liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1234 1 - 50 av 158
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Asadi, Milad
    Univ Boras, Sweden.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Univ Boras, Sweden.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Effect of Core Yarn on Linear Actuation of Electroactive Polymer Coated Yarn Actuators2023Ingår i: Advanced Materials Technologies, E-ISSN 2365-709XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smart textiles combine the features of conventional textiles with promising properties of smart materials such as electromechanically active polymers, resulting in textile actuators. Textile actuators comprise of individual yarn actuators, so understanding their electro-chemo-mechanical behavior is of great importance. Herein, this study investigates the effect of inherent structural and mechanical properties of commercial yarns, that form the core of the yarn actuators, on the linear actuation of the conducting-polymer-based yarn actuators. Commercial yarns were coated with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to make them conductive. Then polypyrrole (PPy) that provides the electromechanical actuation is electropolymerized on the yarn surface under controlled conditions. The linear actuation of the yarn actuators is investigated in aqueous electrolyte under isotonic and isometric conditions. The yarn actuators generated an isotonic strain up to 0.99% and isometric force of 95 mN. The isometric strain achieved in this work is more than tenfold and threefold greater than the previously reported yarn actuators. The isometric actuation force shows an increase of nearly 11-fold over our previous results. Finally, a qualitative mechanical model is introduced to describe the actuation behavior of yarn actuators. The strain and force created by the yarn actuators make them promising candidates for wearable actuator technologies.

  • 2.
    Martinez Gil, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mehraeen, Shayan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Electrochemical Considerations for the Electropolymerization of PPy on PEDOT:PSS for Yarn Actuator Applications2023Ingår i: ChemElectroChem, E-ISSN 2196-0216Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemical devices as conducting polymer-based actuators or textile actuators often use layers of different conducting polymers. Although research has been performed on such devices, it is still not very clear how the different layers affect each other. Here we attempt to clarify such influence on yarn actuators using electrochemical methods. Different electrochemical methods as cyclic voltammetry, chronoamperometry or chronopotentiometry were used to electropolymerize polypyrrole on top of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) coated textile yarns by using different applied electrochemical conditions (potentials/currents). Thus, we found that selecting suitable conditions (as an applied potential of +0.8 V) for such electropolymerization is key to obtain a polypyrrole of high quality. Besides, we show that the underlying layer of PEDOT:PSS has an influence on such electropolymerization conditions and can be subjected to parallel redox reactions as oxidation or electrochemical degradation that influence the electropolymerized polypyrrole.

  • 3.
    Cao, Danfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Anada, Risa
    Okayama Univ, Japan; Okayama Univ, Japan; Okayama Univ, Japan.
    Hara, Emilio Satoshi
    Okayama Univ, Japan; Okayama Univ, Japan; Okayama Univ, Japan; Okayama Univ, Japan.
    Kamioka, Hiroshi
    Okayama Univ, Japan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Electrochemical control of bone microstructure on electroactive surfaces for modulation of stem cells and bone tissue engineering2023Ingår i: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 24, nr 1, artikel-id 2183710Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Controlling stem cell behavior at the material interface is crucial for the development of novel technologies in stem cell biology and regenerative medicine. The composition and presentation of bio-factors on a surface strongly influence the activity of stem cells. Herein, we designed an electroactive surface that mimics the initial process of trabecular bone formation, by immobilizing chondrocyte-derived plasma membrane nanofragments (PMNFs) on its surface for rapid mineralization within 2 days. Moreover, the electroactive surface was based on the conducting polymer polypyrrole (PPy), which enabled dynamic control of the presentation of PMNFs on the surface via electrochemical redox switching, further resulting in the formation of bone minerals with different morphologies. Furthermore, bone minerals with contrasting surface morphologies had differential effects on the differentiation of human bone marrow-derived stem cells (hBMSCs) cultured on the surface. Together, this electroactive surface showed multifunctional characteristics, not only allowing dynamic control of PMNF presentation but also promoting the formation of bone minerals with different morphologies within 2 days. This electroactive substrate could be valuable for more precise control of stem cell growth and differentiation, and further development of more suitable microenvironments containing bone apatite for housing a bone marrow stem cell niche, such as biochips/bone-on-chips.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Ni, Bin
    et al.
    CY Cergy Paris Univ, France.
    Ribeiro, Frederic Braz
    CY Cergy Paris Univ, France.
    Vancaeyzeele, Cedric
    CY Cergy Paris Univ, France.
    Nguyen, Giao T. M.
    CY Cergy Paris Univ, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Vidal, Frederic
    CY Cergy Paris Univ, France.
    Plesse, Cedric
    CY Cergy Paris Univ, France.
    Linear contracting and air-stable electrochemical artificial muscles based on commercially available CNT yarns and ionically selective ionogel coatings2023Ingår i: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 31, artikel-id 101756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Artificial muscles, or soft actuators, that could exhibit contractile stroke and operate in open-air, would be crucial for many applications, such as robotics, prosthetics, or powered exoskeletons. Amongst the different artificial muscle technologies, electrochemical carbon nanotube (CNT) yarn muscles, transducing capacitively ionic accumulation at the electrochemical double layer into linear contraction, are amongst the most promising candidates. However, their performances are either limited by an undesired bipolar behaviour or short lifetime due to the inevitable drying of water-based electrolytes. In this paper, we present here the fabrication of air -operating contractile linear artificial muscles from commercially available CNT yarns exhibiting outstanding performance. The synthesis and the junction of two ionogels based on cationic and anionic polyelectrolyte have been designed for the coating process on CNT yarns, and for selectively orienting the ionic flow allowing optimal electromechanical energy conversion. The dual-electrode CNT yarn actuators showed air-stable unipolar con-tractile stroke, reaching 9.7% without loss of performances after 2000 cycles.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Aziz, Shazed
    et al.
    Univ Queensland, Australia.
    Zhang, Xi
    Univ Queensland, Australia.
    Naficy, Sina
    Univ Sydney, Australia.
    Salahuddin, Bidita
    Univ Queensland, Australia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Zhu, Zhonghua
    Univ Queensland, Australia.
    Plant-Like Tropisms in Artificial Muscles2023Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Helical plants have the ability of tropisms to respond to natural stimuli, and biomimicry of such helical shapes into artificial muscles has been vastly popular. However, the shape-mimicked actuators only respond to artificially provided stimulus, they are not adaptive to variable natural conditions, thus being unsuitable for real-life applications where on-demand, autonomous operations are required. Novel artificial muscles made of hierarchically patterned helically wound yarns that are self-adaptive to environmental humidity and temperature changes are demonstrated here. Unlike shape-mimicked artificial muscles, a unique microstructural biomimicking approach is adopted, where the muscle yarns can effectively replicate the hydrotropism and thermotropism of helical plants to their microfibril level using plant-like microstructural memories. Large strokes, with rapid movement, are obtained when the individual microfilament of yarn is inlaid with hydrogel and further twisted into a coil-shaped hierarchical structure. The developed artificial muscle provides an average actuation speed of approximate to 5.2% s(-1) at expansion and approximate to 3.1% s(-1) at contraction cycles, being the fastest amongst previously demonstrated actuators of similar type. It is demonstrated that these muscle yarns can autonomously close a window in wet climates. The building block yarns are washable without any material degradation, making them suitable for smart, reusable textile and soft robotic devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Tyagi, Manav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Fathollahzadeh, Maryam
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mak, Wing Cheung
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Chinese Univ Hong Kong, Peoples R China.
    Radially actuating conducting polymer microactuators as gates for dynamic microparticle sieve based on printed microfluidics2023Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 382, artikel-id 133448Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new radially expanding conducting polymer microactuator is presented. The radially expanding micro-actuators are used as electroactive gates in an electrically controlled microparticle sieve. A novel configuration to dynamically filter particles of different sizes in a microfluidic chip is conceptualized. Micropillars of SU-8 combined with conducting polymers to provide the radial actuation are positioned in a microfluidic chip with a specifically designed 3D printed housing to allow for selective filtration of microparticles with varied sizes. These pillar-shaped microactuators of polypyrrole actuate radially to function as dynamic gates for the fluidic channel, controlling the porosity of the filter allowing for the filtration of specific size of microparticles. This sieve design provides user defined channel width modulation with external stimuli. Photolithography and electrochemical polymerizations are combined with additive manufacturing to fabricate the individual func-tional parts of the microfluidic filter. To demonstrate the new conceptual filter design, we have shown filtration of microparticles of the sizes 60, 80, 90 and 100 mu m by electrically actuating micropillars of the dynamic gate. The flow and aggregation of the microparticles were analysed at the dynamic gates to characterize the perfor-mance of the filter.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Cao, Danfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Hara, Emilio Satoshi
    Okayama Univ, Japan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Variable Stiffness Actuators with Covalently Attached Nanofragments that Induce Mineralization2023Ingår i: Advanced Materials Technologies, E-ISSN 2365-709XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soft robotics has attracted great attention owing to their immense potential especially in human-robot interfaces. However, the compliant property of soft robotics alone, without stiff elements, restricts their applications under load-bearing conditions. Here, biohybrid soft actuators, that create their own bone-like rigid layer and thus alter their stiffness from soft to hard, are designed. Fabrication of the actuators is based on polydimethylsiloxane (PDMS) with an Au film to make a soft substrate onto which polypyrrole (PPy) doped with poly(4-styrenesulfonic-co-maleic acid) sodium salt (PSA) is electropolymerized. The PDMS/Au/PPy(PSA) actuator is then functionalized, chemically and physically, with plasma membrane nanofragments (PMNFs) that induce bone formation within 3 days, without using cells. The resulting stiffness change decreased the actuator displacement; yet a thin stiff layer couldnot completely stop the actuators movement, while a relatively thick segment could, but resulted in partial delamination the actuator. To overcome the delamination, an additional rough Au layer was electroplated to improve the adhesion of the PPy onto the substrate. Finally, an alginate gel functionalized with PMNFs was used to create a thicker mineral layer mimicking the collagen-apatite bone structure, which completely suppressed the actuator movement without causing any structural damage.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Cao, Danfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Hara, Emilio Satoshi
    Department of Biomaterials Graduate School of Medicine, Dentistry and Pharmaceutical Sciences,Okayama University, Japan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone2022Ingår i: International conference on Electromechanically Active Polymer(EAP) transducers & artificial muscles, Tuscany, June 7-9, 2022, EuroEAP 2022 , 2022, artikel-id 1.3.7Konferensbidrag (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    We herein describe the fabrication, optimisation and characterisation of a biohybrid variable stiffness actuator that creates its own bone. By combining the electroresponsive properties of polypyrrole (PPy) with the compliant response of alginate gels functionalised with cell-derived plasma membrane nanofragments (PMNFs) it was possible to obtain bio-induced variable stiffness actuators. When the PMNFs were incubated into MEM, i.e. exposure to Ca, this caused the formation of calcium-phosphate minerals (i.e. amorphous calcium phosphate and hydroxyapatite) in the alginate gel, resulting in a more rigid layer and thus reducing and finally impeding the movement of the actuator, locking it in a fixed position within only 2 days. These actuators could morph in various, pre-programmed shapes and change their properties from soft to rigid. Adding different patterns to the actuator allowed locking the device in a predetermined shape without energy consumption, facilitating its application as soft-to-hard robotics as a biohybrid variant of so-called 4D manufacturing. The devices could wrap around and integrate into bone by the induced mineralisation in and on the gel layer. This illustrates its use as a potential tool to repair bone or in bone tissue engineering. 

  • 9.
    Cao, Danfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Hara, Emilio Satoshi
    Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Biohybrid Variable-Stiffness Soft Actuators that Self-Create Bone2022Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 34, nr 8, artikel-id 2107345Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inspired by the dynamic process of initial bone development, in which a soft tissue turns into a solid load-bearing structure, the fabrication, optimization, and characterization of bioinduced variable-stiffness actuators that can morph in various shapes and change their properties from soft to rigid are hereby presented. Bilayer devices are prepared by combining the electromechanically active properties of polypyrrole with the compliant behavior of alginate gels that are uniquely functionalized with cell-derived plasma membrane nanofragments (PMNFs), previously shown to mineralize within 2 days, which promotes the mineralization in the gel layer to achieve the soft to stiff change by growing their own bone. The mineralized actuator shows an evident frozen state compared to the movement before mineralization. Next, patterned devices show programmed directional and fixated morphing. These variable-stiffness devices can wrap around and, after the PMNF-induced mineralization in and on the gel layer, adhere and integrate onto bone tissue. The developed biohybrid variable-stiffness actuators can be used in soft (micro-)robotics and as potential tools for bone repair or bone tissue engineering.

    Ladda ner fulltext (pdf)
    fulltext
  • 10.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Melling, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Plesse, Cedric
    Laboratoire De Physico-chimie Des Polymeres Et Des Interfaces (LPPI), EA2528, CY Cergy Paris Universite,Cergy, France.
    Vandercayle, Cedric
    Laboratoire De Physico-chimie Des Polymeres Et Des Interfaces (LPPI), EA2528, CY Cergy Paris Universite,Cergy, France.
    Persson, Nils-Krister
    Swedish School Of Textiles, Smart Textiles, Polymeric E-textiles, University Of Boras, Boras, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Double coiled yarn actuator working in air for haptic garments2022Konferensbidrag (Refereegranskat)
    Abstract [en]

    Smart textile yarns have already shown their potential for fabrication of textile actuators. However, their actuation strain and force have been limited so far. Accordingly, twisting, and coiling techniques have attracted much attention to enhance the strain and force of yarn actuators. In this regard, coiled yarns that actuate under a liquid electrolyte have been studied well, but coiled yarn actuators that work in air are not explored as much. In this work, a double coiled yarn structure that works in air is designed, prepared, and investigated. Commercial textile yarns were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution. Thereafter, yarns were coiled using a motorized stage. Two coiled yarns, as cathode and anode, are then placed near each other and covered with an ionogel precursor mixture containing an ionic liquid as ion reservoir. The gel is cured and set using UV emission. The actuation properties of the prepared double coiled yarn actuator were investigated in air. A square wave potential of ±2 V was applied, and strain response of the actuator yarns was measured. The results showed that prepared double coiled yarn can potentially be a promising candidate as soft actuators in wearables and garments, e.g. for haptic applications.

  • 11.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Backe, Carin
    University Of Borås, The Swedish School Of Textiles, Borås, Sweden.
    Persson, Nils-Krister
    University Of Borås, The Swedish School Of Textiles, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    EAP based actuators to be woven2022Ingår i: EuroEAP 2022: 10th international conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles, 2022Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The development of actuating wearable textiles is of great interest in fields as 30haptics or assistive devices. Electroactive conducting polymer-based actuatorsare being merged with yarns and fabrics to provide them with mechanicalactuation. One way to speed up the development of such mechanically activewearable textiles is the development of conducting polymer-based actuators thatcan be incorporated into textile processing. This imposes extra requirements tothe actuators such as the required size, improved mechanical andelectrochemical stability, actuation in air or the use of low/non-hazardousmaterials. Tape yarn actuators composed of conducting polymer/ionicallyconducting layer/conducting polymer are being developed and optimized to thataim. The latest developments on integrating such EAP tape yarns in wovenfabrics will be presented.

  • 12.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mehraeen, Shayan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Influence of the different conducting polymer layers on the performance of textile actuators2022Konferensbidrag (Övrigt vetenskapligt)
  • 13.
    Huniade, Claude
    et al.
    Univ Borås, Sweden.
    Melling, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Vancaeyzeele, Cedric
    CY Cergy Paris Univ, France.
    Nguyen, Giao T-M
    CY Cergy Paris Univ, France.
    Vidal, Frederic
    CY Cergy Paris Univ, France.
    Plesse, Cedric
    CY Cergy Paris Univ, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Bashir, Tariq
    Univ Borås, Sweden.
    Persson, Nils-Krister
    Univ Borås, Sweden.
    Ionofibers: Ionically Conductive Textile Fibers for Conformal i-Textiles2022Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 7, nr 10, artikel-id 2101692Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    With the rise of ion-based devices using soft ionic conductors, ionotronics show the importance of matching electronic and biological interfaces. Since textiles are conformal, an essential property for matching interfaces, light-weight and comfortable, they present as an ideal candidate for a new generation of ionotronics, i-textiles. As fibers are the building blocks of textiles, ionically conductive fibers, named ionofibers, are needed. However, ionofibers are not yet demonstrated to fulfill the fabric manufacturing requirements such as mechanical robustness and upscaled production. Considering that ionogels are known to be conformal films with high ionic conductivity, ionofibers are produced from commercial core yarns with specifically designed ionogel precursor solution via a continuous dip-coating process. These ionofibers are to be regarded as composites, which keep the morphology and improve the mechanical properties from the core yarns while adding the (ionic) conductive function. They keep their conductivity also after their integration into conformal fabrics; thus, an upscaled production is a likely outlook. The findings offer promising perspectives for i-textiles with enhanced textile properties and in-air electrochemical applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 14.
    Cao, Danfeng
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Hara, Emilio Satoshi
    Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Soft actuators that self-create bone for biohybrid (micro)robotics2022Ingår i: Proceedings of The 5th International Conference on Manipulation, Automation, And Robotics at Small Scales (MARSS 2022), Institute of Electrical and Electronics Engineers (IEEE), 2022, s. 1-6Konferensbidrag (Refereegranskat)
    Abstract [en]

    Here we present a new class of variable stiffness actuators for soft robotics based on biohybrid materials that change their state from soft-to-hard by creating their own bones. The biohybrid variable stiffness soft actuators were fabricated by combining the electromechanically active polymer polypyrrole (PPy) with a soft substrate of polydimethylsiloxane or alginate gel. These actuators were functionalized with cell-derived plasma membrane nanofragments (PMNFs), which promote rapid mineralization within 2 days. These actuators were used in robotic devices, and PMNF mineralization resulted in the robotic devices to achieve a soft to stiff state change and thereby a decreased or stopped actuation. Moreover, perpendicularly and diagonally patterned actuators were prepared. The patterned actuators showed programmed directional actuation motion and could be fixated in this programmed state. Finally, patterned actuators that combined soft and rigid parts in one actuator showed more complex actuation motion. Together, these variable stiffness actuators could expand the range of applications of morphing robotics with more complex structures and functions. 

    Ladda ner fulltext (pdf)
    fulltext
  • 15.
    Dutta, Sujan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mehraeen, Shayan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    The Swedish School of Textiles, Polymeric E-textiles, University of Borås, Borås, Sweden.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    The effect of electroactive length and intrinsic conductivity on the actuation behaviour of conducting polymer-based yarn actuators for textile muscles2022Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 370, artikel-id 132384Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recently, electrically driven conducting polymer (CP) coated yarns have shown great promise to develop soft wearable applications because of their electrical and mechanical behaviour. However, designing a suitable yarn actuator for textile-based wearables with high strain is challenging. One reason for the low strain is the voltage drop along the yarn, which results in only a part of the yarn being active. To understand the voltage drop mechanism and overcome this issue intrinsically conductive yarns were used to create a highly conductive path along the full length of the yarn actuator. Ag plated knit-de-knit (Ag-KDK) structured polyamide yarns were used as the intrinsically conductive core material of the CP yarn actuators and compared with CP yarn actuators made of a non-conductive core knit-de-knit (KDK) yarn. The CP yarn actuators were fabricated by coating the core yarns with poly(3,4-ethylene dioxythiophene): poly(styrene sulfonic acid) followed by electrochemical polymerization of polypyrrole. Furthermore, to elucidate the effect of the capillarity of the electrolyte through the yarn actuator, two different approaches to electrochemical actuation were applied. All actuating performance of the materials were investigated and quantified in terms of both isotonic displacement and isometric developed forces. The resultant electroactive yarn exhibits high strain (0.64 %) in NaDBS electrolytes as compared to previous CP yarn actuator. The actuation and the electroactivity of the yarn were retained up to 100 cycles. The new highly conductive yarns will shed light on the development of next-generation textile-based exoskeleton suits, assistive devices, wearables, and haptics garments.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Tyagi, Manav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Wollongong, Australia.
    Spinks, Geoffrey M.
    Univ Wollongong, Australia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Wollongong, Australia.
    3D Printing Microactuators for Soft Microrobots2021Ingår i: SOFT ROBOTICS, ISSN 2169-5172, Vol. 8, nr 1, s. 19-27Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Current additive manufacturing, including three-dimensional (3D) and so-called four-dimensional printing, of soft robotic devices is limited to millimeter sizes. In this study, we present additive manufacturing of soft microactuators and microrobots to fabricate even smaller structures in the micrometer domain. Using a custom-built extrusion 3D printer, microactuators are scaled down to a size of 300 x 1000 mu m(2), with minimum thickness of 20 mu m. Microactuators combined with printed body and electroactive polymers to drive the actuators are fabricated from computer-aided design model of the device structure. To demonstrate the ease and versatility of 3D printing process, microactuators with varying lengths ranging from 1000 to 5000 mu m are fabricated and operated. Likewise, microrobotic devices consisting of a rigid body and individually controlled free-moving arms or legs are 3D printed to explore the microfabrication of soft grippers, manipulators, or microrobots through simple additive manufacturing technique.

    Ladda ner fulltext (pdf)
    fulltext
  • 17.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    A Versatile Flexible Polymer Actuator System for Pumps, Valves, and Injectors Enabling Fully Disposable Active Microfluidics2021Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 6, nr 1, artikel-id 2000769Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To control and manipulate fluids in lab‐on‐a‐chip (LOC) devices, active components such as pumps, valves, and injectors are necessary. However, such components are often complex and expensive to fabricate, limiting integration in disposable LOCs. A new type of flexible, all‐polymer diaphragm actuator system, called Double Diaphragm Active Polymer Actuator (DDAPA), is presented as a single modular unit that can be repurposed to diverse active microfluidic components. To demonstrate the versatility of the DDAPA concept, the DDAPA devices are investigated in three different configurations: as a single operation microinjector, as a flow regulating element, and as a pump in a hybrid configuration with unibody‐LOC unidirectional systems. The working principle, fabrication process, and the three examples of microfluidic components are presented. The trilayer diaphragm actuator is realized using the conductive polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate as the actuating material and thiol‐acrylate‐based ionogels as solid‐state electrolyte and base material. The three demonstrators show the feasibility of using the DDAPA module to inject liquids, regulate flow, and unidirectionally pump fluids up to 112 µL min−1 when coupled with a 3D printed unibody check valve. Hence, the presented concept with a simple mechanism and easy manufacturability, broadens the choice of disposable actuators compatible with fully disposable autonomous LOC solutions.

    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Persson, Nils-Krister
    et al.
    Högskolan i Borås.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Dynamically Smart Textiles2021Konferensbidrag (Övrigt vetenskapligt)
  • 19.
    Aziz, Shazed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Salahuddin, Bidita
    Univ Wollongong, Australia.
    Persson, Nils-Krister
    Univ Boras, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Fast and High-Strain Electrochemically Driven Yarn Actuators in Twisted and Coiled Configurations2021Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 31, nr 10, artikel-id 2008959Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Commercially available yarns are promising precursor for artificial muscles for smart fabric-based textile wearables. Electrochemically driven conductive polymer (CP) coated yarns have already shown their potential to be used in smart fabrics. Unfortunately, the practical application of these yarns is still hindered due to their slow ion exchange properties and low strain. Here, a method is demonstrated to morph poly-3,4-ethylenedioxythiophene:poly-styrenesulfonate (PEDOT:PSS) coated multifilament textile yarns in highly twisted and coiled structures, providing >1% linear actuation in <1 s at a potential of +0.6 V. A potential window of +0.6 V and -1.2 V triggers the fully reversible actuation of a coiled yarn providing >1.62% strain. Compared to the untwisted, regular yarns, the twisted and coiled yarns produce >9x and >20x higher strain, respectively. The strain and speed are significantly higher than the maximum reported results from other electrochemically operated CP yarns. The yarns actuation is explained by reversible oxidation/reduction reactions occurring at CPs. However, the helical opening/closing of the twisted or coiled yarns due to the torsional yarn untwisting/retwisting assists the rapid and large linear actuation. These PEDOT:PSS coated yarn actuators are of great interest to drive smart textile exoskeletons.

    Ladda ner fulltext (pdf)
    fulltext
  • 20.
    Backe, Carin
    et al.
    University of Borås, Borås, Sweden.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Guo, Li
    University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås, Borås, Sweden.
    Multi-Assembly of Soft Electroactive Polymeric Yarn Actuators by Using Textile Processes2021Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Textile assembly methods offer great possibilities to create complex, large-scale, multi-functional 2D materials (fabrics) by a continuous process of structuring yarns together, in an architected manner. By designing a specific pattern and using functionalized yarns the properties of such a fabric can enable a variety of roles for example actuation and mechanical stimuli. Moreover, actuation can be achieved in several directions as the textile assembly enables the construction of a network where yarns can be independently addressed in X and/or Y direction. These are advantages that can be utilized in the field of soft robotics in many ways. The requirements for human-robotic interactions call for soft and compliant materials that are safe for such collaborative interactions and involve several types of functionalities. Textiles are easily conformed to the body, whether that is a robotic or a human one. Here we report on the integration of novel functional actuating yarns in the purpose of creating pliable textile actuators that also exhibit versatile morphing  capabilities. The yarns consist of three layers; two of which are made of thin poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) coatings that cover opposite sides of the third layer, an ionogel. This stretchable gel supplies the system with ions for the actuation mechanism and therefore enables in-air actuation. The yarns are transformed into fabrics by using woven assembly techniques. This is an additive method that structures one set of yarns in a parallel sequence that is perpendicular to another second set of yarns. By structuring a number of yarns together in parallel the performance in terms of force output including blocking force is shown to increase. The textile assembly process allows for two approaches, collective and individual addressing for the actuating yarns. For the former, arranging the yarns into different pre-determined segments enable collective actuation of each segment to change the overall shape of the textile structure. In regards to the latter, by individual addressing we show that a specific and targeted actuation can be achieved. Furthermore, the arrangement in which the yarns are interlaced in the fabric enables switching the modality of the actuation. This means that we can alter a motion specific to the yarns into another by their arrangement in the textile structure. With our developed textile assembly method, we are approaching low-cost, large-scale production of actuating systems for human-robotic applications

  • 21. Backe, Carin
    et al.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Guo, Li
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Multi-Assembly of Soft Electroactive Polymeric Yarn Actuators by Using Textile Processes2021Konferensbidrag (Övrigt vetenskapligt)
  • 22.
    Aziz, Shazed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Salahuddin, Bidita
    Australian Institute For Innovative Materials University Of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia.
    Persson, Nils-Krister
    Smart Textiles Technology Lab Swedish School Of Textiles University Of Borås Borås SE-501 90, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    PEDOT:PSS coated twisted and coiled yarn actuators2021Ingår i: EuroEAP 2021: International conference on Electromechanically Active Polymer (EAP) transducers & artificial muscles, 2021Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Commercial yarns can be functionalized with conducting polymers (CPs) todevelop yarn and textile actuators. Here we show a method of functionalizationof commercial polyamide yarns by poly-3,4-ethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS) coating. Aftercoating, while PEDOT:PSS is drying, it is possible to twist and coil the yarns,resulting in a major improvement of their linear strain and speed of movement.By using a potential window between +0.6 V and -1.2 V vs Ag/AgCl it waspossible to obtain a fully reversible actuation of a coiled yarn providing up to1.62% strain. A strain higher than 1% was achieved in less than 1 second.Compared to the untwisted, regular yarns, the twisted and coiled yarns produce>9× and >20× higher strain, respectively. These results are a step forward towardsthe development of soft, silent and compliant smart textile exoskeletons.

  • 23.
    Aziz, Shazed
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Foroughi, Javad
    Univ Wollongong, Australia.
    Spinks, Geoffrey M.
    Univ Wollongong, Australia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Wollongong, Australia.
    Artificial Muscles from Hybrid Carbon Nanotube-Polypyrrole-Coated Twisted and Coiled Yarns2020Ingår i: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 305, nr 11, artikel-id 2000421Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemically or electrothermally driven twisted/coiled carbon nanotube (CNT) yarn actuators are interesting artificial muscles for wearables as they can sustain high stress. However, due to high fabrication costs, these yarns have limited their application in smart textiles. An alternative approach is to use off-the-shelf yarns and coat them with conductive polymers that deliver high actuation properties. Here, novel hybrid textile yarns are demonstrated that combine CNT and an electroactive polypyrrole coating to provide both high strength and good actuation properties. CNT-coated polyester yarns are twisted and coiled and subjected to electrochemical coating of polypyrrole to obtain the hierarchical soft actuators. When twisted without coiling, the polypyrrole-coated yarns produce fully reversible 25 degrees mm(-1)rotation, 8.3x higher than the non-reversible rotation from twisted CNT-coated yarns in a three-electrode electrochemical system operated between +0.4 and -1.0 V (vs Ag/AgCl). The coiled yarns generate fully reversible 10 degrees mm(-1)rotation and 0.22% contraction strain, 2.75x higher than coiled CNT-coated yarns, when operated within the same potential window. The twisted and coiled yarns exhibit high tensile strength with excellent abrasion resistance in wet and dry shearing conditions that can match the requirements for using them as soft actuators in wearables and textile exoskeletons.

    Ladda ner fulltext (pdf)
    fulltext
  • 24.
    Escobar Teran, Freddy
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Universidad Técnica de Ambato, Ecuador.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Enhancing the Conductivity of the Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Coating and Its Effect on the Performance of Yarn Actuators2020Ingår i: Advanced Intelligent Systems, ISSN 2640-4567, Vol. 2, nr 5, artikel-id 1900184Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nonconductive commercial viscose yarns have been coated with a commercial conducting poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) layer providing electrical conductivity which allowed a second coating of the electroactive conducting polymer polypyrrole through electropolymerization to develop textile yarns actuators. To simplify the PEDOT coating process and at the same time make this process more suitable for application in industry, a new coating method is developed and the properties of the PEDOT-PSS conducting layer is optimized, paying attention on its effect on the actuation performance. The effect of the concentration of an additive such as dimethylsulfoxide (DMSO) on actuation, and of PEDOT:PSS layers, is investigated. Results show that on improving this conducting layer, better performance than previously developed yarn-actuators is obtained, with strains up to 0.6%. This study provides a simple and efficient fabrication method toward soft, textile-based actuators for wearables and assistive devices with improved features.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Tyagi, Manav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Wollongong, Australia.
    Spinks, Geoffrey M.
    Univ Wollongong, Australia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Wollongong, Australia.
    Fully 3D printed soft microactuators for soft microrobotics2020Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 29, nr 8, artikel-id 085032Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The feasibility of additive manufacturing actuating microstructures and microdevices with small dimension is presented. Using a custom-built extrusion 3D printer and CAD model of the device structure, bilayer microactuators driven by hydrogels are fabricated down to a size of 300 x 1000 mu m(2,)with a minimum thickness of 30 mu m. To explore the limitations of the 3D printing process, microactuators with a width of 300 mu m and lengths ranging from 1000 to 5000 mu m are manufactured and thereafter operated to demonstrate the feasibility of the process. Similarly, microrobotic devices consisting of a passive rigid body and flexible moving parts are 3D printed to illustrate the ease and versatility of the additive manufacturing technique to fabricate soft microgrippers or micromanipulators.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Nakshatharan, S. Sunjai
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Tartu, Estonia.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Punning, Andres
    Univ Tartu, Estonia.
    Aabloo, Alvo
    Univ Tartu, Estonia.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Soft parallel manipulator fabricated by additive manufacturing2020Ingår i: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, SENSORS AND ACTUATORS B-CHEMICAL, Vol. 305, artikel-id 127355Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Conducting polymer (CP) based soft actuators are good candidates for miniaturised manipulation systems and soft robotic applications. We present the fabrication, characterization, and modelling, of a novel ionically driven soft, flat, parallel manipulator with minimal footprint actuated by CP actuators. This three degrees of freedom (3Dof) manipulator consists of four trilayer actuators with poly (3, 4- ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) electrodes on both sides of PVDF separator membrane with 1-Ethyl-3-methylimidazoliummethyl imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid used as the electrolyte. The complete manipulator is fabricated as a monolithic structure using commercially available off the shelf materials by additive manufacturing technique including a syringe type printer. Its workspace and dynamics are characterised and the results are compared with a multiphysics model based on the finite element method. The model uses two types of charge storage mechanism namely electrical double layer and redox reactions to describe the electrode kinetics. Through simulation the charge contributed by each of the processes is separated and presented providing new insights in the underlying kinetics in this type of actuators. It is found the double layer charge is the dominant phenomenon driving these actuators compared to the redox process. Finally, to demonstrate the versatile applications, the manipulator is explored for a four-way laser steering application. This work has demonstrated high levels of manipulability along three degrees of freedom from the printed CP actuators that are outstanding within the class of soft ionic actuators while using off the shelf commercially available materials keeping the fabrication method simple, scalable and cost-effective along with the electro-chemo-mechanical model providing an insightful view of the charge storage mechanism.

    Ladda ner fulltext (pdf)
    fulltext
  • 27.
    Mashayekhi Mazar, Fariba
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Malek Ashtar Univ Technol, Iran.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tyagi, Manav
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Alijanianzadeh, Mahdi
    Kharazmi Univ, Iran.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Cranfield Univ, England.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Artificial Muscles Powered by Glucose2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 32, artikel-id 1901677Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Untethered actuation is important for robotic devices to achieve autonomous motion, which is typically enabled by using batteries. Using enzymes to provide the required electrical charge is particularly interesting as it will enable direct harvesting of fuel components from a surrounding fluid. Here, a soft artificial muscle is presented, which uses the biofuel glucose in the presence of oxygen. Glucose oxidase and laccase enzymes integrated in the actuator catalytically convert glucose and oxygen into electrical power that in turn is converted into movement by the electroactive polymer polypyrrole causing the actuator to bend. The integrated bioelectrode pair shows a maximum open-circuit voltage of 0.70 +/- 0.04 V at room temperature and a maximum power density of 0.27 mu W cm(-2) at 0.50 V, sufficient to drive an external polypyrrole-based trilayer artificial muscle. Next, the enzymes are fully integrated into the artificial muscle, resulting in an autonomously powered actuator that can bend reversibly in both directions driven by glucose and O-2 only. This autonomously powered artificial muscle can be of great interest for soft (micro-)robotics and implantable or ingestible medical devices manoeuvring throughout the body, for devices in regenerative medicine, wearables, and environmental monitoring devices operating autonomously in aqueous environments.

    Ladda ner fulltext (pdf)
    fulltext
  • 28.
    Melling, Daniel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Conjugated Polymer Actuators and Devices: Progress and Opportunities2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 31, nr 22, artikel-id 1808210Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Conjugated polymers (CPs), as exemplified by polypyrrole, are intrinsically conducting polymers with potential for development as soft actuators or artificial muscles for numerous applications. Significant progress has been made in the understanding of these materials and the actuation mechanisms, aided by the development of physical and electrochemical models. Current research is focused on developing applications utilizing the advantages that CP actuators have (e.g., low driving potential and easy to miniaturize) over other actuating materials and on developing ways of overcoming their inherent limitations. CP actuators are available as films, filaments/yarns, and textiles, operating in liquids as well as in air, ready for use by engineers. Here, the milestones made in understanding these unique materials and their development as actuators are highlighted. The primary focus is on the recent progress, developments, applications, and future opportunities for improvement and exploitation of these materials, which possess a wealth of multifunctional properties.

    Ladda ner fulltext (pdf)
    fulltext
  • 29.
    Tyagi, Manav
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Pan, Jingle
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Novel fabrication of soft microactuators with morphological computing using soft lithography2019Ingår i: MICROSYSTEMS and NANOENGINEERING, ISSN 2055-7434, Vol. 5, artikel-id UNSP 44Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A simple and cost-effective method for the patterning and fabrication of soft polymer microactuators integrated with morphological computation is presented. The microactuators combine conducting polymers to provide the actuation, with spatially designed structures for a morphologically controlled, user-defined actuation. Soft lithography is employed to pattern and fabricate polydimethylsiloxane layers with geometrical pattern, for use as a construction element in the microactuators. These microactuators could obtain multiple bending motions from a single fabrication process depending on the morphological pattern defined in the final step. Instead of fabricating via conventional photolithography route, which involves multiple steps with different chromium photomasks, this new method uses only one single design template to produce geometrically patterned layers, which are then specifically cut to obtain multiple device designs. The desired design of the actuator is decided in the final step of fabrication. The resulting microactuators generate motions such as a spiral, screw, and tube, using a single design template.

    Ladda ner fulltext (pdf)
    fulltext
  • 30.
    Mehraeen, Shayan
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Asadi, Milad
    University of Borås, Borås, Sweden.
    Martinez, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Smart yarns as the building blocks of textile actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The field of smart textile actuators has been progressing rapidly during the last years. Smart textiles are a class of textile products which exploit the determinant feature of responding to a stimulus, input, which can be chemical, mechanical, optical, magnetic or electrical. The building block for fabrication of such products is smart yarn. However, most smart textiles are focused on receiving an input stimulus (sensors) and only a few are dedicated to providing an output response (actuators). Yarn actuators show strain or apply force upon application of electrical stimulation in isotonic or isometric conditions, respectively. A small actuation in the yarn scale can be amplified by knitting or weaving the smart yarns into a fabric. In this work, we have investigated the effect of inherent properties of different commercial yarns on the linear actuation of the smart yarns in aqueous media. Since actuation significantly depends on the structure and mechanical properties of the yarns, elastic modules, and tenacity of the yarns were characterized. Investigating the actuation behavior, yarns were coated with PEDOT:PSS to make them conductive. Then polypyrrole which provides the electromechanical actuation was electropolymerized on the yarn surface under controlled conditions. Finally, linear actuation of the prepared smart yarns was investigated under aqueous electrolyte in both isotonic and isometric conditions.

  • 31.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten. Univ Cergy Pontoise, France.
    Nguyen, Giao T. M.
    Univ Cergy Pontoise, France.
    Plesse, Cedric
    Univ Cergy Pontoise, France.
    Vidal, Frederic
    Univ Cergy Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tailorable, 3D structured and micro-patternable ionogels for flexible and stretchable electrochemical devices2019Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, nr 2, s. 256-266Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new family of ionogels for electrochemical devices was developed from a mixture of multifunctional thiols, diacrylate and triethylamine in the presence of ionic liquid using Michael addition chemistry. Polymerization kinetic studies show that the ionic liquid not only acts as an ion source but also a co-catalyst in the polymerization. Ionogels with tailorable surface and mechanical properties were prepared using three approaches: off-stoichiometry, methacrylate addition, and dithiol chain extender addition. 3-Dimensional ionogels were constructed by bonding the flexible ionogel film together using the ionogel solution as an ionic adhesive. A tube actuator with PEDOT-PSS patterned on inner and outer wall was prepared to illustrate the potential of these ionogels with reactive surfaces. In addition, micro-patterns of the ionogels were obtained by photolithography and soft imprinting lithography. All in all, this thiol acrylate Michael chemistry provides a platform to prepare various forms (films, micro-patterns, 3-dimensional structures, and adhesive) of ionogels for the next generation of flexible electrochemical devices.

    Ladda ner fulltext (pdf)
    fulltext
  • 32.
    Backe, Carin
    et al.
    University of Borås.
    Guo, Li
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    University of Borås.
    Towards responding fabrics – textile processing of thin threadlike pneumatic actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    With few exceptions (such as 1) textiles have not been considered as means for obtaining actuation. This is surprising as textiles have many advantageous characteristics such as the D=M property, which stands for Doing Devices while Making the Material. This means that functions are introduced simultaneously as the material, such as in a weave, is built up tread by tread. Traditionally a tread could have a certain colour so in total an aesthetical pattern is formed. Now we take a step beyond this working with threads having more advanced functions. Included are fiber formed structures showing actuation behavior. 

    This we employ here. We make fiber formed actuating structures (FAS) following the McKibben principle (2) with braided mesh sleeves surrounding a prolonged inflatable tube. Here we worked with relatively large diameters in the relaxed state but show that there is prospect for obtaining relaxed diameters of less than 1 mm approaching the range of large scale weaving manufacturing.

    We study the behavior of these fibre formed actuating structures individually. Length changes obtained are -20%. We then make textile constructions by integrating several of these FASes with textile processing. By this, we build simple models of fabrics showing actuating behavior.  

     

    This study shows how textile constructions can support or hinder overall movement. It is a first logical step in order to get an understanding of actuating fabrics based also on other actuating mechanisms (3).

  • 33.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Klaus, Richter
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Nils-Krister, Persson
    University of Borås, Smart Textiles, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Use of conducting yarns to develop textile actuators2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    The feasibility of textile actuators and their advantages to develop soft actuators with synergetic actuation have been proven. They are composed of a passive fabric coated with an electroactive polymer that provides the mechanical motion. Until now, a two-step coating process was followed to make the textile actuators: a first coating that provided conductivity to the passive fabrics and, once conducting, a second coating by electropolymerization was used to get a highly electroactive (moving as much as possible) material. To simplify the fabrication process, we here used different commercially available conducting yarns (polyamide+carbon, silicon+carbon, polyamide+silver coated, cellulose+carbon, polyester+2 × INOX 50 μm, polyester+2 × Cu/Sn and polyester+gold coated) to develop such textile actuators.

    Thus, it was possible to coat them through direct electrochemical synthesis, avoiding the first step, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices.

  • 34.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Mehraeen, Shayan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Escobar, Freddy
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Aziz, Shazed
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Milad, Milad Asadi Miankafshe
    University of Borås, Borås, Sweden.
    Persson, Nils-Krister
    Swedish School of Textiles (THS), Smart Textiles, University of Borås, 50190 Borås, Sweden (Textilhögskolan, Högskolan I Borås).
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Woven and knitted artificial muscles for wearable devices2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Diseases of the nervous system, traumas, or natural causes can reduce human muscle capacity. Robotic exoskeletons are forthcoming to support the movement of body parts, e.g. assist walking or aid rehabilitation. Current available devices are rigid and driven by electric motors or pneumatic actuators, making them noisy, heavy, stiff and noncompliant. We are developing textile based assistive devices that can be worn like clothing being light, soft, compliant and comfortable. We have merged advanced textile technology with electroactive polymers. By knitting and weaving electroactive yarns, we are developing soft textile actuators ("Knitted Muscles") that can be used in wearable assistive devices. We will present the latest progress increase the performance and to rationalise the fabrication. In addition we will show some demonstrators of the textile exoskeletons.

  • 35.
    Persson, Nils-Krister
    et al.
    Univ Boras, Sweden.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Zhong, Yong
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Univ Toulouse, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Actuating Textiles: Next Generation of Smart Textiles2018Ingår i: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 3, nr 10, artikel-id 1700397Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Smart textiles have been around for some decades. Even if interactivity is central to most definitions, the emphasis so far has been on the stimuli/input side, comparatively little has been reported on the responsive/output part. This study discusses the actuating, mechanical, output side in what could be called a second generation of smart textiles-this in contrast to a first generation of smart textiles devoted to sensorics. This mini review looks at recent progress within the area of soft actuators and what from there that is of relevance for smart textiles. It is found that typically still forces exerted are small, so are strains for many of the actuators types (such as electroactive polymers) that could be considered for textile integration. On the other side, it is argued that for many classes of soft actuators-and, in the extension, soft robotics-textiles could play an important role. The potential of weaving for stress and knitting for strain amplification is shown. Textile processing enables effective production, as is analyzed. Textile systems are made showing automatic actuation asked for in stand-alone solutions. It is envisioned that soft exoskeletons could be an achievable goal for this second generation of smart textiles.

    Ladda ner fulltext (pdf)
    fulltext
  • 36.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Book review: Biosensors: Essentials, by Gennady Evtugyn (Lecture Notes in Chemistry Vol.84), 265 pages, Springer, 2014, ISBN 978-3-642–40240-1 Hardcover − 124,79 €; Softcover 106,90 €; eBook 86,86 €2018Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 115, s. 111-111Artikel, recension (Övrigt vetenskapligt)
  • 37.
    Gomez-Carretero, S.
    et al.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Libberton, B.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Svennersten, K.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Persson, Kristin M.
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Berggren, Magnus
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
    Rhen, M.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden.
    Richter-Dahlfors, A.
    Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden.
    Correction: Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)2018Ingår i: npj Biofilms and Microbiomes, E-ISSN 2055-5008, Vol. 4, nr 1, artikel-id 19Artikel i tidskrift (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
  • 38.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Lundemo, Staffan
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Development of polypyrrole based solid state on-chip microactuators using photolithography2018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 074006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a need for soft microactuators, especially for biomedical applications. We have developed a microfabrication process to create such soft, on-chip polymer-based microactuators that can operate in air. The on-chip microactuators were fabricated using standard photolithographic techniques and wet etching, combined with special designed process to micropattern the electroactive polymer polypyrrole that drives the microactuators. By immobilizing a UV-patternable gel containing a liquid electrolyte on top of the electroactive polypyrrole layer, actuation in air was achieved although with reduced movement. Further optimization of the processing is currently on-going. The result shows the possibility to batch fabricate complex microsystems such as microrobotics and micromanipulators based on these solid state on-chip microactuators using microfabrication methods including standard photolithographic processes.

    Ladda ner fulltext (pdf)
    fulltext
  • 39.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Plesse, Cedric
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Vidal, Frederic
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Flexible gel electrolytes with reactive surfaces for soft electrochemical systems2018Konferensbidrag (Övrigt vetenskapligt)
  • 40.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao T. M.
    Univ Cergy Pontoise, France.
    Nesse, Cedric
    Univ Cergy Pontoise, France.
    Vida, Frederic
    Univ Cergy Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Highly Conductive, Photolithographically Patternable Ionogels for Flexible and Stretchable Electrochemical Devices2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 25, s. 21601-21611Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An ionic conducting membrane is an essential part in various electrochemical devices including ionic actuators. To miniaturize these devices, micropatterns of ionic conducting membrane are desired. Here, we present a novel type of ionogel that can be patterned using standard photolithography and soft imprinting lithography. The ionogel is prepared in situ by UV-initiated free-radical polymerization of thiol acrylate precursors in the presence of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The resultant ionogel is very flexible with a low Youngs modulus (as low as 0.23 MPa) and shows a very high ionic conductivity (up to 2.4 X 10(-3) S/cm with 75 wt % ionic liquid incorporated) and has a reactive surface due to the excess thiol groups. Micropatterns of ionogel are obtained by using the thiol acrylate ionogel solution as an ionic conducting photoresist with standard photolithography. Water, a solvent immiscible with ionic liquid, is used as the photoresist developer to avoid complete removal of ionic liquid from thin micropatterns of the ionogel. By taking advantage of the reactive surface of ionogels and the photopatternability, ionogels with complex three-dimensional microstructure are developed. The surface of the ionogels can also be easily patterned using UV-assisted soft imprinting lithography. This new type of ionogels may open up for building high-performance flexible electrochemical microdevices.

    Ladda ner fulltext (pdf)
    fulltext
  • 41.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Richter, Klaus
    ITP GmbH Gesellschaft für Intelligente Produkte (ITP), Weimar, Germany.
    Persson, Nils-Krister
    Smart Textiles, Swedish School of Textiles (THS) , University of Borås, Borås, Sweden.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Investigation of electrically conducting yarns for use in textile actuators2018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 074004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 x INOX 50µm, polyester + 2 x Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

    Ladda ner fulltext (pdf)
    fulltext
  • 42.
    Permert, Johan
    et al.
    Karolinska Institutet, Karolinska Universitetssjukhuset.
    Nordström, Malin
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Informatik. Linköpings universitet, Filosofiska fakulteten.
    Axelsson, Mathias
    Region Östergötland.
    Helgesson, Claes-Fredrik
    Linköpings universitet, Institutionen för tema, Tema teknik och social förändring. Linköpings universitet, Filosofiska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jenmalm, Maria
    Linköpings universitet, Institutionen för biomedicinska och kliniska vetenskaper, Avdelningen för inflammation och infektion. Linköpings universitet, Medicinska fakulteten.
    Malmgren, Carina
    Region Östergötland.
    Randjelovic, Maria
    Linköpings universitet, Institutionen för medicin och hälsa, Avdelningen för samhällsmedicin. Linköpings universitet, Medicinska fakulteten.
    Wallin, Åsa
    Linköpings universitet.
    Life Science på östgötska: förslag till Life science-satsning i Östergötland.2018Rapport (Övrigt vetenskapligt)
    Abstract [sv]

    Östergötland är inte någon traditionell Life Science-nod i Sverige, men beslutade våren 2017 att undersöka möjligheterna att finna en position baserat på erkänd kunskapsbas kring mötet människa – teknik. En förstudie initierades med Region Direktören som beställare och uppdraget innebar att kartlägga, analysera och ge förslag till hur en Life Science-satsning skulle kunna vara genomförbar i Östergötland. Triple Helix-modellen, det vill säga samhandling mellan offentlig sektor, universitet och näringsliv är den anmodade modellen för Life Science-satsningar i Sverige. Den tidigare Life Science-satsningen i Östergötland hade fallit på grund av obalans i styrka hos Triple Helixens ingående parter.Ett lyckat Triple Helix-initiativ i Östergötland, som även fått internationell genomslagskraft är CMIV, där radiologin är världskänt genom samarbetet mellan RÖ, LiU och Sectra. Detta initiativ är ett exempel på Triple Helix-samhandling som gett resultat för alla ingående parter. Runt CMIV kan såväl samhällsnytta som patientnytta och tillväxt tydligt identifieras. Ytterligare ett exempel som lyftes fram i direktivet är utveckling av kliniska beslutsstöd för användning i klinisk verksamhet och vidare forskning på kliniska data.För att få en rik bild av CMIV, och andra initiativ kring Life Science i Östergötland, har arbetsgruppen använt sig av berättarteknik och på djupet studerat fem fall inom Life Science-området. Analys av dessa fall har sedan jämförts med erfarenheter av Life Science från andra regioner och ett förslag till lösning har successivt växt fram i diskussioner med arbetsgruppen och den taktiska styrgruppen. Triple Helix-samhandling är tämligen utmanande i praktiken då de olika aktörerna i vård, forskning- och näringsliv måste samhandla för att uppnå ett gemensamt mål. Berättelserna vittnar om att det krävs vilja, mod och förmåga att korsa såväl ämnes- som organisatoriska gränser. Slutsatsen är därför att det finns behov av att träna denna förmåga, men också att skapa en ”en väg in” där möten kan uppstå för att identifiera, matcha och förfina initiativ som kan lösas med hjälp av Triple Helix-samhandling.Förstudien visar att det finns goda förutsättningar att genomföra en Life Science-satsning i Östergötland. Ett flerfakultetsuniversitet samt ett komplett sjukvårdssystem ger den mylla av kunskap, problem/behov samt kritiska massa som visat sig krävas för den här typen av satsningar. Att begränsa den möjligheten till enbart vidareutveckling av CMIV och byggandet av kliniska beslutsstöd vore dock inte att göra möjligheterna rättvisa. Istället föreslås två interrelaterade verksamheter vars huvuduppdrag är att facilitera och stödja innovation och utveckling inom Life Science-sektorn i Östergötland; Triple Helix-Labb och Triple Helix-Akademi. I Triple Helix-Labbet kan problem/behov och lösningar mötas, matchas och förfinas i en vägledningsprocess som kan leda till såväl ökad patientnytta som ökad tillväxt i Östergötland. I Triple Helix-Akademin stärks förmågan till samhandling i Triple Helix för att överbyggakunskap, förståelse och respekt för de värdesystem som korsas. Genom dessa interorganisatoriska strukturer finns förutsättningar att adressera vårdens problem, samtidigt som dessa kan agera tillväxtmotor i Östergötland. I förstudien identifieras fyra olika växtvägar som kan stimuleras via ovan nämna strukturer.För att få utväxling av ovanstående förslag behöver strukturer med närliggande och överlappande uppdrag ses över och ersättas/integreras i Triple Helix-Labbet. Detta arbete är påbörjat i förstudien, men behöver förfinas i det etableringsuppdrag som är nästa steg för att kraftsamla kring Life Science i Östergötland. En Life Science-satsning är en långsiktig handling och kräver en politisk överenskommelse för att bli hållbar över tid. Därför ses detta som en förutsättning för att starta det etableringsprojekt som föreslås i föreliggande rapport.Den här förstudien handlar om Östergötland. Redan idag finns dock etablerade samarbeten med Sydöstra sjukvårdsregionen men även nationellt och internationellt. Östergötland är därmed en nod i flera större nav, beroende på vilket perspektiv som antas. Nodtänkandet är en av förstudiens viktigaste grundpelare, men samtidigt måste förändringsarbetet starta hos var och en av de ingående parterna i en Life Science-satsning och därmed adresserar förstudien främst samhandling mellan de parter som utgör själva hjärtat i satsningen; RÖ och LiU.Den största risken för att en Life Science-satsning ska fallera även denna gång är att den politiska överenskommelsen uteblir, eller att RÖ och LiU stannar i sina invanda samverkanspositioner, och därmed inte antar samhällsutmaningen om ökad patientnytta och ökad tillväxt.

    Förstudien beslutades av Regionstyrelsen 2018-11-08.

    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 43.
    Khaldi, Alexandre
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Falk, Daniel
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Bengtsson, Katarina
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Filippini, Daniel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Robinson, Nathaniel D
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Ytors Fysik och Kemi. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Patterning highly conducting conjugated polymer electrodes for soft and flexible microelectrochemical devices2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 17, s. 14978-14985Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    There is a need for soft actuators in various biomedical applications in order to manipulate delicate objects such as cells and tissues. Soft actuators are able to adapt to any shape and limit the stress applied to delicate objects. Conjugated polymer actuators, especially in the so-called trilayer configuration, are interesting candidates for driving such micromanipulators. However, challenges involved in patterning the electrodes in a trilayer with individual contact have prevented further development of soft micromanipulators based on conjugated polymer actuators. To allow such patterning, two printing-based patterning techniques have been developed. First an oxidant layer is printed using either syringe-based printing or micro-contact printing, followed by vapor phase polymerization of the conjugated polymer. Sub-millimeter patterns with electronic conductivities of 800 Scm-1 are obtained. Next, laser ablation is used to cleanly cut the final device structures including the printed patterns, resulting in fingers with individually controllable digits and miniaturized hands. The methods presented in this paper will enable integration of patterned electrically active conjugated polymer layers in many types of complex 3-D structures.

    Ladda ner fulltext (pdf)
    fulltext
  • 44.
    Jager, Edwin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Ladegaard-Skov, Anne
    Technical University of Denmark (DTU), Denmark.
    Otero, Toribio
    Technical University of Cartagena, Spain.
    Jean-Mistral, Claire
    National Institute of Applied Science—INSA de Lyon, France,.
    Progress in electromechanically active polymers: selected papers from EuroEAP 20172018Ingår i: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 27, nr 7, artikel-id 070201Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    n/a

    Ladda ner fulltext (pdf)
    fulltext
  • 45.
    Baumgartner, Johanna
    et al.
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem.
    Jönsson, Jan-Ingvar
    Linköpings universitet, Medicinska fakulteten. Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för hematopoes och utvecklingsbiologi.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells2018Ingår i: Journal of Materials Chemistry B, ISSN 2050-750X, Vol. 6, nr 28, s. 4665-4675Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hematopoietic stem cells are used in transplantations for patients with hematologic malignancies. Scarce sources require efficient strategies of expansion, including polymeric biomaterials mimicking architectures of bone marrow tissue. Tissue microenvironment and mode of cytokine presentation strongly influence cell fate. Although several cytokines with different functions as soluble or membrane-bound mediators have already been identified, their precise roles have not yet been clarified. A need exists for in vitro systems that mimic the in vivo situation to enable such studies. One way is to establish surfaces mimicking physiological presentation using protein-immobilization onto polymer films. However these films merely provide a static presentation of the immobilized proteins. It would be advantageous to also dynamically change protein presentation and functionality to better reflect the in vivo conditions. The electroactive polymer polypyrrole shows excellent biocompatibility and electrochemically alters its surface properties, becoming an interesting choice for such setups. Here, we present an in vitro system for switchable presentation of membrane-bound cytokines. We use interleukin IL-3, known to affect hematopoiesis, and show that when immobilized on polypyrrole films, IL-3 is bioavailable for the bone marrow-derived FDC-P1 progenitor cell line. Moreover, IL-3 presentation can be successfully altered by changing the redox state of the film, in turn influencing FDC-P1 cell viability. This novel in vitro system provides a valuable tool for stimuli-responsive switchable protein presentation allowing the dissection of relevant mediators in stem and progenitor cell behavior.

    Ladda ner fulltext (pdf)
    Switchable presentation of cytokines on electroactive polypyrrole surfaces for hematopoietic stem and progenitor cells
  • 46.
    Zhong, Yong
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Nguyen, Giao
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Plesse, Cedric
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Vidal, Frederic
    UCP, EA 2528, F-95031 Cergy-Pontoise, France.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Tailorable polymer gel electrolytes with reactive surfaces from thiol acrylate Michael reaction for ionic actuator2018Konferensbidrag (Övrigt vetenskapligt)
  • 47.
    Guan, Na N.
    et al.
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Sharma, Nimish
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Urology, Karolinska University Hospital, Stockholm, Sweden.
    Hallén‐Grufman, Katarina
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Jager, Edwin W. H.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Svennersten, Karl
    Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools2018Ingår i: Journal of Cellular and Molecular Medicine (Print), ISSN 1582-1838, E-ISSN 1582-4934, Vol. 22, nr 4, s. 2319-2328Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The capacity to store urine and initiate voiding is a valued characteristic of the human urinary bladder. To maintain this feature, it is necessary that the bladder can sense when it is full and when it is time to void. The bladder has a specialized epithelium called urothelium that is believed to be important for its sensory function. It has been suggested that autocrine ATP signalling contributes to this sensory function of the urothelium. There is well‐established evidence that ATP is released via vesicular exocytosis as well as by pannexin hemichannels upon mechanical stimulation. However, there are still many details that need elucidation and therefore there is a need for the development of new tools to further explore this fascinating field. In this work, we use new microphysiological systems to study mechanostimulation at a cellular level: a mechanostimulation microchip and a silicone‐based cell stretcher. Using these tools, we show that ATP is released upon cell stretching and that extracellular ATP contributes to a major part of Ca2+ signalling induced by stretching in T24 cells. These results contribute to the increasing body of evidence for ATP signalling as an important component for the sensory function of urothelial cells. This encourages the development of drugs targeting P2 receptors to relieve suffering from overactive bladder disorder and incontinence.

    Ladda ner fulltext (pdf)
    The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools
  • 48.
    Ravichandran, Ranjithkumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Molekylär fysik. Linköpings universitet, Tekniska fakulteten.
    Martinez Gil, Jose Gabriel
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Phopase, Jaywant
    Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Institutionen för fysik, kemi och biologi. Linköpings universitet, Tekniska fakulteten.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Type I Collagen-Derived Injectable Conductive Hydrogel Scaffolds as Glucose Sensors2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 19, s. 16244-16249Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The advent of home blood glucose monitoring revolutionized diabetes management, and the recent introduction of both wearable devices and closed-loop continuous systems has enormously impacted the lives of people with diabetes. We describe the first fully injectable soft electrochemical glucose sensor for in situ monitoring. Collagen, the main component of a native extracellular matrix in humans and animals, was used to fabricate an in situ gellable self-supporting electroconductive hydrogel that can be injected onto an electrode surface or into porcine meat to detect glucose amperometrically. The study provides a proof-of-principle of an injectable electrochemical sensor suitable for monitoring tissue glucose levels that may, with further development, prove clinically useful in the future.

    Ladda ner fulltext (pdf)
    fulltext
  • 49.
    Martinez, Jose Gabriel
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    Maziz, Ali
    Laboratoire d'analyse et d'architecture des systèmes.
    Stålhand, Jonas
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
    Persson, Nils-Krister
    Hogskolan i Borås.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Sensor- och aktuatorsystem. Linköpings universitet, Tekniska fakulteten.
    ELECTROACTIVE TEXTILES FOR EXOSKELETON LIKE SUITS2017Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    There is a need for soft assistive robotic devices such as prosthetics, exoskeletons and robot assistants. One particular area of interest is robotic exoskeletons to support the movement of body parts, e.g. assisting or enhancing walking and rehabilitation. Although technologically advanced, current exoskeletons are rigid and driven by electric motors or pneumatic actuators making them noisy, heavy, stiff and non-compliant. Ideally, assistive devices would be shaped as an exoskeleton suit worn under clothing and well-hidden. By merging one of humankind oldest technology with one of the latest, that is by combining knitting and weaving with novel electroactive polymers, we have developed soft textile actuators ("Knitted Muscles"). In this paper we will present the textile actuators in more detail as well as share the latest progress in the development of textile actuators for soft robotics.

  • 50.
    Golabi, Mohsen
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Kuralay, Filiz
    Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey.
    Jager, Edwin
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Beni, Valerio
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten. Acreo Swedish ACT AB, Norrköping, Sweden.
    Turner, Anthony
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Biosensorer och bioelektronik. Linköpings universitet, Tekniska fakulteten.
    Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer.2017Ingår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 93, s. 87-93Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biosensors can deliver the rapid bacterial detection that is needed in many fields including food safety, clinical diagnostics, biosafety and biosecurity. Whole-cell imprinted polymers have the potential to be applied as recognition elements in biosensors for selective bacterial detection. In this paper, we report on the use of 3-aminophenylboronic acid (3-APBA) for the electrochemical fabrication of a cell-imprinted polymer (CIP). The use of a monomer bearing a boronic acid group, with its ability to specifically interact with cis-diol, allowed the formation of a polymeric network presenting both morphological and chemical recognition abilities. A particularly beneficial feature of the proposed approach is the reversibility of the cis-diol-boronic group complex, which facilitates easy release of the captured bacterial cells and subsequent regeneration of the CIP. Staphylococcus epidermidis was used as the model target bacteria for the CIP and electrochemical impedance spectroscopy (EIS) was explored for the label-free detection of the target bacteria. The modified electrodes showed a linear response over the range of 103–107 cfu/mL. A selectivity study also showed that the CIP could discriminate its target from non-target bacteria having similar shape. The CIPs had high affinity and specificity for bacterial detection and provided a switchable interface for easy removal of bacterial cell.

    Ladda ner fulltext (pdf)
    fulltext
1234 1 - 50 av 158
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf