liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Tsirpitzi, Renata Eirini
    et al.
    Stockholm Univ, Sweden.
    Miller, Frank
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten. Stockholm Univ, Sweden.
    Burman, Carl-Fredrik
    AstraZeneca, Sweden; Karolinska Inst, Sweden.
    Robust optimal designs using a model misspecification term2023Ingår i: Metrika (Heidelberg), ISSN 0026-1335, E-ISSN 1435-926XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Much of classical optimal design theory relies on specifying a model with only a small number of parameters. In many applications, such models will give reasonable approximations. However, they will often be found not to be entirely correct when enough data are at hand. A property of classical optimal design methodology is that the amount of data does not influence the design when a fixed model is used. However, it is reasonable that a low dimensional model is satisfactory only if limited data is available. With more data available, more aspects of the underlying relationship can be assessed. We consider a simple model that is not thought to be fully correct. The model misspecification, that is, the difference between the true mean and the simple model, is explicitly modeled with a stochastic process. This gives a unified approach to handle situations with both limited and rich data. Our objective is to estimate the combined model, which is the sum of the simple model and the assumed misspecification process. In our situation, the low-dimensional model can be viewed as a fixed effect and the misspecification term as a random effect in a mixed-effects model. Our aim is to predict within this model. We describe how we minimize the prediction error using an optimal design. We compute optimal designs for the full model in different cases. The results confirm that the optimal design depends strongly on the sample size. In low-information situations, traditional optimal designs for models with a small number of parameters are sufficient, while the inclusion of the misspecification term lead to very different designs in data-rich cases.

    Ladda ner fulltext (pdf)
    fulltext
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf