liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Singh, Niraj Kumar
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Uppsala Univ, Sweden.
    Hjort, Victor
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Honnali, Sanath Kumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Gambino, Davide
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Alling, Björn
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Uppsala Univ, Sweden.
    Effects of W alloying on the electronic structure, phase stability, and thermoelectric power factor in epitaxial CrN thin films2024Ingår i: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 136, nr 15, artikel-id 155301Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    CrN-based alloy thin films are of interest as thermoelectric materials for energy harvesting. Ab initio calculations show that dilute alloying of CrN with 3 at. % W substituting Cr induce flat electronic bands and push the Fermi level E-F into the conduction band while retaining dispersive Cr 3d bands. These features are conducive for both high electrical conductivity sigma and high Seebeck coefficient alpha and, hence, a high thermoelectric power factor alpha(2)sigma. To investigate this possibility, epitaxial CrWxNz films were grown on c-sapphire by dc-magnetron sputtering. However, even films with the lowest W content (x = 0.03) in our study contained metallic h-Cr2N, which is not conducive for a high alpha. Nevertheless, the films exhibit a sizeable power factor of alpha(2)sigma similar to 4.7 x 10(-4) W m(-1) K-2 due to high sigma similar to 700 S cm(-1), and a moderate alpha similar to - 25 mu V/K. Increasing h-Cr2N fractions in the 0.03 < x <= 0.19 range monotonically increases sigma, but severely diminishes alpha leading to two orders of magnitude decrease in alpha(2)sigma. This trend continues with x > 0.19 due to W precipitation. These findings indicate that dilute W additions below its solubility limit in CrN are important for realizing a high thermoelectric power factor in CrWxNz films.

  • 2.
    Rowe, Collin
    et al.
    Rensselaer Polytech Inst, NY 12180 USA.
    Shanmugham, Sathish Kumar
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Greczynski, Grzegorz
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hultman, Lars
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Molecularly-induced roughness and oxidation in cobalt/organodithiol/cobalt nanolayers synthesized by sputter-deposition and molecular sublimation2024Ingår i: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 53, nr 14, s. 6451-6458Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Integrating interfacial molecular nanolayers (MNL) with inorganic nanolayers is of interest for understanding processing-structure/chemistry correlations in hybrid nanolaminates. Here, we report the synthesis of Co/biphenyldithiol (BPDT)/Co nanolayer sandwiches by metal sputter-deposition and molecular sublimation. The density and surface roughness of the Co layers deposited on the native oxide are invariant with the Ar pressure pAr during deposition. In contrast, the Co layer roughness rCo deposited on top of the BPDT MNL increases with pAr, and correlates with a higher degree of Co oxidation. Increased roughening is attributed to MNL-accentuated self-shadowing of low mobility Co atoms at high pAr, which consequently increases Co oxidation. These results indicating MNL-induced effects on the morphology and chemistry of the inorganic layers should be of importance for tailoring nanolayered hybrid interfaces and laminates. Co/biphenyldithiol (BPDT)/Co nanolayer sandwiches are synthesized by metal sputter deposition and molecular sublimation. These results indicate molecular-nanolayer-induced effects on the morphology and chemistry, of interest for hybrid nanolaminates.

  • 3.
    Rowe, Collin
    et al.
    Rensselaer Polytech Inst, NY 12180 USA.
    Kashyap, Ankit
    Indian Inst Technol Mandi, India.
    Sharma, Geetu
    Rensselaer Polytech Inst, NY 12180 USA.
    Goyal, Naveen
    Indian Inst Sci, India.
    Alauzun, Johan G.
    Univ Montpellier, France.
    Barry, Sean T.
    Carleton Univ, Canada.
    Ravishankar, Narayanan
    Indian Inst Sci, India.
    Soni, Ajay
    Indian Inst Technol Mandi, India.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Nanomolecularly-induced Effects at Titania/Organo-Diphosphonate Interfaces for Stable Hybrid Multilayers with Emergent Properties2024Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nanoscale hybrid inorganic-organic multilayers are attractive for accessing emergent phenomena and properties through superposition of nanomolecularly-induced interface effects for diverse applications. Here, we demonstrate the effects of interfacial molecular nanolayers (MNLs) of organo-diphosphonates on the growth and stability of titania nanolayers during the synthesis of titania/MNL multilayers by sequential atomic layer deposition and single-cycle molecular layer deposition. Interfacial organo-diphosphonate MNLs result in similar to 20-40% slower growth of amorphous titania nanolayers and inhibit anatase nanocrystal formation from them when compared to amorphous titania grown without MNLs. Both these effects are more pronounced in multilayers with aliphatic backbone-MNLs and likely related to impurity incorporation and incomplete reduction of the titania precursor indicated by our spectroscopic analyses. In contrast, both MNLs result in two-fold higher titania nanolayer roughness, suggesting that roughening is primarily due to MNL bonding chemistry. Such MNL-induced effects on inorganic nanolayer growth rate, roughening, and stability are germane to realizing high-interface-fraction hybrid nanolaminate multilayers.

  • 4.
    Sangiovanni, Davide G.
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Rowe, Collin
    Rensselaer Polytech Inst, NY 12180 USA.
    Sharma, Geetu
    Rensselaer Polytech Inst, NY 12180 USA.
    Lane, Michael
    Emory & Henry Coll, VA 24327 USA.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Strain hardening and toughening in metal/molecular nanolayer/metal nanosandwiches2024Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 124, nr 26, artikel-id 261601Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introducing molecular nanolayers (MNLs) is attractive for enhancing the stability of, and inducing unusual properties at, inorganic thin film interfaces. Although organic molecules anchored to inorganic surfaces have been studied extensively, property enhancement mechanisms underpinned by molecular assemblies at inorganic thin film interfaces are yet to be revealed and understood. Here, ab initio molecular dynamics simulations of tensile strain of Au/MNL/Au thin film nanosandwich models provide insights into molecularly induced strain hardening and toughening. Au/MNL/Au nanosandwiches support up to approximate to 30% higher stresses and exhibit up to approximate to 140% higher toughness than pure Au slab models. Both hardening and toughening are governed by molecular length and terminal chemistry in the MNL. Strong Au/MNL interface bonding and greater molecular length promote defect creation in Au, which results in strain hardening. Accommodation of increasing post-hardening strains in the MNL mitigates the stress increase in the Au slabs, delays interface fracture, and contributes to toughening. Remarkably, toughening correlates with equilibrium interface strain, which could be used as a proxy for efficiently identifying promising inorganic/MNL combinations that provide toughening. Our findings are important for the discovery and design of inorganic-organic interfaces, nanomaterials, and composites.

  • 5.
    Ramanath, Ganpati
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Rowe, Collin
    Rensselaer Polytech Inst, NY 12180 USA.
    Sharma, Geetu
    Rensselaer Polytech Inst, NY 12180 USA.
    Venkataramani, Venkat
    Rensselaer Polytech Inst, NY 12180 USA.
    Alauzun, Johan G.
    Univ Montpellier, France.
    Sundararaman, Ravishankar
    Rensselaer Polytech Inst, NY 12180 USA.
    Keblinski, Pawel
    Rensselaer Polytech Inst, NY 12180 USA.
    Sangiovanni, Davide
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Pedersen, Henrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Kemi. Linköpings universitet, Tekniska fakulteten.
    Engineering inorganic interfaces using molecular nanolayers2023Ingår i: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 122, nr 26, artikel-id 260502Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Advances in interface science over the last 20 years have demonstrated the use of molecular nanolayers (MNLs) at inorganic interfaces to access emergent phenomena and enhance a variety of interfacial properties. Here, we capture important aspects of how a MNL can induce multifold enhancements and tune multiple interfacial properties, including chemical stability, fracture energy, thermal and electrical transport, and electronic structure. Key challenges that need to be addressed for the maturation of this emerging field are described and discussed. MNL-induced interfacial engineering has opened up attractive opportunities for designing organic-inorganic hybrid nanomaterials with high interface fractions, where properties are determined predominantly by MNL-induced interfacial effects for applications.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Ekström, Erik
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Hurand, Simon
    Univ Poitiers, France.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Persson, Per O A
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eriksson, Fredrik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Sharma, Geetu
    Rensselaer Polytech Inst, NY 12180 USA.
    Voznyy, Oleksandr
    Univ Toronto Scarborough, Canada.
    Sangiovanni, Davide
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik. Linköpings universitet, Tekniska fakulteten.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Microstructure control and property switching in stress-free van der Waals epitaxial VO2 films on mica2023Ingår i: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 229, artikel-id 111864Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Realizing stress-free inorganic epitaxial films on weakly bonding substrates is of importance for applications that require film transfer onto surfaces that do not seed epitaxy. Film-substrate bonding is usually weakened by harnessing natural van der Waals layers (e.g., graphene) on substrate surfaces, but this is difficult to achieve in non-layered materials. Here, we demonstrate van der Waals epitaxy of stress-free films of a non-layered material VO2 on mica. The films exhibit out-of-plane 010 texture with three inplane orientations inherited from the crystallographic domains of the substrate. The lattice parameters are invariant with film thickness, indicating weak film-substrate bonding and complete interfacial stress relaxation. The out-of-plane domain size scales monotonically with film thickness, but the in-plane domain size exhibits a minimum, indicating that the nucleation of large in-plane domains supports subsequent island growth. Complementary ab initio investigations suggest that VO2 nucleation and van der Waals epitaxy involves subtle polarization effects around, and the active participation of, surface potassium atoms on the mica surface. The VO2 films show a narrow domain-size-sensitive electrical-conductiv ity-temperature hysteresis. These results offer promise for tuning the properties of stress-free van der Waals epitaxial films of non-layered materials such as VO2 through microstructure control (C) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Xin, Binbin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Ekström, Erik
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Shih, Yueh-Ting
    Rensselaer Polytech Inst, NY 12180 USA.
    Huang, Liping
    Rensselaer Polytech Inst, NY 12180 USA.
    Lu, Jun
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Zhang, Yun
    Rensselaer Polytech Inst, NY 12180 USA.
    Zhu, Wenkai
    Rensselaer Polytech Inst, NY 12180 USA.
    Borca-Tasciuc, Theodorian
    Rensselaer Polytech Inst, NY 12180 USA.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Engineering thermoelectric and mechanical properties by nanoporosity in calcium cobaltate films from reactions of Ca(OH)(2)/Co3O4 multilayers2022Ingår i: Nanoscale Advances, E-ISSN 2516-0230, Vol. 4, nr 16, s. 3353-3361Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)(2)/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b(t)). Our results show that doubling b(t), e.g., from 12 to 26 nm, more than triples the average pore size from similar to 120 nm to similar to 400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of sigma similar to 90 S cm(-1) and a high Seebeck coefficient of alpha similar to 135 mu V K-1, but also a thermal conductivity as low as kappa similar to 0.87 W m(-1) K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 8.
    Xin, Binbin
    et al.
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Le Febvrier, Arnaud
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Shu, Rui
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Elsukova, Anna
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Venkataramani, Venkat
    Rensselaer Polytech Inst, NY 12180 USA.
    Shi, Yunfeng
    Rensselaer Polytech Inst, NY 12180 USA.
    Ramanath, Ganpati
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten. Rensselaer Polytech Inst, NY 12180 USA.
    Paul, Biplab
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Eklund, Per
    Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
    Engineering Faceted Nanoporosity by Reactions in Thin-Film Oxide Multilayers in Crystallographically Layered Calcium Cobaltate for Thermoelectrics2021Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, nr 9, s. 9904-9911Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Introducing porosity is attractive for tailoring electronic, thermal, and mechanical properties of inorganic materials. Nanoporosity is typically either inherent in crystallographic channels in the structure or obtained by external templating during synthesis and sintering. However, controllably engineering porosity in materials with laminated crystal structures without channels remains a challenge. Here, we demonstrate the realization of faceted and oriented nanopores in textured Ca3Co4O9-a laminated ceramic with a misfit-layered structure of importance for thermoelectric applications-from chemical reactions in CaO/Co3O4 multilayers. We show that CaO conversion to Ca(OH)(2) and the cobalt oxide stoichiometry are key determinants of nanoporosity. Adjusting the unreacted CaO fraction alters the nanopore size and fraction and the thermoelectric properties of Ca3Co4O9. The preferred orientation of Ca3Co4O9 is underpinned by the texture of the reactant multilayers and reactant-product crystallographic relationships and density difference. Oriented pore formation is attributed to basal plane removal driven by local densification of textured Ca3Co4O9 nuclei through growth and impingement. These findings point to possibilities for controllably engineering nanoporosity and properties in a variety of inorganic materials with laminated crystal structures.

    Ladda ner fulltext (pdf)
    fulltext
1 - 8 av 8
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf