liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Beställ onlineKöp publikationen >>
    Gustafsson, Erik
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Exploring Data-Driven Methods to Enhance Usability of Design Optimization2022Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Developing high-performing products at a low cost while keeping development time down is increasingly important in today’s competitive market. The current state presents a need for efficient product development processes. One of the challenges is knowledge often being limited in early stages where the cost of making changes is still relatively low. As the process progresses more knowledge is gained to better support decisions; however the cost of making changes increases, limiting the design freedom. To increase knowledge while retaining design freedom, several computer-based tools are available to both generate and evaluate designs in order to make iterations faster and more accurate.

    Design Optimization (DO) can be utilized to explore the design space and find optimal designs. A Computer-Aided Design (CAD) model is often required as input to analysis tools evaluating the designs. By utilizing Design Automation (DA) several tasks involved in creation and modification of CAD models can be automated. For this reason, DA is sometimes considered an enabler for DO although its use is far wider, covering several aspects of the design process mainly focusing on automating repetitive and routine tasks.

    Machine Learning and other data-driven methods are becoming increasingly viable in the context of DO and DA. This thesis explores the use of data-driven methods to enhance the usability of DO in different ways such as a faster process, new use-cases, or a more integrated and automated process.  

    Literature in the area is reviewed, identifying applications, trends and challenges. Furthermore, two support tools are developed, incorporating data-driven methods tied to an industrial case. The applications focus on parameterizing geometry and predicting design performance respectively. Potential benefits, limitations, and challenges are discussed based on the literature review and insights from the two support tools. The focus of the thesis is mainly on how data-driven methods can facilitate automation and integration in the design process, specifically for complex products requiring significant engineering efforts.  

    Delarbeten
    1. Comparison of Design Automation and Machine Learning algorithms for creation of easily modifiable splines
    Öppna denna publikation i ny flik eller fönster >>Comparison of Design Automation and Machine Learning algorithms for creation of easily modifiable splines
    2020 (Engelska)Ingår i: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th - 14th August 2020 / [ed] Mortensen, N.H.; Hansen, C.T. and Deininger, M., The Design Society, 2020Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    In order to enable easy modification of results from a design optimization process in a CAD tool, a flexible representation of the geometry is needed. This is not always trivial however, since many file formats are not importable as modifiable geometry into the CAD tool, and if they are, they might not represent the geometry in a way that enables easy modification. To mitigate this problem a design automation (DA) and a machine learning (ML) approach are developed and compared using a test case from an optimization process used to optimize hose routing in tight spaces. In the test case used, the geometry from the optimization process consists of center curves represented as a large number of points. To enable easy modification a more flexible representation is needed such as a spline with a few well-placed control points. Both the DA and ML approach can approximate center curves from the optimization process as splines containing a varying number of control points but do show different properties. The DA approach is considerably slower than the ML but adds a lot of flexibility regarding accuracy and the number of control points used.

    Ort, förlag, år, upplaga, sidor
    The Design Society, 2020
    Serie
    DS ; 101
    Nyckelord
    Design Automation, Machine Learning, Computer aided Design, Optimization
    Nationell ämneskategori
    Maskinteknik
    Identifikatorer
    urn:nbn:se:liu:diva-184173 (URN)10.35199/NORDDESIGN2020.55 (DOI)9781912254088 (ISBN)
    Konferens
    NordDesign
    Tillgänglig från: 2022-04-06 Skapad: 2022-04-06 Senast uppdaterad: 2022-04-07
    2. Combinatorial Optimization of Pre-Formed Hose Assemblies
    Öppna denna publikation i ny flik eller fönster >>Combinatorial Optimization of Pre-Formed Hose Assemblies
    2021 (Engelska)Ingår i: Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE2021): Volume 3B: 47th Design Automation Conference (DAC), The American Society of Mechanical Engineers , 2021, artikel-id V03BT03A033Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Cable and hose routing is a complex and time-consuming process that often involves several conflicting objectives. Complexity increases further when routes of multiple components are to be considered through the same space. Extensive work has been done in the area of automatic routing where few proposals optimize multiple hoses together. This paper proposes a framework for the routing of multiple pre-formed hoses in an assembly using a unique permutation process where several alternatives for each hose are generated. A combinatorial optimization process is then used to find Pareto-optimal solutions for the multi-route assembly. This is coupled with a scoring model that predicts the overall fitness of a solution based on designs previously scored by the engineer as well as an evaluation system where the engineer can score new designs found through the use of the framework to update the scoring model. The framework is evaluated using a testcase from a car manufacturer showing a severalfold time reduction compared to a strictly manual process. Considering the time savings, the proposed framework has the potential to greatly reduce the overall routing processes of hoses and cables.

    Ort, förlag, år, upplaga, sidor
    The American Society of Mechanical Engineers, 2021
    Nyckelord
    multiobjective optimization, design automation, hose routing, path planning Topics:Optimization, Cables, Engineers, Manufacturing, Design automation, Pareto optimization, Path planning
    Nationell ämneskategori
    Maskinteknik
    Identifikatorer
    urn:nbn:se:liu:diva-184180 (URN)10.1115/DETC2021-71408 (DOI)978-0-7918-8539-0 (ISBN)
    Konferens
    ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference August 17-19, 2021, Virtual, Online
    Anmärkning

    Funding agencies: This work has been financed by Vinnova and by governmentand industry cooperation on vehicles of the future, within the research project AUTOPACK 2017-03065

    Tillgänglig från: 2022-04-06 Skapad: 2022-04-06 Senast uppdaterad: 2022-04-07
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 2.
    Gustafsson, Erik
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Persson, Johan
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering.
    Tarkian, Mehdi
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Combinatorial Optimization of Pre-Formed Hose Assemblies2021Ingår i: Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE2021): Volume 3B: 47th Design Automation Conference (DAC), The American Society of Mechanical Engineers , 2021, artikel-id V03BT03A033Konferensbidrag (Refereegranskat)
    Abstract [en]

    Cable and hose routing is a complex and time-consuming process that often involves several conflicting objectives. Complexity increases further when routes of multiple components are to be considered through the same space. Extensive work has been done in the area of automatic routing where few proposals optimize multiple hoses together. This paper proposes a framework for the routing of multiple pre-formed hoses in an assembly using a unique permutation process where several alternatives for each hose are generated. A combinatorial optimization process is then used to find Pareto-optimal solutions for the multi-route assembly. This is coupled with a scoring model that predicts the overall fitness of a solution based on designs previously scored by the engineer as well as an evaluation system where the engineer can score new designs found through the use of the framework to update the scoring model. The framework is evaluated using a testcase from a car manufacturer showing a severalfold time reduction compared to a strictly manual process. Considering the time savings, the proposed framework has the potential to greatly reduce the overall routing processes of hoses and cables.

  • 3.
    Gustafsson, Erik
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Persson, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Comparison of Design Automation and Machine Learning algorithms for creation of easily modifiable splines2020Ingår i: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th - 14th August 2020 / [ed] Mortensen, N.H.; Hansen, C.T. and Deininger, M., The Design Society, 2020Konferensbidrag (Refereegranskat)
    Abstract [en]

    In order to enable easy modification of results from a design optimization process in a CAD tool, a flexible representation of the geometry is needed. This is not always trivial however, since many file formats are not importable as modifiable geometry into the CAD tool, and if they are, they might not represent the geometry in a way that enables easy modification. To mitigate this problem a design automation (DA) and a machine learning (ML) approach are developed and compared using a test case from an optimization process used to optimize hose routing in tight spaces. In the test case used, the geometry from the optimization process consists of center curves represented as a large number of points. To enable easy modification a more flexible representation is needed such as a spline with a few well-placed control points. Both the DA and ML approach can approximate center curves from the optimization process as splines containing a varying number of control points but do show different properties. The DA approach is considerably slower than the ML but adds a lot of flexibility regarding accuracy and the number of control points used.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf