liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 24 av 24
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Oprea, Alexandra
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten. Saab Group, Linköping, Sweden.
    Eek, Magnus
    Saab Group, Linköping, Sweden.
    Staack, Ingo
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system. Linköpings universitet, Filosofiska fakulteten.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten. Saab Group, Linköping, Sweden.
    Aspects of flight simulation development in relation to scientific software: a literature review2021Ingår i: AIAA AVIATION 2021 FORUM, American Institute of Aeronautics and Astronautics , 2021Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    This paper presents and analyses the research front on development methodologies that can be applied to flight simulations for development purposes. This field includes any flight simulator used during the development phase of an aircraft, when flight test or other validation data is still scarce. A review of the literature published between 1999-2019 is performed. As flight-specific literature on the topic is limited, a broader view on flight simulators is adopted. Simulators are regarded as risk-averse scientific software; that is, software created to understand a phenomenon and whose primary goal is to be correct. This perspective highlights the lack of suitable established software development methodologies (SwDev) for this software type. Two solutions to this problem have been identified: one treating scientific SwDev as a knowledge acquisition process, and another one treating it as development of enabling systems, following the established product development processes. These solutions need to be completed with methodologies to deal with the multidisciplinarity of the flight simulation problem, such as model exchange standards or workflows for multidisciplinary collaboration.

  • 2.
    Oprea, Alexandra
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering. Linköpings universitet, Tekniska fakulteten.
    Hällqvist, Robert
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system. Linköpings universitet, Tekniska fakulteten.
    Knöös Franzén, Ludvig
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system. Linköpings universitet, Tekniska fakulteten.
    Eek, Magnus
    The Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden.
    Staack, Ingo
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluida och mekatroniska system. Linköpings universitet, Tekniska fakulteten.
    Gavel, Hampus
    Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Produktrealisering.
    Connecting system simulation to aircraft concept development2021Ingår i: Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, 2021Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    This study presents a solution for connecting system simulation and aircraft concept development using solely open standards. An easy-to-use optimisation framework for aircraft concept development is created with the help of the Modelica, Functional Mock-up Interface (FMI), and System Structure and Parameterization (SSP) standards, and the open source tools OpenModelica and OMSimulator. The framework allows for conceptual aircraft design accounting for transient phenomena by means of standardised integration of dynamic simulation models of aircraft subsystems. The framework is applied to an industry-relevant use case concerning the concept development of a generic fighter aircraft. The generality and modularity of the framework and its straightforward implementation enables tailoring of the optimisation goals to the user needs and requirements. The adoption of industry-wide standards allows for the inclusion of system simulation models developed in the modelling tool best suited for each discipline, thus integrating dynamic system simulation already at the aircraft conceptual design stage.

  • 3.
    Eek, Magnus
    et al.
    Saab Aeronautics, Linköping, Sweden.
    Kharrazi, Sogol
    Swedish National Road and Transport Research Institute, Linköping, Sweden.
    Gavel, Hampus
    Saab Aeronautics, Linköping, Sweden.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Study of Industrially Applied Methods for Verification, Validation & Uncertainty Quantification of Simulator Models2015Ingår i: International Journal of Modeling, Simulation, and Scientific Computing, ISSN 1793-9623, E-ISSN 1793-9615, Vol. 6, nr 2, artikel-id 1550014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To better utilize the potential of system simulation models and simulators, industrially applicable methods for Verification, Validation and Uncertainty Quantification(VV&UQ) are crucial. This paper presents an exploratory case study of VV&UQ techniquesapplied on models integrated in aircraft system simulators at Saab Aeronauticsand in driving simulators at the Swedish National Road and Transport Research Institute(VTI). Results show that a large number of Verification and Validation (V&V)techniques are applied, some of which are promising for further development and use insimulator credibility assessment. Regarding the application of UQ, a large gap betweenacademia and this part of industry has been identified, and simplified methods areneeded. The applicability of the NASA Credibility Assessment Scale (CAS) at the studied organizations is also evaluated and it can be concluded that the CAS is consideredto be a usable tool for achieving a uniform level of V&V for all models included in asimulator, although its implementation at the studied organizations requires tailoringand coordination.

  • 4.
    Hällqvist, Robert
    et al.
    Saab Aeronautics, Linköping, Sweden.
    Eek, Magnus
    Saab Aeronautics, Linköping, Sweden.
    Lind, Ingela
    Saab Aeronautics, Linköping, Sweden.
    Gavel, Hampus
    Saab Aeronautics, Linköping, Sweden.
    Validation Techniques Applied on the Saab Gripen FighterEnvironmental Control System Model2015Ingår i: Proceedings of the 56th SIMS / [ed] Lena Buffoni, Adrian Pop, and Bernhard Thiele, Linköping, 2015, s. 199-210, artikel-id ecp15119199Konferensbidrag (Refereegranskat)
    Abstract [en]

    The Environmental Control System (ECS) of the Saab Gripen fighter provides a number of vital functions, such as provision of coolant air to the avionics, comfort air to the cockpit, and pressurization of the aircraft fuel system. To support system design, a detailed simulation model has been developed in the Modelica-based tool Dymola. The model needs to be a “good system representation”, during both steady-state operation and relevant dynamic events, if reliable predictions are to be made regarding cooling performance, static loads in terms of pressure and temperature, and various other types of system analyses. A framework for semi-automatic validation of the ECS model against measurements is developed and described in this paper. The framework extends a proposed formal methodology of semi-automaticmodel validation against in-situ measurements to the model development process implemented at Saab.Applied methods for validating the model in steady-state operation and during relevant dynamic events are presented in detail. The developed framework includes automatic filtering of measurement points defined as steady-state operation and visualization techniques applied on validation experiments conducted in the previously mentioned points. The proposed framework both simplify continuous validation throughout the system development process and enables a smooth transition towards a more independent verification and validation process.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Carlsson, Magnus
    et al.
    Saab Aeronautics, Linköping, Sweden.
    Gavel, Hampus
    Saab Aeronautics, Linköping, Sweden.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Evaluating Model Uncertainty Based on Probabilistic Analysis and Component Output Uncertainty Descriptions2012Ingår i: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition: IMECE2012-85236 / [ed] ASME, 2012Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    To support early model validation, this paper describes a method utilizing information obtained from the common practice component level validation to assess uncertainties on model top level. Initiated in previous research, a generic output uncertainty description component, intended for power-port based simulation models of physical systems, has been implemented in Modelica. A set of model components has been extended with the generic output uncertainty description, and the concept of using component level output uncertainty to assess model top level uncertainty has been applied on a simulation model of a radar liquid cooling system. The focus of this paper is on investigating the applicability of combining the output uncertainty method with probabilistic techniques, not only to provide upper and lower bounds on model uncertaintiesbut also to accompany the uncertainties with estimated probabilities.It is shown that the method may result in a significant improvement in the conditions for conducting an assessment of model uncertainties. The primary use of the method, in combination with either deterministic or probabilistic techniques, is in the early development phases when system level measurement data are scarce. The method may also be used to point out which model components contribute most to the uncertainty on model top level. Such information can be used to concentrate physical testing activities to areas where it is needed most. In this context, the method supports the concept of Virtual Testing.

    Ladda ner fulltext (pdf)
    Evaluating Model Uncertainty Based on Probabilistic Analysis and Component Output Uncertainty Descriptions
  • 6.
    Carlsson, Magnus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson, Henric
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Methodology for Development and Validation of Multipurpose Simulation Models2012Ingår i: 50th AIAA Aerospace Sciences Meeting Online Proceedings including the New Horizons Forum and Aerospace Exposition (2012), AIAA , 2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper describes a framework for development and validation of multipurpose simulation models. The presented methodology enables reuse of models in different applications with different purposes. The scope is simulation models representing physical environment, physical aircraft systems or subsystems, avionics equipment, and electronic hardware. The methodology has been developed by a small interdisciplinary team, with experience from Modeling and Simulation (M&S) of vehicle systems as well as development of simulators for verification and training. Special care has been taken to ensure usability of the workflow and method descriptions, mainly by means of 1) a user friendly format, easy to overview and update, 2) keeping the amount of text down, and 3) providing relevant examples, templates, and checklists. A simulation model of the Environmental Control System (ECS) of a military fighter aircraft, the Saab Gripen, is used as an example to guide the reader through the workflow of developing and validating multipurpose simulation models. The methods described in the paper can be used in both military and civil applications, and are not limited to the aircraft industry.

  • 7.
    Carlsson, Magnus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Utilizing Uncertainty Information in Early Model Validation2012Ingår i: AIAA Modeling and Simulation Technologies Conference / [ed] AIAA, 2012Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    This paper proposes a pragmatic approach enabling early model validation activities with a limited availability of system level measurement data. The method utilizes information obtained from the common practice of component validation to assess uncertainties on model top level. Focusing on industrial applicability, the method makes use of information normally available to engineers developing simulation models of existing or not yet existing systems. This is in contrast to the traditional sensitivity analysis requiring the user to quantify component parameter uncertainties – a task which, according to the authors’ experience, may be far from intuitive. As the proposed method enables uncertainties to be defined for a component’s outputs (characteristics) rather than its inputs (parameters), it is hereby termed output uncertainty. The method is primarily intended for use in large-scale mathematical 1-D dynamic simulation models of physical systems with or without control software, typically described by Ordinary Differential Equations (ODE) or Differential Algebraic Equations (DAE).It is shown that the method may result in a significant reduction in the number of uncertain parameters that require consideration in a simulation model. The uncertainty quantification of these parameters also becomes more intuitive. Since this implies a substantial improvement in the conditions of conducting sensitivity analysis or optimization on large-scale simulation models, the method facilitates early model validation. In contrast to sensitivity analysis with respect to a model’s original component parameters, which only covers one aspect of model uncertainty, the output uncertainty method enables assessment also of other kinds of uncertainties, such as uncertainties in underlying equations or uncertainties due to model simplifications. To increase the relevance of the method, a simulation model of a radar liquid cooling system is used as an industrial application example.

  • 8.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Ölvander, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    A quantified and interactive relationship matrix applied to aircraft fuel system conceptual design2010Ingår i: International Review of Aerospace Engineering (IREASE), ISSN 1973-7459, E-ISSN 1973-7440, Vol. 3, nr 1, s. 9-18Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper describes how the House of Quality matrix has been quantified for use in conceptual design. The House of Quality matrix is used for visualizing the relationships between subsystem design parameters and top-level requirements. The idea is then to insert quantified values of the subsystems’ characteristics as coupling elements, thus visualizing both the requirements-subsystems relationship and system performance. Here, a spreadsheet program (MS Excel) with a built-in modeling/solver tool has been used to model the subsystems. This makes the matrix interactive, thus facilitating trade studies between requirements and system design. By adding probabilistic analysis it is possible to explore the entire range of system behavior early on, rather than just focusing on one or more worst case scenarios as has previously often been the case, and thus promoting the selection of more optimal solutions. The quantitative approach also opens up for mathematically formal optimization which has been exploited by deriving Pareto fronts for visualization of conflicting objectives, one such objective being. The design application used as illustrative example is conceptual design of an aircraft fuel system.

  • 9.
    Steinkellner, Sören
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson, Henric
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Lind, Ingela
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Modeling and Simulation of Saab Gripens Vehicle Systems, Challenges in Processes and Data Uncertainties2010Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    In aircraft development, it is crucial to understand and evaluate behaviour, performance, safety and other aspects of subsystems before and after they are physically available for testing. Simulation models are used to gain knowledge in order to make decisions at all development stages.

    This paper describes the development of Saab Gripen´s vehicle systems and some methods and challenges related to uncertainties in test and model data. The ability to handle uncertain information and lack of information is the key to success in early design. The vehicle systems comprise fuel, environment control system (ECS), hydraulic, auxiliary power, escape, electrical power and landing gear system.

  • 10.
    Steinkellner, Sören
    et al.
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson, Henric
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Modeling and simulation of Saab Gripen’s vehicle systems2009Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    This paper gives an overview of the modeling and simulation work for the military aircraft JAS 39 Gripen´s vehicle systems. The vehicle systems comprise fuel, ECS, hydraulic, and auxiliary power systems and also landing gear. Vehicle systems have several modeling  challenges such as both compressible air and less compressible fluids that give stiff differential equations, gforce effects, nonlinear cavitation and saturation. It is also a complex system of integrated systems that requires models with integrated system software. Dynamic models based on physical differential equations have generally been used. The physical systems were previously modeled in Easy5 and the software in MATRIXx. Changes in tools where the physical systems are modeled in Dymola and the control algorithms are modeled in Simulink have opened up for new possibilities for more advanced and more complete system simulations. Simulations have been performed during the whole development cycle of the aircraft from concept evaluation to qualification tests. The paper gives some examples from the simulations where system performance and the internal states of the system are calculated.

  • 11.
    Gavel, Hampus
    et al.
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion.
    Ölvander, Johan
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion.
    Krus, Petter
    Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion.
    A quantified relationship matrix aided by optimization and probabilistic design2008Ingår i: 26th Congress of the International Council of the Aeronautical Sciences,2008, Anchorage: ICAS , 2008Konferensbidrag (Refereegranskat)
  • 12.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Ölvander Andersson, Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Johansson Lundén, Björn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Aircraft fuel system synthesis aided by interactive morphology and optimization2007Ingår i: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, Reno,USA: AIAA , 2007, nr AIAA-2007-0653Konferensbidrag (Refereegranskat)
  • 13. Beställ onlineKöp publikationen >>
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    On aircraft fuel systems: conceptual design and modeling2007Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The largest and most important fluid system in an aircraft is the fuel system. Obviously, future aircraft projects involve the design of fuel system to some degree. In this project design methodologies for aircraft fuel systems are studied, with the aim to shortening the system development time.

    This is done by means of illustrative examples of how optimization and the use of matrix methods, such as the morphological matrix, house of quality and the design structure matrix, have been developed and implemented at Saab Aerospace in the conceptual design of aircraft fuel systems. The methods introduce automation early in the development process and increase understanding of how top requirements regarding the aircraft level impact low-level engineering parameters such as pipe diameter, pump size, etc. The morphological matrix and the house of quality matrix are quantified, which opens up for use of design optimization and probabilistic design.

    The thesis also discusses a systematic approach when building a large simulation model of a fluid system where the objective is to minimize the development time by applying a strategy that enables parallel development and collaborative engineering, and also by building the model to the correct level of detail. By correct level of detail is meant the level that yields a simulation outcome that meets the stakeholders’ expectations. The experienced gained at Saab in building a simulation model, mainly from the Gripen fuel system, but also the accumulated experience from other system models, is condensed and fitted into an overall process.

    Delarbeten
    1. Conceptual Design of a New Generation JAS 39 Gripen Aircraft
    Öppna denna publikation i ny flik eller fönster >>Conceptual Design of a New Generation JAS 39 Gripen Aircraft
    2006 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper describes the conceptual phase of a modification proposal for Saab Gripen, which aims to create the best possible basis for future aircraft development. One of the main tasks in this respect is to investigate different means to extend range. This paper describes the technical outcome from the concept generation, concept selection, and concept refinement at system and airframe level. The chosen concept involves relocation and redesign of the main landing gear. The original main landing gear bay is converted into fuel tanks. The relocation of the main gear enables a new ventral twin store carriage with supersonic jettison capability to be introduced. The concept proposal yields the following improvements:

    · Increased range due to increased fuel capability

    · Increased maximum allowed takeoff weight due to beefe d-up main gear

    · Increased weapon flexibility and capability due to introduction of two new ventral store

    · Introducing supersonic jettison capability

    The paper also includes a description of how the work is related to the overall design process in general and the conceptual phase in particular, as described in design methodology literature.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12980 (URN)10.2514/6.2006-31 (DOI)
    Konferens
    44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2013-11-07
    2. Strategy for Modeling of large A/C fluid systems
    Öppna denna publikation i ny flik eller fönster >>Strategy for Modeling of large A/C fluid systems
    Visa övriga...
    2004 (Engelska)Ingår i: World Aviation Congress and Display, WAC-04, SAE Technical Paper 2004-01-3093, 2004, s. 1495-1506Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    There is an ongoing trend in the European Military a/c industry towards cooperation between nations when purchasing and between manufacturers when developing and producing a/c. Different manufacturers at different locations develop different parts or sub-systems. When using this approach a vital part of a fast and precise system evaluation is the use of simulation models. In order to stay competitive it is not only sufficient to be able to build large simulation models but also to do it fast.

    This paper describes the conclusions regarding a modelling strategy of large fluid systems drawn from the building of a simulation model of the JAS 39 Gripen fuel system. An overall process is suggested into which the activities of building a model are fitted. This is however not the main objective; it is more important to identify the different issues and activities at the engineering level. If these are properly dealt with, the model development time will be reduced, if not, the wrong model may be designed. "Wrong" here means a model that does not do the job, or solves a problem other than the one intended by the stakeholder.

    Serie
    SAE technical paper series, ISSN 0148-7191 ; 3093
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12981 (URN)10.4271/2004-01-3093 (DOI)
    Konferens
    World Aviation Congress and Display, WAC-04, Reno, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    3. An Algorithmic Morphology Matrix for Aircraft Fuel System Design
    Öppna denna publikation i ny flik eller fönster >>An Algorithmic Morphology Matrix for Aircraft Fuel System Design
    2006 (Engelska)Ingår i: 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany, 2006, nr ICAS-2006-9.2.2Konferensbidrag, Publicerat paper (Refereegranskat)
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12982 (URN)
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2009-03-02
    4. Aircraft fuel system synthesis aided by interactive morphology and optimization
    Öppna denna publikation i ny flik eller fönster >>Aircraft fuel system synthesis aided by interactive morphology and optimization
    2007 (Engelska)Ingår i: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, Reno,USA: AIAA , 2007, nr AIAA-2007-0653Konferensbidrag, Publicerat paper (Refereegranskat)
    Ort, förlag, år, upplaga, sidor
    Reno,USA: AIAA, 2007
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12983 (URN)
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2009-04-28
    5. Quantification of the Elements in the Relationship matrix: A conceptual study of Aircraft Fuel System
    Öppna denna publikation i ny flik eller fönster >>Quantification of the Elements in the Relationship matrix: A conceptual study of Aircraft Fuel System
    2004 (Engelska)Ingår i: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, paper AIAA-2004-0538, 2004, nr AIAA-2004-0538, s. 5244-5252Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper describes how the framework of thc house of quality and design structure matrices are used to visualizee dependencies between top level requirements and engineering design properties. It is also discussed how quantification of the matrix elements may increase the understanding of how the top-level requirements impacts the low-level design parameters. lndeed, history has shown that overlooking combinatory effects between subsystems and night conditions may become expensive. Not only in terms of not goning getting the sizing right but more so if an entirely wrong concept is chosen.

    This paper shows a matrix technique that has successfully been used at Saab and how this technique may facilitate the cconcept evaluation process of early fuel system design.

    The matrix method aids the designer to take alk the relevant aspects into account when evaluating a design. Use of the method will also increase the understanding of what top-level requirement or combination thereof, which drives the choice of one particular concept rather than the other. The understanding of how the top-level requiremEnts impacts low level design parameters such as pump size or pipe diameter will also increse.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12984 (URN)10.2514/6.2004-538 (DOI)
    Konferens
    42nd AIAA Aerospace Sciences Meeting and Exhibit, 5-8 Januari, Reno, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    6. Probabilistic design in the conceptual phase of an aircraft fuel system
    Öppna denna publikation i ny flik eller fönster >>Probabilistic design in the conceptual phase of an aircraft fuel system
    2005 (Engelska)Ingår i: 7th AIAA Non-Deterministic Design Forum, Austin, USA, 2005, nr AIAA-2005-2219Konferensbidrag, Publicerat paper (Refereegranskat)
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12985 (URN)
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2009-03-02
    7. Optimal Conceptual Design of Aircraft Fuel Transfer Systems
    Öppna denna publikation i ny flik eller fönster >>Optimal Conceptual Design of Aircraft Fuel Transfer Systems
    2006 (Engelska)Ingår i: Journal of Aircraft, ISSN 0021-8669, Vol. 43, nr 5, s. 1334-1340Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

     

    This paper describes early considerations that have to be made when designing an aircraft fuel system. Emphasis is placed on illustrating the impact of top-level aircraft requirements on low-level practicalities such as fuel system design. Choosing between concepts is one of the most critical parts of any design process. Different concepts have different advantages, and the concept that is the best choice is often dependent on the top-level requirements. This paper shows how optimization has been used successfully at Saab Aerospace as a tool that supports concept selection. The example studied is the design of a fuel transfer system for a ventral drop tank and the optimization results in different conceptual designs depending on the top-level requirements.

     

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12986 (URN)10.2514/1.19548 (DOI)
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2009-03-02
    8. Fuel Transfer System in the Conceptual Design Phase
    Öppna denna publikation i ny flik eller fönster >>Fuel Transfer System in the Conceptual Design Phase
    2002 (Engelska)Ingår i: SAE World Aviation congress and Display, Phoenix, USA paper 2002-01-2931, 2002, nr 2002-01-2931Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    As the time between different development projects of new aircraft (a/c) extends, experienced personnel in the field of basic a/c system design are difficult to employ when being on the onset of a new design. Further on basic a/c system design is a field neglected in literature and in the educational system.

    A text is under development that summarizes the Saab experience of the complete fuel system design with respect to the fighter a/c Viggen and Gripen, the commuter a/c 340 and 2000, the trainer a/c SK60 and also the conceptual a/c B3LA.

    This paper is an extract of this text and describe early considerations that have to be made when designing a fuel transfer system. Emphasis is put on the top requirements on a/c level.

    Serie
    SAE technical paper series, ISSN 0148-7191
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12987 (URN)10.4271/2002-01-2931 (DOI)
    Konferens
    SAE World Aviation congress and Display, November 5-7, Phoenix, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    9. Using Optimization as a Tool in Fuel System Conceptual Design
    Öppna denna publikation i ny flik eller fönster >>Using Optimization as a Tool in Fuel System Conceptual Design
    2003 (Engelska)Ingår i: SAE World Aviation Congress and Display, Montreal, Canada, SAE Technical Paper 2003-01-3054, 2003, nr 2003-01-3052Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Choosing between concepts is often the most critical part of the design process. Different concepts have different advantages and disadvantages. The concept that is the best choice is most often dependent on the top level requirements. Sometimes there may also be a trade off between concept choice and the top requirements. In aircraft (a/c) fuel system design it has often proved difficult to find the switching point where the superior concept is changed. This sometimes makes the designer conservative and leads to the selection of a concept with too high a penalty. There is also a risk for the opposite and perhaps worse scenario: That the designer strives to reduce weight and cost and therefore, accidentally, chooses an under achieving concept and thus induces large downstream cost if late redesign or retro modifications are necessary.

    This paper shows how optimization has been successfully used at Saab Aerospace as a tool that supports concept selection. The example shown is the choice of fuel transfer method for a ventral drop tank. The example also illustrates the impact of top-level requirements on low-level practicalities such as fuel system design.

    Serie
    SAE Technical Paper
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12988 (URN)10.4271/2003-01-3054 (DOI)
    Konferens
    SAE World Aviation Congress and Display, WAC 03, September 8-12, Montreal, Canada
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    10. Modeling and Simulation of Gripen’s Fluid Power Systems
    Öppna denna publikation i ny flik eller fönster >>Modeling and Simulation of Gripen’s Fluid Power Systems
    Visa övriga...
    2004 (Engelska)Ingår i: Recent advances in aerospace actuation systems and components, Toulouse, France, 2004Konferensbidrag, Publicerat paper (Refereegranskat)
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12989 (URN)
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01
    Ladda ner fulltext (pdf)
    FULLTEXT01
    Ladda ner (pdf)
    COVER01
  • 14.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson (Ölvander), Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Johansson (Lundén), Björn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    An Algorithmic Morphology Matrix for Aircraft Fuel System Design2006Ingår i: 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany, 2006, nr ICAS-2006-9.2.2Konferensbidrag (Refereegranskat)
  • 15.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Berry, Patrick
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Fluid och mekanisk systemteknik. Linköpings universitet, Tekniska högskolan.
    Axelsson, Arne
    Saab Aerostructures, Linköping, Sweden.
    Conceptual Design of a New Generation JAS 39 Gripen Aircraft2006Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper describes the conceptual phase of a modification proposal for Saab Gripen, which aims to create the best possible basis for future aircraft development. One of the main tasks in this respect is to investigate different means to extend range. This paper describes the technical outcome from the concept generation, concept selection, and concept refinement at system and airframe level. The chosen concept involves relocation and redesign of the main landing gear. The original main landing gear bay is converted into fuel tanks. The relocation of the main gear enables a new ventral twin store carriage with supersonic jettison capability to be introduced. The concept proposal yields the following improvements:

    · Increased range due to increased fuel capability

    · Increased maximum allowed takeoff weight due to beefe d-up main gear

    · Increased weapon flexibility and capability due to introduction of two new ventral store

    · Introducing supersonic jettison capability

    The paper also includes a description of how the work is related to the overall design process in general and the conceptual phase in particular, as described in design methodology literature.

  • 16.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Ölvander (Andersson), Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Optimal Conceptual Design of Aircraft Fuel Transfer Systems2006Ingår i: Journal of Aircraft, ISSN 0021-8669, Vol. 43, nr 5, s. 1334-1340Artikel i tidskrift (Refereegranskat)
    Abstract [en]

     

    This paper describes early considerations that have to be made when designing an aircraft fuel system. Emphasis is placed on illustrating the impact of top-level aircraft requirements on low-level practicalities such as fuel system design. Choosing between concepts is one of the most critical parts of any design process. Different concepts have different advantages, and the concept that is the best choice is often dependent on the top-level requirements. This paper shows how optimization has been used successfully at Saab Aerospace as a tool that supports concept selection. The example studied is the design of a fuel transfer system for a ventral drop tank and the optimization results in different conceptual designs depending on the top-level requirements.

     

  • 17.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson (Ölvander), Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Johansson (Lundén), Björn
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Probabilistic design in the conceptual phase of an aircraft fuel system2005Ingår i: 7th AIAA Non-Deterministic Design Forum, Austin, USA, 2005, nr AIAA-2005-2219Konferensbidrag (Refereegranskat)
  • 18. Lantto, B.
    et al.
    Ellström, H.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Jarelande, M.
    Steinkellner, Sören
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling. Linköpings universitet, Tekniska högskolan.
    Järlestål, A.
    Landberg, M.
    Modeling and Simulation of Gripen’s Fluid Power Systems2004Ingår i: Recent advances in aerospace actuation systems and components, Toulouse, France, 2004Konferensbidrag (Refereegranskat)
  • 19.
    Gavel, Hampus
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    On Aircraft Fuel System Conceptual Design - Conceptual Evaluation and System modeling2004Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    THE LARGEST AND most important fluid system in an aircraft is the fuel system. Obviously, future aircraft projects involve the design of fuel system to some degree. In this project design methodologies for aircraft fuel systems are studied, with the aim to shortening the system development time.

    This is done by means of illustrative examples of how optimization and the use of matrix methods have been developed and implemented at Saab Aerospace in the conceptual design of ale fuel systems. The methods introduces automation early in the development process and increase understanding of how top requirements on the ale level impact low-level engineering parameters such as pipe diameter, pump size, etc.

    The thesis also discusses a systematic approach when building a large simulation model of a fluid system where the objective is to minirnize the development time by applying a strategy that enables parallel development and collaborative engineering, and also by building the mode! to the correct level of detail. By correct level of detail is meant the level that yields a simulation outcome that meets the stakeholders' expectations. The experienced gained at Saab in building a simulation model, mainly from the Gripen fuel system, but also the accumulated experience from other system models, is condensed and fitted into an overall process.

    Delarbeten
    1. Fuel Transfer System in the Conceptual Design Phase
    Öppna denna publikation i ny flik eller fönster >>Fuel Transfer System in the Conceptual Design Phase
    2002 (Engelska)Ingår i: SAE World Aviation congress and Display, Phoenix, USA paper 2002-01-2931, 2002, nr 2002-01-2931Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    As the time between different development projects of new aircraft (a/c) extends, experienced personnel in the field of basic a/c system design are difficult to employ when being on the onset of a new design. Further on basic a/c system design is a field neglected in literature and in the educational system.

    A text is under development that summarizes the Saab experience of the complete fuel system design with respect to the fighter a/c Viggen and Gripen, the commuter a/c 340 and 2000, the trainer a/c SK60 and also the conceptual a/c B3LA.

    This paper is an extract of this text and describe early considerations that have to be made when designing a fuel transfer system. Emphasis is put on the top requirements on a/c level.

    Serie
    SAE technical paper series, ISSN 0148-7191
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12987 (URN)10.4271/2002-01-2931 (DOI)
    Konferens
    SAE World Aviation congress and Display, November 5-7, Phoenix, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    2. Using Optimization as a Tool in Fuel System Conceptual Design
    Öppna denna publikation i ny flik eller fönster >>Using Optimization as a Tool in Fuel System Conceptual Design
    2003 (Engelska)Ingår i: SAE World Aviation Congress and Display, Montreal, Canada, SAE Technical Paper 2003-01-3054, 2003, nr 2003-01-3052Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    Choosing between concepts is often the most critical part of the design process. Different concepts have different advantages and disadvantages. The concept that is the best choice is most often dependent on the top level requirements. Sometimes there may also be a trade off between concept choice and the top requirements. In aircraft (a/c) fuel system design it has often proved difficult to find the switching point where the superior concept is changed. This sometimes makes the designer conservative and leads to the selection of a concept with too high a penalty. There is also a risk for the opposite and perhaps worse scenario: That the designer strives to reduce weight and cost and therefore, accidentally, chooses an under achieving concept and thus induces large downstream cost if late redesign or retro modifications are necessary.

    This paper shows how optimization has been successfully used at Saab Aerospace as a tool that supports concept selection. The example shown is the choice of fuel transfer method for a ventral drop tank. The example also illustrates the impact of top-level requirements on low-level practicalities such as fuel system design.

    Serie
    SAE Technical Paper
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12988 (URN)10.4271/2003-01-3054 (DOI)
    Konferens
    SAE World Aviation Congress and Display, WAC 03, September 8-12, Montreal, Canada
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    3. Quantification of the Elements in the Relationship matrix: A conceptual study of Aircraft Fuel System
    Öppna denna publikation i ny flik eller fönster >>Quantification of the Elements in the Relationship matrix: A conceptual study of Aircraft Fuel System
    2004 (Engelska)Ingår i: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, paper AIAA-2004-0538, 2004, nr AIAA-2004-0538, s. 5244-5252Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    This paper describes how the framework of thc house of quality and design structure matrices are used to visualizee dependencies between top level requirements and engineering design properties. It is also discussed how quantification of the matrix elements may increase the understanding of how the top-level requirements impacts the low-level design parameters. lndeed, history has shown that overlooking combinatory effects between subsystems and night conditions may become expensive. Not only in terms of not goning getting the sizing right but more so if an entirely wrong concept is chosen.

    This paper shows a matrix technique that has successfully been used at Saab and how this technique may facilitate the cconcept evaluation process of early fuel system design.

    The matrix method aids the designer to take alk the relevant aspects into account when evaluating a design. Use of the method will also increase the understanding of what top-level requirement or combination thereof, which drives the choice of one particular concept rather than the other. The understanding of how the top-level requiremEnts impacts low level design parameters such as pump size or pipe diameter will also increse.

    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12984 (URN)10.2514/6.2004-538 (DOI)
    Konferens
    42nd AIAA Aerospace Sciences Meeting and Exhibit, 5-8 Januari, Reno, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
    4. Strategy for Modeling of large A/C fluid systems
    Öppna denna publikation i ny flik eller fönster >>Strategy for Modeling of large A/C fluid systems
    Visa övriga...
    2004 (Engelska)Ingår i: World Aviation Congress and Display, WAC-04, SAE Technical Paper 2004-01-3093, 2004, s. 1495-1506Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    There is an ongoing trend in the European Military a/c industry towards cooperation between nations when purchasing and between manufacturers when developing and producing a/c. Different manufacturers at different locations develop different parts or sub-systems. When using this approach a vital part of a fast and precise system evaluation is the use of simulation models. In order to stay competitive it is not only sufficient to be able to build large simulation models but also to do it fast.

    This paper describes the conclusions regarding a modelling strategy of large fluid systems drawn from the building of a simulation model of the JAS 39 Gripen fuel system. An overall process is suggested into which the activities of building a model are fitted. This is however not the main objective; it is more important to identify the different issues and activities at the engineering level. If these are properly dealt with, the model development time will be reduced, if not, the wrong model may be designed. "Wrong" here means a model that does not do the job, or solves a problem other than the one intended by the stakeholder.

    Serie
    SAE technical paper series, ISSN 0148-7191 ; 3093
    Nationell ämneskategori
    Teknik och teknologier
    Identifikatorer
    urn:nbn:se:liu:diva-12981 (URN)10.4271/2004-01-3093 (DOI)
    Konferens
    World Aviation Congress and Display, WAC-04, Reno, USA
    Tillgänglig från: 2008-04-01 Skapad: 2008-04-01 Senast uppdaterad: 2014-01-21Bibliografiskt granskad
  • 20.
    Gavel, Hampus
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    On aircraft fuel system design: concept evaluation and system modeling2004Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    THE LARGEST AND most important fluid system in an aircraft is the fuel system. Obviously, future aircraft projects involve the design of fuel system to some degree. In this project design methodologies for aircraft fuel systems are studied, with the aim to shortening the system development time.

    This is done by means of illustrative examples of how optimization and the use of matrix methods have been developed and implemented at Saab Aerospace in the conceptual design of ale fuel systems. The methods introduces automation early in the development process and increase understanding of how top requirements on the ale level impact low-level engineering parameters such as pipe diameter, pump size, etc.

    The thesis also discusses a systematic approach when building a large simulation model of a fluid system where the objective is to minimize the development time by applying a strategy that enables parallel development and collaborative engineering, and also by building the model to the correct level of detail. By correct level of detail is meant the level that yields a simulation outcome that meets the stakeholders' expectations. The experienced gained at Saab in building a simulation model, mainly from the Gripen fuel system, but also the accumulated experience from other system models, is condensed and fitted into an overall process.

  • 21.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson, Johan
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Quantification of the Elements in the Relationship matrix: A conceptual study of Aircraft Fuel System2004Ingår i: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, paper AIAA-2004-0538, 2004, nr AIAA-2004-0538, s. 5244-5252Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper describes how the framework of thc house of quality and design structure matrices are used to visualizee dependencies between top level requirements and engineering design properties. It is also discussed how quantification of the matrix elements may increase the understanding of how the top-level requirements impacts the low-level design parameters. lndeed, history has shown that overlooking combinatory effects between subsystems and night conditions may become expensive. Not only in terms of not goning getting the sizing right but more so if an entirely wrong concept is chosen.

    This paper shows a matrix technique that has successfully been used at Saab and how this technique may facilitate the cconcept evaluation process of early fuel system design.

    The matrix method aids the designer to take alk the relevant aspects into account when evaluating a design. Use of the method will also increase the understanding of what top-level requirement or combination thereof, which drives the choice of one particular concept rather than the other. The understanding of how the top-level requiremEnts impacts low level design parameters such as pump size or pipe diameter will also increse.

  • 22.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan. Saab Aerospace, Sweden.
    Lantto, Birgitta
    Saab Aerospace, Sweden.
    Ellström, Hans
    Saab Aerospace, Sweden.
    Jareland, Martin
    Saab Aerospace, Sweden.
    Steinkellner, Sören
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling. Linköpings universitet, Tekniska högskolan.
    Krus, Petter
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson (Ölvander), Johan
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling. Linköpings universitet, Tekniska högskolan.
    Strategy for Modeling of large A/C fluid systems2004Ingår i: World Aviation Congress and Display, WAC-04, SAE Technical Paper 2004-01-3093, 2004, s. 1495-1506Konferensbidrag (Refereegranskat)
    Abstract [en]

    There is an ongoing trend in the European Military a/c industry towards cooperation between nations when purchasing and between manufacturers when developing and producing a/c. Different manufacturers at different locations develop different parts or sub-systems. When using this approach a vital part of a fast and precise system evaluation is the use of simulation models. In order to stay competitive it is not only sufficient to be able to build large simulation models but also to do it fast.

    This paper describes the conclusions regarding a modelling strategy of large fluid systems drawn from the building of a simulation model of the JAS 39 Gripen fuel system. An overall process is suggested into which the activities of building a model are fitted. This is however not the main objective; it is more important to identify the different issues and activities at the engineering level. If these are properly dealt with, the model development time will be reduced, if not, the wrong model may be designed. "Wrong" here means a model that does not do the job, or solves a problem other than the one intended by the stakeholder.

  • 23.
    Gavel, Hampus
    et al.
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Andersson, Johan
    Linköpings universitet, Institutionen för konstruktions- och produktionsteknik. Linköpings universitet, Tekniska högskolan.
    Using Optimization as a Tool in Fuel System Conceptual Design2003Ingår i: SAE World Aviation Congress and Display, Montreal, Canada, SAE Technical Paper 2003-01-3054, 2003, nr 2003-01-3052Konferensbidrag (Refereegranskat)
    Abstract [en]

    Choosing between concepts is often the most critical part of the design process. Different concepts have different advantages and disadvantages. The concept that is the best choice is most often dependent on the top level requirements. Sometimes there may also be a trade off between concept choice and the top requirements. In aircraft (a/c) fuel system design it has often proved difficult to find the switching point where the superior concept is changed. This sometimes makes the designer conservative and leads to the selection of a concept with too high a penalty. There is also a risk for the opposite and perhaps worse scenario: That the designer strives to reduce weight and cost and therefore, accidentally, chooses an under achieving concept and thus induces large downstream cost if late redesign or retro modifications are necessary.

    This paper shows how optimization has been successfully used at Saab Aerospace as a tool that supports concept selection. The example shown is the choice of fuel transfer method for a ventral drop tank. The example also illustrates the impact of top-level requirements on low-level practicalities such as fuel system design.

  • 24.
    Gavel, Hampus
    Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Maskinkonstruktion. Linköpings universitet, Tekniska högskolan.
    Fuel Transfer System in the Conceptual Design Phase2002Ingår i: SAE World Aviation congress and Display, Phoenix, USA paper 2002-01-2931, 2002, nr 2002-01-2931Konferensbidrag (Refereegranskat)
    Abstract [en]

    As the time between different development projects of new aircraft (a/c) extends, experienced personnel in the field of basic a/c system design are difficult to employ when being on the onset of a new design. Further on basic a/c system design is a field neglected in literature and in the educational system.

    A text is under development that summarizes the Saab experience of the complete fuel system design with respect to the fighter a/c Viggen and Gripen, the commuter a/c 340 and 2000, the trainer a/c SK60 and also the conceptual a/c B3LA.

    This paper is an extract of this text and describe early considerations that have to be made when designing a fuel transfer system. Emphasis is put on the top requirements on a/c level.

1 - 24 av 24
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf