposit thin copper films, with the aim to quantify internal plasma process parameters and thereby understand how these discharges differ from each other. The temporal variation of the various neutral and ionic species, the electron density and temperature, as well as internal discharge parameters, such as the ionization probability, back attraction probability, and ionized flux fraction of the sputtered species, are determined. We demonstrate that the Cu+ ions dominate the total ion current to the target surface and that all the discharges are dominated by self-sputter recycling to reach high discharge currents. Furthermore, the ion flux into the diffusion region is dominated by Cu+ ions, which represents roughly 80% of the total ion flux onto the substrate, in agreement with experimental findings. For the discharges operated with peak discharge current densities in the range 0.9 - 1.3 A cm-2, the ion back-attraction probability of the Cu+ ion (beta t) is low compared to previously investigated HiPIMS discharges, or in the range 44 - 50%, while the ionization probability (alpha t) is in the range 61 - 69%, and the ionized flux fraction is in the range 32 - 40%. It is, furthermore, found that operating these Cu HiPIMS discharges at lower working gas pressures (in the present case around 0.5 Pa) is beneficial in terms of optimizing ionization of the sputtered species.

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Babu, Swetha Suresh
    et al.
    Univ Iceland, Iceland.
    Rudolph, Martin
    Leibniz Inst Surface Engn IOM, Germany.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Shimizu, Tetsuhide
    Tokyo Metropolitan Univ, Japan.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Gudmundsson, Jon Tomas
    Univ Iceland, Iceland; KTH Royal Inst Technol, Sweden.
    Modeling of high power impulse magnetron sputtering discharges with tungsten target2022Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 31, nr 6, artikel-id 065009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge with a tungsten target. The IRM gives the temporal variation of the various species and the average electron energy, as well as internal discharge parameters such as the ionization probability and the back-attraction probability of the sputtered species. It is shown that an initial peak in the discharge current is due to argon ions bombarding the cathode target. After the initial peak, the W+ ions become the dominating ions and remain as such to the end of the pulse. We demonstrate how the contribution of the W+ ions to the total discharge current at the target surface increases with increased discharge voltage for peak discharge current densities J (D,peak) in the range 0.33-0.73 A cm(-2). For the sputtered tungsten the ionization probability increases, while the back-attraction probability decreases with increasing discharge voltage. Furthermore, we discuss the findings in terms of the generalized recycling model and compare to experimentally determined deposition rates and find good agreement.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Rudolph, M.
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Revel, A.
    Univ Paris Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Anders, A.
    Leibniz Inst Surface Engn IOM, Germany; Univ Leipzig, Germany.
    Minea, T. M.
    Univ Paris Saclay, France.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    On the population density of the argon excited levels in a high power impulse magnetron sputtering discharge2022Ingår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 29, nr 2, artikel-id 023506Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Population densities of excited states of argon atoms in a high power impulse magnetron sputtering (HiPIMS) discharge are examined using a global discharge model and a collisional-radiative model. Here, the ionization region model (IRM) and the Orsay Boltzmann equation for electrons coupled with ionization and excited states kinetics (OBELIX) model are combined to obtain the population densities of the excited levels of the argon atom in a HiPIMS discharge. The IRM is a global plasma chemistry model based on particle and energy conservation of HiPIMS discharges. OBELIX is a collisional-radiative model where the electron energy distribution is calculated self-consistently from an isotropic Boltzmann equation. The collisional model constitutes 65 individual and effective excited levels of the argon atom. We demonstrate that the reduced population density of high-lying excited argon states scales with (p*)(-6), where p * is the effective quantum number, indicating the presence of a multistep ladder-like excitation scheme, also called an excitation saturation. The reason for this is the dominance of electron impact processes in the population and de-population of high-lying argon states in combination with a negligible electron-ion recombination. 

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Rudolph, M.
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Hajihoseini, H.
    Univ Twente, Netherlands.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Fischer, Joel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Operating modes and target erosion in high power impulse magnetron sputtering2022Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 40, nr 4, artikel-id 043005Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Magnetron sputtering combines a glow discharge with sputtering from a target that simultaneously serves as a cathode for the discharge. The electrons of the discharge are confined between overarching magnetic field lines and the negatively biased cathode. As the target erodes during the sputter process, the magnetic field strengthens in the cathode vicinity, which can influence discharge parameters with the risk of impairing reproducibility of the deposition process over time. This is of particular concern for high-power impulse magnetron sputtering (HiPIMS) as the discharge current and voltage waveforms vary strongly with the magnetic field strength. We here discuss ways to limit the detrimental effect of target erosion on the film deposition process by choosing an appropriate mode of operation for the discharge. The goal is to limit variations of two principal flux parameters, the deposition rate and the ionized flux fraction. As an outcome of the discussion, we recommend operating HiPIMS discharges by maintaining the peak discharge current constant.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Nadhom, Hama
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Rouf, Polla
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Area Selective Deposition of Metals from the Electrical Resistivity of the Substrate2021Ingår i: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, The Journal of Physical Chemistry Letters, Vol. 12, nr 17, s. 4130-4133Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Area selective deposition (ASD) of films only on desired areas of the substrate opens for less complex fabrication of nanoscaled electronics. We show that a newly developed CVD method, where plasma electrons are used as the reducing agent in deposition of metallic thin films, is inherently area selective from the electrical resistivity of the substrate surface. When depositing iron with the new CVD method, no film is deposited on high-resistivity SiO2 surfaces whereas several hundred nanometers thick iron films are deposited on areas with low resistivity, obtained by adding a thin layer of silver on the SiO2 surface. On the basis of such a scheme, we show how to use the electric resistivity of the substrate surface as an extension of the ASD toolbox for metal-on-metal deposition.

    Ladda ner fulltext (pdf)
    fulltext
  • 19.
    Viloan, Rommel Paulo
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Copper thin films deposited using different ion acceleration strategies in HiPIMS2021Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 422, artikel-id 127487Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The growth of Cu thin films by low-energy ion-bombardment using bipolar and conventional HiPIMS pulse configurations to the target in combination with different biasing methods of the substrate were investigated. For bipolar HiPIMS with a substrate at floating potential, XRD measurements indicate minimal ion acceleration and change in the crystal growth when increasing the substrate holder potential to the same level as the applied positive voltage. In contrast, using bipolar HiPIMS with a substrate at ground potential results in a similar ion current profile as in conventional HiPIMS with a synchronized pulsed bias with the same delay and timing as the positive pulse. Furthermore, the trend in crystal growth is the same such that a significant increase in the (200) intensity is observed within an ion acceleration window, 125-175 V. Using conventional HiPIMS with a continuous DC bias also results in Cu films exhibiting significant (200) peaks, but the ion acceleration window is shifted to 175-225 V. The observed differences in the film growth could be explained not only by the energy of the ions but also by the type of ions (working gas vs metal ions) that are accelerated during either the positive pulse or substrate biasing.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Shimizu, Tetsuhide
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Tokyo Metropolitan Univ, Japan.
    Zanaska, Michal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Villoan, R. P.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Experimental verification of deposition rate increase, with maintained high ionized flux fraction, by shortening the HiPIMS pulse2021Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 30, nr 4, artikel-id 045006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition technique, providing a high flux of metal ions to the substrate. However, one of the disadvantages for industrial use of this technique is a reduced deposition rate compared to direct current magnetron sputtering (dcMS) at equal average power. This is mainly due to a high target back-attraction probability of the metal ions with typical values in the range 70%-90% during the pulse. In order to reduce this effect, we focused on the contribution of ion fluxes available immediately after each HiPIMS pulse; a time also known as afterglow. Without a negative potential on the target at this stage of the HiPIMS process, the back-attracting electric field disappears allowing remaining ions to escape the magnetic trap and travel toward the substrate. To quantify the proposed mechanism, we studied the effect of HiPIMS pulse duration on the outward flux of film-forming species in titanium discharges, which are known to exhibit more than 50% reduction in deposition rate compared to dcMS. By shortening the HiPIMS pulse length, it was found that the contribution to the outward flux of film-forming species from the afterglow increases significantly. For example, HiPIMS discharges at a constant peak current density of about 1.10 A cm(-2) showed a 45% increase of the deposition rate, by shortening the pulse duration from 200 to 50 mu s. Ionized flux fraction measurements, using a gridless quartz crystal micro-balance-based ion meter, showed that this increase of the deposition rate could be achieved without compromising the ionized flux fraction, which remained approximately constant. The key to the achieved optimization of HiPIMS discharges lies in maintaining a high peak discharge current also for short pulse lengths to ensure sufficient ionization of the sputtered species.

  • 21.
    Brenning, Nils
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France; KTH Royal Inst Technol, Sweden.
    Hajihoseini, Hamidreza
    Univ Iceland, Iceland.
    Rudolph, Martin
    Leibniz Inst Surface Engn IOM, Germany.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Gudmundsson, Jon Tomas
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Minea, Tiberiu M.
    Univ Paris Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    HiPIMS optimization by using mixed high-power and low-power pulsing2021Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 30, nr 1, artikel-id 015015Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The possibility to optimize a high-power impulse magnetron sputtering (HiPIMS) discharge through mixing two different power levels in the pulse pattern is investigated. Standard HiPIMS pulses are used to create the ions of the film-forming material. After each HiPIMS pulse an off-time follows, during which no voltage (or, optionally, a reversed voltage) is applied, letting the remaining ions in the magnetic trap escape towards the substrate. After these off-times, a long second pulse with lower amplitude, in the dc magnetron sputtering range, is applied. During this pulse, which is continued up to the following HiPIMS pulse, mainly neutrals of the film-forming material are produced. This pulse pattern makes it possible to achieve separate optimization of the ion production, and of the neutral atom production, that constitute the film-forming flux to the substrate. The optimization process is thereby separated into two sub-problems. The first sub-problem concerns minimizing the energy cost for ion production, and the second sub-problem deals with how to best split a given allowed discharge power between ion production and neutral production. The optimum power split is decided by the lowest ionized flux fraction that gives the desired film properties for a specific application. For the first sub-problem we describe a method where optimization is achieved by the selection of five process parameters: the HiPIMS pulse amplitude, the HiPIMS pulse length, the off-time, the working gas pressure, and the magnetic field strength. For the second sub-problem, the splitting of power between ion and neutral production, optimization is achieved by the selection of the values of two remaining process parameters, the HiPIMS pulse repetition frequency and the discharge voltage of the low-power pulse.

  • 22.
    Shu, Rui
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Xin, Binbin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sortica, Mauricio A.
    Uppsala Univ, Sweden.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden; Uppsala Univ, Sweden.
    Magnuson, Martin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Influence of Metal Substitution and Ion Energy on Microstructure Evolution of High-Entropy Nitride (TiZrTaMe)N1-x (Me = Hf, Nb, Mo, or Cr) Films2021Ingår i: ACS APPLIED ELECTRONIC MATERIALS, ISSN 2637-6113, Vol. 3, nr 6, s. 2748-2756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Multicomponent or high-entropy ceramics show unique combinations of mechanical, electrical, and chemical properties of importance in coating applications. However, generalizing controllable thin-film processes for these complex materials remains a challenge. Here, understoichiometric (TiZrTaMe)N1–x (Me = Hf, Nb, Mo, or Cr, 0.12 ≤ x ≤ 0.30) films were deposited on Si(100) substrates at 400 °C by reactive magnetron sputtering using single elemental targets. The influence of ion energy during film growth was investigated by varying the negative substrate bias voltage from ∼10 V (floating potential) to 130 V. The nitrogen content for the samples determined by elastic recoil detection analysis varied from 34.9 to 43.8 at. % (0.12 ≤ x ≤ 0.30), and the metal components were near-equimolar and not affected by the bias voltage. On increasing the substrate bias, the phase structures of (TiZrTaMe)N1–x (Me = Hf, Nb, or Mo) films evolved from a polycrystalline fcc phase to a (002) preferred orientation along with a change in surface morphology from faceted triangular features to a dense and smooth structure with nodular mounds. All the four series of (TiZrTaMe)N1–x (Me = Hf, Nb, Mo, or Cr) films exhibited increasing intrinsic stress with increasing negative bias. The maximum compressive stress reached ∼3.1 GPa in Hf- and Cr-containing films deposited at −130 V. The hardness reached a maximum value of 28.0 ± 1.0 GPa at a negative bias ≥100 V for all the four series of films. The effect of bias on the mechanical properties of (TiNbZrMe)N1–x films can thus guide the design of protective high-entropy nitride films.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Shimizu, Tetsuhide
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Tokyo Metropolitan Univ, Japan.
    Takahashi, Kazuki
    Tokyo Metropolitan Univ, Japan.
    Boyd, Robert
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Viloan, Rommel Paulo
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Keraudy, Julien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Yang, Ming
    Tokyo Metropolitan Univ, Japan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Low temperature growth of stress-free single phase alpha-W films using HiPIMS with synchronized pulsed substrate bias2021Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 129, nr 15, artikel-id 155305Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Efficient metal-ion-irradiation during film growth with the concurrent reduction of gas-ion-irradiation is realized for high power impulse magnetron sputtering by the use of a synchronized, but delayed, pulsed substrate bias. In this way, the growth of stress-free, single phase alpha -W thin films is demonstrated without additional substrate heating or post-annealing. By synchronizing the pulsed substrate bias to the metal-ion rich portion of the discharge, tungsten films with a 110 oriented crystal texture are obtained as compared to the 111 orientation obtained using a continuous substrate bias. At the same time, a reduction of Ar incorporation in the films are observed, resulting in the decrease of compressive film stress from sigma =1.80-1.43GPa when switching from continuous to synchronized bias. This trend is further enhanced by the increase of the synchronized bias voltage, whereby a much lower compressive stress sigma =0.71GPa is obtained at U-s=200V. In addition, switching the inert gas from Ar to Kr has led to fully relaxed, low tensile stress (0.03GPa) tungsten films with no measurable concentration of trapped gas atoms. Room-temperature electrical resistivity is correlated with the microstructural properties, showing lower resistivities for higher U-s and having the lowest resistivity (14.2 mu Omega cm) for the Kr sputtered tungsten films. These results illustrate the clear benefit of utilizing selective metal-ion-irradiation during film growth as an effective pathway to minimize the compressive stress induced by high-energetic gas ions/neutrals during low temperature growth of high melting temperature materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Eliasson, H.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Rudolph, M.
    Leibniz Inst Surface Engn IOM, Germany.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Hajihoseini, H.
    Univ Twente, Netherlands.
    Zanaska, Michal
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Adriaans, M. J.
    Eindhoven Univ Technol, Netherlands.
    Raadu, M. A.
    KTH Royal Inst Technol, Sweden.
    Minea, T. M.
    Univ Paris Saclay, France.
    Gudmundsson, J. T.
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Modeling of high power impulse magnetron sputtering discharges with graphite target2021Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 30, nr 11, artikel-id 115017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ionization region model (IRM) is applied to model a high power impulse magnetron sputtering discharge in argon with a graphite target. Using the IRM, the temporal variation of the various species and the average electron energy, as well as internal parameters such as the ionization probability, back-attraction probability, and the ionized flux fraction of the sputtered species, is determined. It is found that thedischarge develops into working gas recycling and most of the discharge current at the cathode target surface is composed of Ar+ ions, which constitute over 90% of the discharge current, while the contribution of the C+ ions is always small (<5%), even for peak current densities close to 3 A cm(-2). For the target species, the time-averaged ionization probability <alpha(t,pulse)> is low, or 13-27%, the ion back-attraction probability during the pulse <beta(t,pulse)> is high (>92%), and the ionized flux fraction is about 2%. It is concluded that in the operation range studied here it is a challenge to ionize carbon atoms, that are sputtered off of a graphite target in a magnetron sputtering discharge, when depositing amorphous carbon films.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Shu, Rui
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Du, Hao
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Guizhou Univ, Peoples R China.
    Sadowski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Dorri, Megan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Rosén, Johanna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sortica, Mauricio A.
    Uppsala Univ, Sweden.
    Primetzhofer, Daniel
    Uppsala Univ, Sweden; Uppsala Univ, Sweden.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Multicomponent TixNbCrAl nitride films deposited by dc and high-power impulse magnetron sputtering2021Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 426, artikel-id 127743Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Multicomponent TixNbCrAl nitride films were deposited on Si(100) substrates by reactive direct current magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) in the absence of substrate heating and bias. Three single Ti, Nb, and Cr50Al50 targets were either driven by three de or three HiPIMS power supplies. The Ti content in the films was varied by tuning the power applied to the Ti target. The composition was determined by ion beam analysis. The nitrogen content is nearly stoichiometric (48-50 at.%) in the HiPIMS series, while the dcMS are understoichiometric (39-45 at.%). The crystal structure, stress and density of the studied film were investigated by X-ray techniques and the microstructure was examined by scanning electron microscopy. All the Ti-containing films for both series exhibit an fcc NaCl-type phase structure. In particular, the dcMS series shows a (111) preferred orientation, resulting in a faceted surface morphology compared to a dense and smooth microstructure of the HiPIMS films. The compressive stress of the HiPIMS series (> 2.0 GPa) is significantly larger than the values of the dcMS series (<0.5 GPa). Nanoindentation measurements show a maximum hardness of 29.9 GPa and Youngs modulus of 304 GPa were obtained in the HiPIMS series. The results may promote HiPIMS techniques for the synthesis of complex multicomponent films for the application aspect to protective and hard coatings.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Rudolph, Martin
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Hajihoseini, Hamidreza
    Univ Iceland, Iceland; Univ Twente, Netherlands.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Gudmundsson, Jon Tomas
    Univ Iceland, Iceland; KTH Royal Inst Technol, Sweden.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden; Univ Paris Saclay, France.
    Minea, Tiberiu M.
    Univ Paris Saclay, France.
    Anders, Andre
    Leibniz Inst Surface Engn IOM, Germany; Univ Leipzig, Germany.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    On how to measure the probabilities of target atom ionization and target ion back-attraction in high-power impulse magnetron sputtering2021Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 129, nr 3, artikel-id 033303Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High-power impulse magnetron sputtering (HiPIMS) is an ionized physical vapor deposition technique that provides a high flux of ionized target species for thin film growth. Optimization of HiPIMS processes is, however, often difficult, since the influence of external process parameters, such as working gas pressure, magnetic field strength, and pulse configuration, on the deposition process characteristics is not well understood. The reason is that these external parameters are only indirectly connected to the two key flux parameters, the deposition rate and ionized flux fraction, via two internal discharge parameters: the target atom ionization probability alpha (t) and the target ion back-attraction probability beta (t). Until now, it has been difficult to assess alpha (t) and beta (t) without resorting to computational modeling, which has hampered knowledge-based optimization. Here, we present a simple method to deduce alpha (t) and beta (t) based on measured deposition rates of neutrals and ions. The core of the method is a refined analytical model, which is described in detail. This approach is furthermore validated by independent calculations of alpha (t) and beta (t) using the considerably more complex ionization region model, which is a plasma-chemical global discharge model.

  • 27.
    Rudolph, Martin
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Revel, Adrien
    Univ Paris Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Hajihoseini, Hamidreza
    Univ Iceland, Iceland; Univ Twente, Netherlands.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Anders, Andre
    Leibniz Inst Surface Engn IOM, Germany; Univ Leipzig, Germany.
    Minea, Tiberiu M.
    Univ Paris Saclay, France.
    Gudmundsson, Jon Tomas
    Univ Iceland, Iceland; KTH Royal Inst Technol, Sweden.
    On the electron energy distribution function in the high power impulse magnetron sputtering discharge2021Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 30, nr 4, artikel-id 045011Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We apply the ionization region model (IRM) and the Orsay Boltzmann equation for electrons coupled with ionization and excited states kinetics (OBELIX) model to study the electron kinetics of a high power impulse magnetron sputtering (HiPIMS) discharge. In the IRM the bulk (cold) electrons are assumed to exhibit a Maxwellian energy distribution and the secondary (hot) electrons, emitted from the target surface upon ion bombardment, are treated as a high energy tail, while in the OBELIX the electron energy distribution is calculated self-consistently using an isotropic Boltzmann equation. The two models are merged in the sense that the output from the IRM is used as an input for OBELIX. The temporal evolutions of the particle densities are found to agree very well between the two models. Furthermore, a very good agreement is demonstrated between the bi-Maxwellian electron energy distribution assumed by the IRM and the electron energy distribution calculated by the OBELIX model. It can therefore be concluded that assuming a bi-Maxwellian electron energy distribution, constituting a cold bulk electron group and a hot secondary electron group, is a good approximation for modeling the HiPIMS discharge.

  • 28.
    Viloan, Rommel Paulo B.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Zanáška, Michal
    Universite Paris-Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge2021Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 29, nr 12, artikel-id 125013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effect on the energy distributions of metal and gas ions in a bipolar high-power impulse magnetron sputtering (HiPIMS) discharge as the negative and positive pulse lengths are altered are reported. The results presented demonstrate that the selection of the pulse lengths in a HiPIMS discharge is important in optimizing the amount of accelerated ions. A short enough negative pulse is needed so that ions do not escape to the substrate before being accelerated by the positive pulse that follows the main negative HiPIMS pulse. The length of the positive pulse should also be long enough to accelerate the majority of the ions, but a too long positive pulse depletes the process chamber of electrons so much that it makes it difficult to initiate the next HiPIMS pulse. When pulse lengths of negative and positive pulses are properly selected, the fraction of ions, both metal and gas, accelerated by the positive pulse voltage is close to 100 %.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Nadhom, Hama
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Rouf, Polla
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Chemical vapor deposition of metallic films using plasma electrons as reducing agents2020Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, nr 3, artikel-id 033402Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Metallic thin films are key components in electronic devices and catalytic applications. Deposition of a conformal metallic thin film requires using volatile precursor molecules in a chemical vapor deposition (CVD) process. The metal centers in such molecules typically have a positive valence, meaning that reduction of the metal centers is required on the film surface. Powerful molecular reducing agents for electropositive metals are scarce and hamper the exploration of CVD of electropositive metals. The authors present a new CVD method for depositing metallic films where free electrons in a plasma discharge are utilized to reduce the metal centers of chemisorbed precursor molecules. They demonstrate this method by depositing Fe, Co, and Ni from their corresponding metallocenes using electrons from an argon plasma as a reducing agent.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Crespi, Ângela Elisa
    et al.
    Université Paris-Saclay, France.
    Ballage, Charles
    Université Paris-Saclay, France.
    Hugon, Marie Christine
    Université Paris-Saclay, France.
    Robert, Jacques
    Université Paris-Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Université Paris-Saclay, France.
    Vickridge, Ian
    Sorbonne Université, France.
    Alvarez, José
    Université Paris-Saclay, Sorbonne Université, France.
    Minea, Tiberiu
    Université Paris-Saclay, France.
    Low resistivity amorphous carbon-based thin films employed as anti-reflective coatings on copper2020Ingår i: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 712, artikel-id 138319Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Amorphous carbon-based coatings deposited on copper substrates by magnetron sputtering at different target-to-substrate distances were investigated. Films deposited at short distances as 2 cm presented the best results in terms of morphology, density, and resistivity. Ultraviolet near-infrared range spectrometry measurements determined total reflectance and ellipsometry, extinction coefficient, refraction index, and pseudo bandgap. Amorphous carbon films of 150 nm deposited at 2 cm reduced the total reflectance by up to 60 ± 5% in the near-infra-red range when compared to pure copper films. The addition of Fe* boosts the absorption of the coating reducing the total reflectance by up to 70 ± 5% in near-infrared. (Fe*: deposited from stainless-steel target used in direct-current magnetron sputtering). Also, Fe* reduces the electrical resistivity by a factor of 100 compared to that of pure amorphous carbon films. The reduction in total reflectance induced by the presence of the amorphous carbon-based films on copper depends, as expected, on light penetration depth and the absorption coefficient.

  • 31.
    Brenning, Nils
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France; KTH Royal Inst Technol, Sweden.
    Butler, Alexandre
    Univ Paris Saclay, France.
    Hajihoseini, Hamidreza
    Univ Iceland, Iceland.
    Rudolph, Martin
    Leibniz Inst Surface Engn IOM, Germany.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Gudmundsson, Jon Tomas
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Minea, Tiberiu
    Univ Paris Saclay, France.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength2020Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, nr 3, artikel-id 033008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In high power impulse magnetron sputtering (HiPIMS) operation, there are basically two goals: a high ionized flux fraction of the sputtered target material and a high deposition rate. In this work, it is demonstrated that the former always comes at the cost of the latter. This makes a choice necessary, referred to as the HiPIMS compromise. It is here proposed that this compromise is most easily made by varying the discharge current amplitude, which opens up for optimization of additionally four external process parameters: the pulse length, the working gas pressure, the magnetic field strength, and the degree of magnetic unbalance to achieve the optimum combination of the ionized flux fraction and the deposition rate. As a figure of merit, useful for comparing different discharges, ( 1 - beta t ) is identified, which is the fraction of ionized sputtered material that escapes back-attraction toward the cathode target. It is shown that a discharge with a higher value of ( 1 - beta t ) always can be arranged to give better combinations of ionization and deposition rate than a discharge with a lower ( 1 - beta t ). Maximization of ( 1 - beta t ) is carried out empirically, based on data from two discharges with Ti targets in Ar working gas. These discharges were first modeled in order to convert measured plasma parameters to values of ( 1 - beta t ). The combined effects of varying the different process parameters were then analyzed using a process flow chart model. The effect of varying the degree of unbalance in the studied range was small. For the remaining three parameters, it is found that optimum is achieved by minimizing the magnetic field strength, minimizing the working gas pressure, and minimizing the pulse length as far as compatible with the requirement to ignite and maintain a stable discharge.

  • 32.
    Rudolph, Martin
    et al.
    Leibniz Inst Surface Engn IOM, Germany.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Hajihoseini, Hamidreza
    Univ Iceland, Iceland.
    Gudmundsson, Jon Tomas
    KTH Royal Inst Technol, Sweden; Univ Iceland, Iceland.
    Anders, Andre
    Leibniz Inst Surface Engn IOM, Germany; Univ Leipzig, Germany.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Optimizing the deposition rate and ionized flux fraction by tuning the pulse length in high power impulse magnetron sputtering2020Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 29, nr 5, artikel-id 05LT01Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    High power impulse magnetron sputtering (HiPIMS) is an ionized physical vapour deposition technique. While HiPIMS provides a high flux of metal ions to the substrate, the disadvantage is a reduced deposition rate compared to direct current magnetron sputtering (dcMS) at equal average power. This is mainly due to the high target back-attraction probability of the metal ions with typical values in the range 70%-90% during the pulse. In this work, we investigate how to reduce this effect by quantifying the contribution of the metal ion flux after each HiPIMS pulse, a period also known as afterglow. Without a negative potential on the target at this stage of the HiPIMS process, the back-attracting electric field disappears allowing remaining ions to escape the ionization region. In order to analyze the fate of the film-forming ions, we extend the time-dependent ionization region model (IRM) by adding consideration of an afterglow. This approach allows to distinguish between fluxes from the ionization region during the pulse and during the afterglow. We show that by shortening the pulse length of a titanium HiPIMS discharge, the contribution to the outward flux of film-forming species from the afterglow increases significantly. The IRM predicts a gain in deposition rate of 46% and 47% for two discharges with different peak discharge currents, when using 40 mu s compared to 100 mu s-long pulses at the same average power. This is without compromising the ionized flux fraction that remains constant for the range of pulse lengths investigated here.

  • 33.
    Hajihoseini, Hamidreza
    et al.
    Univ Iceland, Iceland; Univ Paris Saclay, France.
    Cada, Martin
    Acad Sci Czech Republ, Czech Republic.
    Hubicka, Zdenek
    Acad Sci Czech Republ, Czech Republic.
    Unaldi, Selen
    Univ Paris Saclay, France.
    Raadu, Michael A.
    KTH Royal Inst Technol, Sweden.
    Brenning, Nils
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. KTH Royal Inst Technol, Sweden.
    Gudmundsson, Jon Tomas
    Univ Iceland, Iceland; KTH Royal Inst Technol, Sweden.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Univ Paris Saclay, France.
    Sideways deposition rate and ionized flux fraction in dc and high power impulse magnetron sputtering2020Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 38, nr 3, artikel-id 033009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The sideways (radial) deposition rate and ionized flux fraction in a high power impulse magnetron sputtering (HiPIMS) discharge are studied and compared to a dc magnetron sputtering (dcMS) discharge, while the magnetic field strength | B | and degree of balancing are varied. A significant deposition of the film forming material perpendicular to the target surface is observed for both sputter techniques. This sideways deposition decreases with increasing axial distance from the target surface. The sideways deposition rate is always the highest in dc operation, while it is lower for HiPIMS operation. The magnetic field strength has a strong influence on the sideways deposition rate in HiPIMS but not in dcMS. Furthermore, in HiPIMS operation, the radial ion deposition rate is always at least as large as the axial ion deposition rate and often around two times higher. Thus, there are a significantly higher number of ions traveling radially in the HiPIMS discharge. A comparison of the total radial as well as axial fluxes across the entire investigated plasma volume between the target and the substrate position allows for revised estimates of radial over axial flux fractions for different magnetic field configurations. It is here found that the relative radial flux of the film forming material is greater in dcMS compared to HiPIMS for almost all cases investigated. It is therefore concluded that the commonly reported reduction of the (axial) deposition rate in HiPIMS compared to dcMS does not seem to be linked with an increase in sideways material transport in HiPIMS.

  • 34.
    Viloan, Rommel Paulo B.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten. Laboratoire de Physique des Gaz et des Plasmas (LPGP), Universite Paris-Saclay, France.
    Keraudy, Julien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och ytbeläggningsfysik. Linköpings universitet, Tekniska fakulteten.
    Tuning the stress in TiN films by regulating the doubly charged ion fraction in a reactive HiPIMS discharge2020Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 127, nr 10, artikel-id 103302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the present study, we investigate the impact of pulse power (Ppulse) on the ion flux and the properties of TiN films using reactive high-power impulse magnetron sputtering. Ppulse was adjusted in the range of 5–25 kW, while keeping the total average power constant through regulating the pulsing frequency. It is found that the required N2 flow, to produce stoichiometric TiN, decreases as Ppulse is increased, which is due to a decrease in the deposition rate. The plasma conditions when stoichiometric TiN is formed were investigated in detail. In situ ion mass spectrometry measurements of the ion energy distribution functions reveal two distinct ion populations, ions originating from sputtered atoms (Ti+, Ti2+, and N+) and ions originating from the working gas (Ar+, Ar2+, and N2+). The average ion energies (Eave) of the sputtered ions show an increase with increasing Ppulse, while Eave for the gas ions remains almost unaffected. The relative flux intensity Ti2+/Ti+ showed an increasing trend, from 0.28 to 0.47, as Ppulse was increased from 5 to 25 kW. The ion flux changes affect the growth of the TiN film such that 111-textured films are grown for low Ppulse while higher Ppulse results in mixed orientations. In addition, the hardness of the deposited film increases with increasing Ppulse, while the compressive film stress increases significantly at a higher Ppulse. In this way, optimum deposition conditions were identified at Ppulse = 8.3 kW, where a relatively low compressive stress of 0.89 GPa and high hardness of 22.67 GPa were measured.

    Ladda ner fulltext (pdf)
    fulltext
  • 35.
    Lundin, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    High power pulsed plasma enhanced chemical vapor deposition: a brief overview of general concepts and early results2013Ingår i: NINETEENTH EUROPEAN CONFERENCE ON CHEMICAL VAPOR DEPOSITION (EUROCVD 19), 2013, Vol. 46, s. 3-11Konferensbidrag (Refereegranskat)
    Abstract [en]

    The general concepts of the emerging plasma enhanced chemical vapor deposition (PECVD) technique High Power Pulsed PECVD (HiPP-PECVD) are outlined; the main feature of HiPP-PECVD is the use of a power scheme characterized by high power pulses with a duty cycle of a few percent or less to generate a process plasma with a significantly higher plasma density compared to traditional PECVD. The higher plasma density leads to a more reactive plasma chemistry, which results in a higher rate of dissociation of the precursor molecules, i.e. a more efficient use of the source material. The high plasma density also leads to a higher degree of ionization of the growth species, enabling the possibility to guide the growth species to the substrate or applying an energetic bombardment of the growing film by applying a substrate bias. Early results on HiPP-PECVD have shown that HiPP-PECVD enables deposition of phase pure alpha-Al2O3 at substrate temperatures as low as 560 degrees C with mechanical properties comparable to standard thermal CVD grown material. Also, deposition of amorphous, copper containing carbon films at deposition rates higher than 30 mu m/h has been demonstrated together with results showing the more efficient plasma chemistry. It is suggested that HiPPPECVD is a promising tool for low temperature deposition of films with tailored properties for e.g. the hard coatings industry. (C) 2013 The Authors. Published by Elsevier B.V.

  • 36.
    Aiempanakit, Montri
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Aijaz, Asim
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Kubart, Tomas
    The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides2013Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, nr 13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The discharge current behavior in reactive high power impulse magnetron sputtering (HiPIMS) of Ti-O and Al-O is investigated. It is found that for both metals, the discharge peak current significantly increases in the oxide mode in contrast to the behavior in reactive direct current magnetron sputtering where the discharge current increases for Al but decreases for Ti when oxygen is introduced. In order to investigate the increase in the discharge current in HiPIMS-mode, the ionic contribution of the discharge in the oxide and metal mode is measured using time-resolved mass spectrometry. The energy distributions and time evolution are investigated during the pulse-on time as well as in the post-discharge. In the oxide mode, the discharge is dominated by ionized oxygen, which has been preferentially sputtered from the target surface. The ionized oxygen determines the discharge behavior in reactive HiPIMS.

  • 37.
    Pedersen, Henrik
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Larsson, Petter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Aijaz, Asim
    Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska högskolan.
    Jensen, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    A novel high-power pulse PECVD method2012Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 206, nr 22, s. 4562-4566Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel plasma enhanced CVD (PECVD) technique has been developed in order to combine energetic particle bombardment and high plasma densities found in ionized PVD with the advantages from PECVD such as a high deposition rate and the capability to coat complex and porous surfaces. In this PECVD method, an ionized plasma is generated above the substrate by means of a hollow cathode discharge. The hollow cathode is known to generate a highly ionized plasma and the discharge can be sustained in direct current (DC) mode, or in high-power pulsed (HiPP) mode using short pulses of a few tens of microsecond. The latter option is similar to the power scheme used in high power impulse magnetron sputtering (HiPIMS), which is known to generate a high degree of ionization of the sputtered material, and thus providing new and added means for the synthesis of tailor-made thin films. In this work amorphous carbon coatings containing copper, have been deposited using both HiPP and DC operating conditions. Investigations of the bulk plasma using optical emission spectroscopy verify the presence of Ar+, C+ as well as Cu+ when running in pulsed mode. Deposition rates in the range 30 mu m/h have been obtained and the amorphous, copper containing carbon films have a low hydrogen content of 4- 5 at%. Furthermore, the results presented here suggest that a more efficient PECVD process is obtained by using a superposition of HiPP and DC mode, compared to using only DC mode at the same average input power.

    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Aijaz, Asim
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Brenning, Nils
    Royal Institute of Technology.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    A strategy for increased carbon ionization in magnetron sputtering discharges2012Ingår i: Diamond and related materials, ISSN 0925-9635, E-ISSN 1879-0062, Vol. 23, s. 1-4Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A strategy that facilitates a substantial increase of carbon ionization in magnetron sputtering discharges is presented in this work. The strategy is based on increasing the electron temperature in a high power impulse magnetron sputtering discharge by using Ne as the sputtering gas. This allows for the generation of an energetic C+ ion population and a substantial increase in the C+ ion flux as compared to a conventional Ar-HiPIMS process. A direct consequence of the ionization enhancement is demonstrated by an increase in the mass density of the grown films up to 2.8 g/cm3; the density values achieved are substantially higher than those obtained from conventional magnetron sputtering methods.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Lundin, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    An introduction to thin film processing using high-power impulse magnetron sputtering2012Ingår i: Journal of Materials Research, ISSN 0884-2914, E-ISSN 2044-5326, Vol. 27, nr 5, s. 780-792Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    High-power impulse magnetron sputtering (HiPIMS) is a promising sputtering-based ionized physical vapor deposition technique and is already making its way to industrial applications. The major difference between HiPIMS and conventional magnetron sputtering processes is the mode of operation. In HiPIMS the power is applied to the magnetron (target) in unipolar pulses at a low duty factor (andlt;10%) and low frequency (andlt;10 kHz) leading to peak target power densities of the order of several kilowatts per square centimeter while keeping the average target power density low enough to avoid magnetron overheating and target melting. These conditions result in the generation of a highly dense plasma discharge, where a large fraction of the sputtered material is ionized and thereby providing new and added means for the synthesis of tailor-made thin films. In this review, the features distinguishing HiPIMS from other deposition methods will be addressed in detail along with how they influence the deposition conditions, such as the plasma parameters and the sputtered material, as well as the resulting thin film properties, such as microstructure, phase formation, and chemical composition. General trends will be established in conjunction to industrially relevant material systems to present this emerging technology to the interested reader.

    Ladda ner fulltext (pdf)
    fulltext
  • 40.
    Vitelaru, C
    et al.
    University of Paris 11.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Stancu, G D
    University of Paris 11.
    Brenning, N
    Royal Institute of Technology.
    Bretagne, J
    University of Paris 11.
    Minea, T
    University of Paris 11.
    Argon metastables in HiPIMS: time-resolved tunable diode-laser diagnostics2012Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 21, nr 2, s. 025010-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Time-resolved tunable diode-laser absorption spectroscopy measurements were performed on the argon metastable (Ar-m) level 3s(2)3p(5)(P-2(3/2)degrees)4s excited at 801.478 nm, in the dense plasma region in front of the magnetron target in a high power impulse magnetron sputtering (HiPIMS) discharge. From the Doppler profile the evolution of the temperature and density was derived during the pulse as well as during the plasma decay, i.e. in the afterglow. It is shown that the Ar-m density sharply increases at the beginning of the discharge pulse, followed by a severe Ar-m depletion along with increasing gas temperature around the peak of the HiPIMS discharge current. The strong dynamics of these parameters involve many elementary processes such as electron-impact excitation, electron-impact de-excitation and ionization of Ar-m, gas rarefaction, electron temperature increase at the end of the pulse and gas diffusion. These phenomena are discussed with respect to several parameters: distance from the target, peak discharge current during the pulse, pulse length, and gas pressure.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Huo, Chunqing
    et al.
    Royal Institute Technology, Sweden .
    Raadu, Michael A
    Royal Institute Technology, Sweden .
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Gudmundsson, Jon Tomas
    Shanghai Jiao Tong University, Peoples R China University of Iceland, Iceland .
    Anders, Andre
    University of Calif Berkeley, CA 94720 USA .
    Brenning, Nils
    Royal Institute Technology, Sweden .
    Gas rarefaction and the time evolution of long high-power impulse magnetron sputtering pulses2012Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 21, nr 4, s. 045004-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Model studies of 400 mu s long discharge pulses in high-power impulse magnetron sputtering have been made to study the gas dynamics and plasma chemistry in this type of pulsed processing plasma. Data are taken from an experiment using square voltage pulses applied to an Al target in an Ar atmosphere at 1.8 Pa. The study is limited to low power densities, andlt; 0.5 kW cm(-2), in which the discharge is far away from the runaway self-sputtering mode. The model used is the ionization region model, a time-dependent plasma chemistry discharge model developed for the ionization region in magnetron sputtering discharges. It gives a close fit to the discharge current during the whole pulse, both an initial high-current transient and a later plateau value of constant lower current. The discharge current peak is found to precede a maximum in gas rarefaction of the order of Delta n(Ar)/n(Ar),(0) approximate to 50%. The time durations of the high-current transient, and of the rarefaction maximum, are determined by the time it takes to establish a steady-state diffusional refill of process gas from the surrounding volume. The dominating mechanism for gas rarefaction is ionization losses, with only about 30% due to the sputter wind kick-out process. During the high-current transient, the degree of sputtered metal ionization reaches 65-75%, and then drops to 30-35% in the plateau phase. The degree of self-sputtering (defined here as the metal ion fraction of the total ion current to the target) also varies during the pulse. It grows from zero at pulse start to a maximum of 65-70% coinciding in time with the maximum gas rarefaction, and then stabilizes in the range 40-45% during the plateau phase. The loss in deposition rate that can be attributed to the back-attraction of the ionized sputtered species is also estimated from the model. It is low during the initial 10-20 mu s, peaks around 60% during the high-current transient, and finally stabilizes around 30% during the plateau phase.

  • 42.
    Gudmundsson, J. T.
    et al.
    University of Michigan.
    Brenning, N.
    KTH.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    High power impulse magnetron sputtering discharge2012Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, nr 030801Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

    Ladda ner fulltext (pdf)
    fulltext
  • 43.
    Samuelsson, Mattias
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Sarakinos, Kostas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Bjorefors, Fredrik
    Uppsala University, Sweden.
    Walivaara, Bengt
    Impact Coatings, Linköping, Sweden.
    Ljungcrantz, Henrik
    Impact Coatings, Linköping, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Influence of ionization degree on film properties when using high power impulse magnetron sputtering2012Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, nr 3, s. 031507-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Chromium thin films are deposited by combining direct current magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) on a single cathode in an industrial deposition system. While maintaining a constant deposition rate and unchanged metal ion energy distribution function, the fraction of the total power supplied by either deposition technique is altered, and thereby also the metal ion to metal neutral ratio of the deposition flux. It is observed that the required total average power needed to be proportionally increased as the HiPIMS fraction is increased to be able to keep a constant deposition rate. The influence on microstructure, electrical, and electrochemical properties of the films is investigated and shows improvements with the use of HiPIMS. However, considerable influence of the studied properties occurs already when only some 40% of the total power is supplied by the HiPIMS technique. Further increase of the HiPIMS power fraction results in comparatively minor influence of the studied properties yet significant deposition rate efficiency reduction. The results show that the degree of ionization can be controlled separately, and that the advantages associated with using HiPIMS can be obtained while much of the deposition rate reduction, often reported for HiPIMS, can be avoided.

    Ladda ner fulltext (pdf)
    fulltext
  • 44.
    Brenning, N
    et al.
    Royal Institute Technology.
    Huo, C
    Royal Institute Technology.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Raadu, M A
    Royal Institute Technology.
    Vitelaru, C
    University of Paris 11.
    Stancu, G D
    University of Paris 11.
    Minea, T
    University of Paris 11.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields2012Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 21, nr 2, s. 025005-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E-z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E-z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a sweet spot in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Pi(Townsend) is proposed. A parametric analysis of Pi(Townsend) shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength.

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Lundin, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Al Sahab, Seham
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Brenning, Nils
    Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Huo, Chunqing
    Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Internal current measurements in high power impulse magnetron sputtering2011Ingår i: Plasma sources science & technology, ISSN 0963-0252, E-ISSN 1361-6595, Vol. 20, nr 4, s. 045003-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The transport of charged particles in a high power impulse magnetron sputtering (HiPIMS) discharge is of great interest when optimizing this promising deposition technique with respect to deposition rate and control of the ion acceleration. In this study the internal current densities Jϕ (azimuthal direction) and JD⊥ (axial direction) have therefore been spatially and temporally resolved in the bulk plasma region above a cylindrical magnetron using Rogowski coils. From the measurements a phenomenological model has been constructed describing the evolution of the current density in this pulsed plasma. The core of the model is based on six different types of current systems, which characterize the operating transport mechanisms, such as current transport along and across magnetic field lines, as well as the initiation, buildup and steady-state of a HiPIMS plasma. Furthermore, the data also shows that there are spatial and temporal variations of the key transport parameter Jϕ/JD⊥ , governing the cross-B resistivity and also the energy of the charged particles. The previously reported faster-than-Bohm cross-B electron transport is here verified, but is not found to be present during the whole discharge regime as well as for all locations. These results on the plasma dynamics are essential input when modeling the axial electric field, governing the back-attraction of ionized sputtered material, and might furthermore provide a link between the different resistivities reported in HiPIMS, pulsed-DC, and DC magnetron discharges.

    Ladda ner fulltext (pdf)
    fulltext
  • 46.
    Muhammad, Junaid
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Palisaitis, Justinas
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Hsiao, Ching-Lien
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Darakchieva, Vanya
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Halvledarmaterial. Linköpings universitet, Tekniska högskolan.
    Jensen, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Persson, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Sandström, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Lai, W-J
    National Taiwan University.
    Chen, L-C
    National Taiwan University.
    Chen, K-H
    National Taiwan University.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Birch, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering2011Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 110, nr 12, s. 123519-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the effect of high power pulses in reactive magnetron sputter epitaxy on the structural properties of GaN (0001) thin films grown directly on Al2O3 (0001) substrates. The epilayers are grown by sputtering from a liquid Ga target, using a high power impulse magnetron sputtering power supply in a mixed N2/Ar discharge. X-ray diffraction, micro-Raman, micro-photoluminescence, and transmission electron microscopy investigations show the formation of two distinct types of domains. One almost fully relaxed domain exhibits superior structural and optical properties as evidenced by rocking curves with a full width at half maximum of 885 arc sec and a low temperature band edge luminescence at 3.47 eV with the full width at half maximum of 10 meV. The other domain exhibits a 14 times higher isotropic strain component, which is due to the higher densities of the point and extended defects, resulting from the ion bombardment during growth. Voids form at the domain boundaries. Mechanisms for the formation of differently strained domains, along with voids during the epitaxial growth of GaN are discussed.

    Ladda ner fulltext (pdf)
    fulltext
  • 47.
    Aijaz, Asim
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Larsson, Petter
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Dual-magnetron open field sputtering system for sideways deposition of thin films2010Ingår i: SURFACE and COATINGS TECHNOLOGY, ISSN 0257-8972, Vol. 204, nr 14, s. 2165-2169Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A dual-magnetron system for deposition inside tubular substrates has been developed. The two magnetrons are facing each other and have opposing magnetic fields forcing electrons and thereby also ionized material to be transported radially towards the substrate. The depositions were made employing direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HiPIMS). To optimize the deposition rate, the system was characterized at different separation distances between the magnetrons under the same sputtering conditions. The deposition rate is found to increase with increasing separation distance independent of discharge technique. The emission spectrum from the HiPIMS plasma shows a highly ionized fraction of the sputtered material. The electron densities of the order of 10(16) m(-3) and 10(18) m(-3) have been determined in the DCMS and the HiPIMS plasma discharges respectively. The results demonstrate a successful implementation of the concept of sideways deposition of thin films providing a solution for coating complex shaped surfaces.

    Ladda ner fulltext (pdf)
    fulltext
  • 48.
    Samuelsson, Mattias
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    Jensen, Jens
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska högskolan.
    Raadu, Michael A
    Royal Institute of Technology.
    Gudmundsson, Jon Tomas
    University of Iceland.
    Helmersson, Ulf
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    On the film density using high power impulse magnetron sputtering2010Ingår i: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, nr 2, s. 591-596Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The influence on thin film density using high power impulse magnetron sputtering (HIPIMS) has been investigated for eight different target materials (Al, Ti, Cr. Cu, Zr, Ag, Ta, and Pt). The density values as well as deposition rates have been compared to results obtained from thin films grown by direct current magnetron sputtering (DCMS) under the same experimental conditions. Overall, it was found that the HIPIMS deposited coatings were approximately 5-15% denser compared to the DCMS deposited coatings This could be attributed to the increased metal ion bombardment commonly seen in HIPIMS discharges, which also was verified using a global plasma model to assess the degree of ionization of sputtered metal One key feature is that the momentum transfer between the growing film and the incoming metal ions is very efficient due to the equal mass of film and bombarding species, leading to a less pronounced columnar microstructure As expected the deposition rates were found to be lower for HiPIMS compared to DCMS For several materials this decrease is not as pronounced as previously reported in the literature, which is shown in the case of Ta. Pt, and Ag with rate(HIPIMS)/rate(DCMS)-70-85%. while still achieving denser coatings

    Ladda ner fulltext (pdf)
    fulltext
  • 49. Beställ onlineKöp publikationen >>
    Lundin, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska högskolan.
    The HiPIMS Process2010Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The work presented in this thesis involves experimental and theoretical studies related to a thin film deposition technique called high power impulse magnetron sputtering (HiPIMS), and more specifically the plasma properties and how they influence the coating. HiPIMS is an ionized physical vapor deposition technique based on conventional direct current magnetron sputtering (DCMS). The major difference between the two methods is that HiPIMS has the added advantage of providing substantial ionization of the sputtered material, and thus presents many new opportunities for the coating industry. Understanding the dynamics of the charged species and their effect on thin film growth in the HiPIMS process is therefore essential for producing high-quality coatings.

    In the first part of the thesis a new type of anomalous electron transport was found. Investigations of the transport resulted in the discovery that this phenomenon could quantitatively be described as being related and mediated by highly nonlinear waves, likely due to the modified two-stream instability, resulting in electric field oscillations in the MHz-range (the lower hybrid frequency). Measurements in the plasma confirmed these oscillations as well as trends predicted by the theory of these types of waves. Using electric probes, the degree of anomalous transport in the plasma could also be determined by measuring the current density ratio between the azimuthal current density (of which the Hall current density is one contribution) and the discharge current density, Jϕ / JD. The results were verified in another series of measurements using Rogowski probes to directly gain insight into the internal currents in the HiPIMS discharge. The results provided important insights into understanding the mechanism behind the anomalous transport.

    It was furthermore demonstrated that the current ratio Jϕ / JD is inversely proportional to the transverse resistivity, η , which governs how well momentum in the direction of the current is transferred from the electrons to the ions in the plasma. By looking at the forces involved in the charged particle transport it was expected that the azimuthally rotating electrons would exert a volume force on the ions tangentially outwards from the circular race track region. The effect of having an anomalous transport would therefore be that the ions were transported across the magnetic field lines and to a larger extent deflected sideways, instead of solely moving from the target region towards a substrate placed in front of the target some distance away. From the experiments it was confirmed that a substantial fraction of sputtered material is transported radially away from the cathode and lost to the walls in HiPIMS as well as in DCMS, but more so for HiPIMS giving one possible explanation to why the deposition rate is lower for HiPIMS compared to DCMS. Moreover, in a separate investigation on the energy flux it could be determined that the heating due to radial energy flux reached as much as 60 % of the axial energy flux, which is likely a result of the anomalous transport of charged species present in the HiPIMS discharge. Also, the recorded ion energy flux confirmed theoretical estimations on this type of transport regarding energy and direction.In order to gain a better understanding of the complete discharge regime, as well as providing a link between the HiPIMS and DCMS processes, the current and voltage characteristics were investigated for discharge pulses longer than 100 μs. The current behavior was found to be strongly correlated with the chamber gas pressure. Based on these experiments it was suggested that high-current transients commonly seen in the HiPIMS process cause a depletion of the working gas in the area in front of the target, and thereby a transition to a DCMS-like high voltage, lower current regime, which alters the deposition conditions.

    In the second part of the thesis, using the results and ideas from the fundamental plasma investigations, it was possible to successfully implement different coating improvements. First, the concept of sideways deposition of thin films was examined in a dual-magnetron system providing a solution for coating complex shaped surfaces. Here, the two magnetrons were facing each other having opposing magnetic fields forcing electrons, and thereby also ionized material to be transported radially towards the substrate. In this way deposition inside tubular substrates can be made in a beneficial way.

    Last, the densification process of thin films using HiPIMS was investigated for eight different materials (Al, Ti, Cr, Cu, Zr, Ag, Ta, and Pt). Through careful characterization of the thin film properties it was determined that the HiPIMS coatings were approximately 5-15 % denser compared to the DCMS coatings. This could be attributed to the increased ion bombardment seen in the HiPIMS process, where the momentum transfer between the growing film and the incoming ions is very efficient due to the equal mass of the atoms constituting the film and the bombarding species, leading to a less pronounced columnar microstructure. The deposition conditions were also examined using a global plasma model, which was in good agreement with the experimental results.

    Delarbeten
    1. Anomalous electron transport in high power impulse magnetron sputtering
    Öppna denna publikation i ny flik eller fönster >>Anomalous electron transport in high power impulse magnetron sputtering
    Visa övriga...
    2008 (Engelska)Ingår i: Plasma Sources Science and Technology, ISSN 0963-0252, Vol. 17, nr 2, s. 025007-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Oscillating electric fields in the megahertz range have been studied in a high power impulse magnetron sputtering (HIPIMS) plasma with the use of electric field probe arrays. One possible reason for these oscillations to occur is charge perturbation—or so-called modified two-stream instabilities (MTSIs). It is known that MTSIs give rise to acceleration of the charged plasma species and can give a net transport of electrons across the magnetic field lines. Measurements of these oscillations confirm trends, specifically of the frequency dependence on ion mass and magnetic field strength as expected from the theory of MTSI waves. These results help to explain the previously reported anomalous fast electron transport in HIPIMS discharges, where classical theory of diffusion using collisions to transport electrons has failed.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-13208 (URN)10.1088/0963-0252/17/2/025007 (DOI)
    Anmärkning
    Original Publication: Daniel Lundin, Ulf Helmersson, Scott Kirkpatrick, Suzanne Rohde and Nils Brenning, Anomalous electron transport in high power impulse magnetron sputtering, 2008, Plasma Sources Science and Technology, (17), 2, 025007. http://dx.doi.org/10.1088/0963-0252/17/2/025007 Copyright: IOP Publishing http://www.iop.org/ Tillgänglig från: 2009-02-22 Skapad: 2009-02-17 Senast uppdaterad: 2020-11-16Bibliografiskt granskad
    2. Cross-field ion transport during high power impulse magnetron sputtering
    Öppna denna publikation i ny flik eller fönster >>Cross-field ion transport during high power impulse magnetron sputtering
    Visa övriga...
    2008 (Engelska)Ingår i: Plasma Sources Science and Technology, ISSN 0963-0252, Vol. 17, nr 035021Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    In this study, the effect on thin film growth due to an anomalous electron transport, found in high power impulse magnetron sputtering (HiPIMS), has been investigated for the case of a planar circular magnetron. An important consequence of this type of transport is that it affects the way ions are being transported in the plasma. It was found that a significant fraction of ions are transported radially outwards in the vicinity of the cathode, across the magnetic field lines, leading to increased deposition rates directly at the side of the cathode (perpendicular to the target surface). Furthermore, this mass transport parallel to the target surface leads to that the fraction of sputtered material reaching a substrate placed directly in front of the target is substantially lower in HiPIMS compared with conventional direct current magnetron sputtering (dcMS). This would help to explain the lower deposition rates generally observed for HiPIMS compared with dcMS. Moreover, time-averaged mass spectrometry measurements of the energy distribution of the cross-field transported ions were carried out. The measured distributions show a direction-dependent high-energy tail, in agreement with predictions of the anomalous transport mechanism.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-13209 (URN)10.1088/0963-0252/17/3/035021 (DOI)
    Anmärkning
    Original Publication: Daniel Lundin, Petter Larsson, Erik Wallin, Martina Lattemann, Nils Brenning and Ulf Helmersson, Cross-field ion transport during high power impulse magnetron sputtering, 2008, Plasma Sources Science and Technology, (17), 035021. http://dx.doi.org/10.1088/0963-0252/17/3/035021 Copyright: Iop Publishing http://www.iop.org/ Tillgänglig från: 2009-02-26 Skapad: 2009-02-26 Senast uppdaterad: 2020-11-16Bibliografiskt granskad
    3. Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering
    Öppna denna publikation i ny flik eller fönster >>Transition between the discharge regimes of high power impulse magnetron sputtering and conventional direct current magnetron sputtering
    Visa övriga...
    2009 (Engelska)Ingår i: PLASMA SOURCES SCIENCE and TECHNOLOGY, ISSN 0963-0252, Vol. 18, nr 4, s. 045008-Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Current and voltage have been measured in a pulsed high power impulse magnetron sputtering (HiPIMS) system for discharge pulses longer than 100 mu s. Two different current regimes could clearly be distinguished during the pulses: (1) a high-current transient followed by (2) a plateau at lower currents. These results provide a link between the HiPIMS and the direct current magnetron sputtering (DCMS) discharge regimes. At high applied negative voltages the high-current transient had the characteristics of HiPIMS pulses, while at lower voltages the plateau values agreed with currents in DCMS using the same applied voltage. The current behavior was found to be strongly correlated with the chamber gas pressure, where increasing gas pressure resulted in increasing peak current and plateau current. Based on these experiments it is suggested here that the high-current transients cause a depletion of the working gas in the area in front of the target, and thereby a transition to a DCMS-like high-voltage, lower current regime.

    Nationell ämneskategori
    Naturvetenskap
    Identifikatorer
    urn:nbn:se:liu:diva-51382 (URN)10.1088/0963-0252/18/4/045008 (DOI)
    Tillgänglig från: 2009-10-30 Skapad: 2009-10-30 Senast uppdaterad: 2020-11-16