Advances in interface science over the last 20 years have demonstrated the use of molecular nanolayers (MNLs) at inorganic interfaces to access emergent phenomena and enhance a variety of interfacial properties. Here, we capture important aspects of how a MNL can induce multifold enhancements and tune multiple interfacial properties, including chemical stability, fracture energy, thermal and electrical transport, and electronic structure. Key challenges that need to be addressed for the maturation of this emerging field are described and discussed. MNL-induced interfacial engineering has opened up attractive opportunities for designing organic-inorganic hybrid nanomaterials with high interface fractions, where properties are determined predominantly by MNL-induced interfacial effects for applications.
Realizing stress-free inorganic epitaxial films on weakly bonding substrates is of importance for applications that require film transfer onto surfaces that do not seed epitaxy. Film-substrate bonding is usually weakened by harnessing natural van der Waals layers (e.g., graphene) on substrate surfaces, but this is difficult to achieve in non-layered materials. Here, we demonstrate van der Waals epitaxy of stress-free films of a non-layered material VO2 on mica. The films exhibit out-of-plane 010 texture with three inplane orientations inherited from the crystallographic domains of the substrate. The lattice parameters are invariant with film thickness, indicating weak film-substrate bonding and complete interfacial stress relaxation. The out-of-plane domain size scales monotonically with film thickness, but the in-plane domain size exhibits a minimum, indicating that the nucleation of large in-plane domains supports subsequent island growth. Complementary ab initio investigations suggest that VO2 nucleation and van der Waals epitaxy involves subtle polarization effects around, and the active participation of, surface potassium atoms on the mica surface. The VO2 films show a narrow domain-size-sensitive electrical-conductiv ity-temperature hysteresis. These results offer promise for tuning the properties of stress-free van der Waals epitaxial films of non-layered materials such as VO2 through microstructure control (C) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Controlling nanoporosity to favorably alter multiple properties in layered crystalline inorganic thin films is a challenge. Here, we demonstrate that the thermoelectric and mechanical properties of Ca3Co4O9 films can be engineered through nanoporosity control by annealing multiple Ca(OH)(2)/Co3O4 reactant bilayers with characteristic bilayer thicknesses (b(t)). Our results show that doubling b(t), e.g., from 12 to 26 nm, more than triples the average pore size from similar to 120 nm to similar to 400 nm and increases the pore fraction from 3% to 17.1%. The higher porosity film exhibits not only a 50% higher electrical conductivity of sigma similar to 90 S cm(-1) and a high Seebeck coefficient of alpha similar to 135 mu V K-1, but also a thermal conductivity as low as kappa similar to 0.87 W m(-1) K-1. The nanoporous Ca3Co4O9 films exhibit greater mechanical compliance and resilience to bending than the bulk. These results indicate that annealing reactant multilayers with controlled thicknesses is an attractive way to engineer nanoporosity and realize mechanically flexible oxide-based thermoelectric materials.
Introducing porosity is attractive for tailoring electronic, thermal, and mechanical properties of inorganic materials. Nanoporosity is typically either inherent in crystallographic channels in the structure or obtained by external templating during synthesis and sintering. However, controllably engineering porosity in materials with laminated crystal structures without channels remains a challenge. Here, we demonstrate the realization of faceted and oriented nanopores in textured Ca3Co4O9-a laminated ceramic with a misfit-layered structure of importance for thermoelectric applications-from chemical reactions in CaO/Co3O4 multilayers. We show that CaO conversion to Ca(OH)(2) and the cobalt oxide stoichiometry are key determinants of nanoporosity. Adjusting the unreacted CaO fraction alters the nanopore size and fraction and the thermoelectric properties of Ca3Co4O9. The preferred orientation of Ca3Co4O9 is underpinned by the texture of the reactant multilayers and reactant-product crystallographic relationships and density difference. Oriented pore formation is attributed to basal plane removal driven by local densification of textured Ca3Co4O9 nuclei through growth and impingement. These findings point to possibilities for controllably engineering nanoporosity and properties in a variety of inorganic materials with laminated crystal structures.