liu.seSök publikationer i DiVA
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Beställ onlineKöp publikationen >>
    Rodriguez Déniz, Héctor
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Bayesian Models for Spatiotemporal Data from Transportation Networks2023Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Urbaniseringen har orsakat en historisk förändring på en global skala, och mänskligheten går mot ett uppkopplat globalt nätverkssamhälle där städer kommer att koncentrera befolkning, infrastruktur och ekonomisk aktivitet. Ett nyckelelement i städernas infrastruktur är transportsystemet, eftersom det underlättar rörligheten av människor och varor. Transportsystem genererar ständigt data från tex. GPS, sensorer och kameror, och den statistiska modelleringen är utmanande på grund av systemets komplexa struktur och dynamik, samt dess naturliga osäkerheter.

    I denna avhandling utvecklar vi Bayesianska modeller med tillämpningar för transporter. Vi fokuserar specifikt på modeller som kan tränas på spatiotemporala data från transportnätverk för att göra prediktioner av t ex. bussförseningar eller verklig nätverkstopologi. Särskild uppmärksamhet har ägnats åt modellskalbarhetsfrågor och kvantifiering av osäkerhet. Vi har använt data från riktiga transportsystem i varje studie för att skapa en balans mellan statistisk korrekthet, praktiskt tillämpbarhet och vetenskaplig höjd. Avhandlingen består av fyra artiklar. Den första artikeln presenterar en probabilistisk latent nätverksmodell för att prognostisera dynamiska grafer med multipla lager. Modellen använder stokastisk blockmodellering för att minska beräkningsbördan, och illustreras på ett datamaterial bestånde av tio års data från fyra stora flygbolag inom det amerikanska lufttransportsystemet. I den andra artikeln utvecklar vi en robust modell för realtidsprognoser av bussförseningar genom att använda Student-t fördelning och vi visar hur Bayesiansk inferens ger en naturlig kvantifiering av osäkerhet i en mycket stokastisk miljö. Experiment utförs med hjälp av högfrekventa data från bussar i Stockholm. Den tredje artikeln visar potentialen hos fler-dimensionella Gaussiska processer för att generera nätverksövergripande prediktioner av trafikflöden i en tätortsmiljö. Vi utvecklar en responsiv onlinemodell baserad på en co-regionaliserad kovariansstruktur och utvärderar prognosförmåga på verkliga data från GPS-utrustade taxibilar. Slutligen föreslår vi en ny regularisering av den vektorautoregressiva modellen via en nätverksbaserad variabelsselektionsprior, och presenterar en fallstudie på verkliga data över förseningar i kommersiell flygtrafik där vi utvärderar prediktiv förmåga och analyserar nätverksmönster för hur förseningar sprids mellan flygplatser.  

    Delarbeten
    1. A multilayered block network model to forecast large dynamic transportation graphs: An application to US air transport
    Öppna denna publikation i ny flik eller fönster >>A multilayered block network model to forecast large dynamic transportation graphs: An application to US air transport
    2022 (Engelska)Ingår i: Transportation Research Part C: Emerging Technologies, ISSN 0968-090X, E-ISSN 1879-2359, Vol. 137, artikel-id 103556Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Dynamic transportation networks have been analyzed for years by means of static graph-based indicators in order to study the temporal evolution of relevant network components, and to reveal complex dependencies that would not be easily detected by a direct inspection of the data. This paper presents a state-of-the-art probabilistic latent network model to forecast multilayer dynamic graphs that are increasingly common in transportation and proposes a community-based extension to reduce the computational burden. Flexible time series analysis is obtained by modeling the probability of edges between vertices through latent Gaussian processes. The models and Bayesian inference are illustrated on a sample of 10-year data from four major airlines within the US air transportation system. Results show how the estimated latent parameters from the models are related to the airlines’ connectivity dynamics, and their ability to project the multilayer graph into the future for out-of-sample full network forecasts, while stochastic blockmodeling allows for the identification of relevant communities. Reliable network predictions would allow policy-makers to better understand the dynamics of the transport system, and help in their planning on e.g. route development, or the deployment of new regulations.

    Ort, förlag, år, upplaga, sidor
    Oxford, United Kingdom: Elsevier, 2022
    Nyckelord
    Transportation networks, Multilayer graphs, Air transport, Machine learning
    Nationell ämneskategori
    Transportteknik och logistik
    Identifikatorer
    urn:nbn:se:liu:diva-182829 (URN)10.1016/j.trc.2022.103556 (DOI)000777337100005 ()2-s2.0-85124142579 (Scopus ID)
    Anmärkning

    Funding: Wallenberg AI, Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation, Sweden

    Tillgänglig från: 2022-02-09 Skapad: 2022-02-09 Senast uppdaterad: 2023-01-20Bibliografiskt granskad
    2. Robust Real-Time Delay Predictions in a Network of High-Frequency Urban Buses
    Öppna denna publikation i ny flik eller fönster >>Robust Real-Time Delay Predictions in a Network of High-Frequency Urban Buses
    2022 (Engelska)Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 23, nr 9, s. 16304-16317Artikel i tidskrift (Refereegranskat) Published
    Abstract [en]

    Providing transport users and operators with accurate forecasts on travel times is challenging due to a highly stochastic traffic environment. Public transport users are particularly sensitive to unexpected waiting times, which negatively affect their perception on the system's reliability. In this paper we develop a robust model for real-time bus travel time prediction that departs from Gaussian assumptions by using Student-t errors. The proposed approach uses spatiotemporal characteristics from the route and previous bus trips to model short-term effects, and date/time variables and Gaussian processes for long-run forecasts. The model allows for flexible modeling of mean, variance and kurtosis spaces. We propose algorithms for Bayesian inference and for computing probabilistic forecast distributions. Experiments are performed using data from high-frequency buses in Stockholm, Sweden. Results show that Student-t models outperform Gaussian ones in terms of log-posterior predictive power to forecast bus delays at specific stops, which reveals the importance of accounting for predictive uncertainty in model selection. Estimated Student-t regressions capture typical temporal variability between within-day hours and different weekdays. Strong spatiotemporal effects are detected for incoming buses from immediately previous stops, which is in line with many recently developed models. We finally show how Bayesian inference naturally allows for predictive uncertainty quantification, e.g. by returning the predictive probability that the delay of an incoming bus exceeds a given threshold.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2022
    Nyckelord
    Predictive models; Uncertainty; Real-time systems; Spatiotemporal phenomena; Delays; Data models; Probabilistic logic; Intelligent transportation systems; bus arrival time predictions; spatiotemporal networks; probabilistic modeling; robustness
    Nationell ämneskategori
    Transportteknik och logistik
    Identifikatorer
    urn:nbn:se:liu:diva-183002 (URN)10.1109/tits.2022.3149656 (DOI)000758176500001 ()2-s2.0-85124827488 (Scopus ID)
    Forskningsfinansiär
    Vetenskapsrådet, 2020-02846
    Anmärkning

    Funding: Wallenberg AI, Autonomous Systems and Software Program (WASP) by the Knut and Alice Wallenberg Foundation; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2020-02846]

    Tillgänglig från: 2022-02-17 Skapad: 2022-02-17 Senast uppdaterad: 2023-03-06Bibliografiskt granskad
    3. Urban Network Travel Time Prediction via Online Multi-Output Gaussian Process Regression
    Öppna denna publikation i ny flik eller fönster >>Urban Network Travel Time Prediction via Online Multi-Output Gaussian Process Regression
    2017 (Engelska)Ingår i: 2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2017Konferensbidrag, Publicerat paper (Refereegranskat)
    Abstract [en]

    The paper explores the potential of Multi-Output Gaussian Processes to tackle network-wide travel time prediction in an urban area. Forecasting in this context is challenging due to the complexity of the traffic network, noisy data and unexpected events. We build on recent methods to develop an online model that can be trained in seconds by relying on prior network dependences through a coregionalized covariance. The accuracy of the proposed model outperforms historical means and other simpler methods on a network of 47 streets in Stockholm, by using probe data from GPS-equipped taxis. Results show how traffic speeds are dependent on the historical correlations, and how prediction accuracy can be improved by relying on prior information while using a very limited amount of current-day observations, which allows for the development of models with low estimation times and high responsiveness.

    Ort, förlag, år, upplaga, sidor
    Institute of Electrical and Electronics Engineers (IEEE), 2017
    Serie
    IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
    Nationell ämneskategori
    Transportteknik och logistik
    Identifikatorer
    urn:nbn:se:liu:diva-148663 (URN)10.1109/ITSC.2017.8317796 (DOI)000432373000201 ()2-s2.0-85046289474 (Scopus ID)9781538615263 (ISBN)
    Konferens
    IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16-19 Oct. 2017
    Tillgänglig från: 2018-06-18 Skapad: 2018-06-18 Senast uppdaterad: 2023-01-20Bibliografiskt granskad
    Ladda ner fulltext (pdf)
    fulltext
    Ladda ner (png)
    presentationsbild
  • 2.
    Rodriguez Déniz, Héctor
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Villani, Mattias
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten. Department of Statistics, Stockholm University, Sweden.
    Voltes-Dorta, Augusto
    Management Science and Business Economics Group, University of Edinburgh Business School, United Kingdom.
    A multilayered block network model to forecast large dynamic transportation graphs: An application to US air transport2022Ingår i: Transportation Research Part C: Emerging Technologies, ISSN 0968-090X, E-ISSN 1879-2359, Vol. 137, artikel-id 103556Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dynamic transportation networks have been analyzed for years by means of static graph-based indicators in order to study the temporal evolution of relevant network components, and to reveal complex dependencies that would not be easily detected by a direct inspection of the data. This paper presents a state-of-the-art probabilistic latent network model to forecast multilayer dynamic graphs that are increasingly common in transportation and proposes a community-based extension to reduce the computational burden. Flexible time series analysis is obtained by modeling the probability of edges between vertices through latent Gaussian processes. The models and Bayesian inference are illustrated on a sample of 10-year data from four major airlines within the US air transportation system. Results show how the estimated latent parameters from the models are related to the airlines’ connectivity dynamics, and their ability to project the multilayer graph into the future for out-of-sample full network forecasts, while stochastic blockmodeling allows for the identification of relevant communities. Reliable network predictions would allow policy-makers to better understand the dynamics of the transport system, and help in their planning on e.g. route development, or the deployment of new regulations.

    Ladda ner fulltext (pdf)
    fulltext
  • 3.
    Rodriguez Déniz, Héctor
    et al.
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Villani, Mattias
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten. Department of Statistics, Stockholm University, Stockholm, Sweden.
    Robust Real-Time Delay Predictions in a Network of High-Frequency Urban Buses2022Ingår i: IEEE transactions on intelligent transportation systems (Print), ISSN 1524-9050, E-ISSN 1558-0016, Vol. 23, nr 9, s. 16304-16317Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Providing transport users and operators with accurate forecasts on travel times is challenging due to a highly stochastic traffic environment. Public transport users are particularly sensitive to unexpected waiting times, which negatively affect their perception on the system's reliability. In this paper we develop a robust model for real-time bus travel time prediction that departs from Gaussian assumptions by using Student-t errors. The proposed approach uses spatiotemporal characteristics from the route and previous bus trips to model short-term effects, and date/time variables and Gaussian processes for long-run forecasts. The model allows for flexible modeling of mean, variance and kurtosis spaces. We propose algorithms for Bayesian inference and for computing probabilistic forecast distributions. Experiments are performed using data from high-frequency buses in Stockholm, Sweden. Results show that Student-t models outperform Gaussian ones in terms of log-posterior predictive power to forecast bus delays at specific stops, which reveals the importance of accounting for predictive uncertainty in model selection. Estimated Student-t regressions capture typical temporal variability between within-day hours and different weekdays. Strong spatiotemporal effects are detected for incoming buses from immediately previous stops, which is in line with many recently developed models. We finally show how Bayesian inference naturally allows for predictive uncertainty quantification, e.g. by returning the predictive probability that the delay of an incoming bus exceeds a given threshold.

  • 4.
    Nielsen, Kristin
    et al.
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    Svahn, Caroline
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Rodriguez Déniz, Héctor
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Hendeby, Gustaf
    Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten.
    UKF Parameter Tuning for Local Variation Smoothing2021Ingår i: Proceedings of the 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Institute of Electrical and Electronics Engineers (IEEE), 2021Konferensbidrag (Refereegranskat)
    Abstract [en]

    The unscented Kalman filter (UKF) is a method to solve nonlinear dynamic filtering problems, which internally uses the unscented transform (UT). The behavior of the UT is controlled by design parameters, seldom changed from the values suggested in early UT/UKF publications. Despite the knowledge that the UKF can perform poorly when the parameters are improperly chosen, there exist no wide spread intuitive guidelines for how to tune them. With an application relevant example, this paper shows that standard parameter values can be far from optimal. By analyzing how each parameter affects the resulting UT estimate, guidelines for how the parameter values should be chosen are developed. The guidelines are verified both in simulations and on real data collected in an underground mine. A strategy to automatically tune the parameters in a state estimation setting is presented, resulting in parameter values inline with developed guidelines.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Suau-Sanchez, Pere
    et al.
    Cranfield University, Centre for Air Transport Management, Bedfordshire, United Kingdom.
    Voltes-Dorta, Augusto
    University of Edinburgh Business School, Management Science and Business Economics Group, Edinburgh, United Kingdom.
    Rodriguez Déniz, Héctor
    Department of Transport Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    An assessment of the potential for self-connectivity at European airports in holiday markets2017Ingår i: Tourism Management, ISSN 0261-5177, E-ISSN 1879-3193, Vol. 62, s. 54-64Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In a context of intense airport and airline competition, a few European airports have recently started offering self-connection services to price-sensitive holiday passengers travelling with a combination of tickets where the airline/s involved do not handle the transfer themselves. This paper provides an exploratory analysis of the potential and implications of self-connectivity for European airports and airlines using a case study of air travel routes to holiday destinations in the Mediterranean. With the help of a forecasting model based on a zero-inflated Poisson regression, we identify the airports and airlines that have the highest potential to facilitate self-connections in the selected markets. The results also explore some implications of the widespread development of self-connection services in Europe.

  • 6.
    Suau-Sanchez, Pere
    et al.
    Cranfield University, Centre of Air Transportation Management, Bedfordshire, United Kingdom.
    Voltes-Dorta, Augusto
    University of Edinburgh Business School, Edinburgh, United Kingdom.
    Rodriguez Déniz, Héctor
    Department of Transportation Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Benchmarking Worldwide Airport Connectivity with Demand Data: Global Hub Competition, New Players, and the Hidden Potential of Self-connectivity2017Ingår i: The Economics of Airport Operations / [ed] John D. Bitzan, and James H. Peoples, Emerald Group Publishing Limited, 2017, s. 387-423Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    The connectivity provided by full-service network carriers under the umbrella of airline alliances is increasingly challenged by the services of Middle Eastern airlines via their own hubs, and the rise of new passenger strategies like self-connectivity. While these two developments can potentially benefit consumers with more services and lower fares, the rise of Middle East carriers has been met with opposition by EU and US airlines that call for increased protectionism. In addition, only a few airports in the world actively support self-connections. In this context, this study aims to investigate (1) the markets in which Middle East carriers exert a stronger dominance in terms of the number of passenger connections, (2) whether EU, US, or Asian hubs provide a competitive quality of connectivity in terms of travel time, and (3) whether a significant potential for self-connections is hidden at major airports worldwide. To that end, several datasets of passenger bookings (MIDT), airline schedules, and minimum connecting times between 2012 and 2015 are combined in a connections-building methodology that delivers six market-specific airport connectivity indicators for our benchmarking exercise. Our findings show that although European and some Asian hubs have lost traffic in global markets, they remain competitive from a quality perspective. US hubs have maintained their market share and competitive position. Finally, we identify the airports and airlines with the highest potential to provide self-connecting travel options, which can become an attractive new source of revenue for the parties involved.

  • 7.
    Voltes-Dorta, Augusto
    et al.
    University of Edinburgh, Scotland.
    Rodriguez Deniz, Hector
    Linköpings universitet, Institutionen för datavetenskap. Linköpings universitet, Tekniska fakulteten.
    Suau-Sanchez, Pere
    Cranfield University, England.
    Passenger recovery after an airport closure at tourist destinations: A case study of Palma de Mallorca airport2017Ingår i: TOURISM MANAGEMENT, ISSN 0261-5177, Vol. 59, s. 449-466Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the context of increased concern about the resilience of critical transport infrastructure to external events and the impact of such events on local tourism industries, this paper analyzes the ability of tourism-oriented airports to relocate departing passengers in the event of an unexpected airport closure. A case study of Palma de Mallorca airport is presented. Using an MIDT dataset on passenger itineraries in August 2014, several closure scenarios are simulated, and disrupted passengers are relocated to minimum-delay itineraries. Aggregate delays and relocation rates are used to assess the impact of each scenario, with a particular focus on UK and Germany markets. The results provide useful benchmarks for the development of policies aimed at minimizing the impact on stranded tourists, such as allowing for passenger connections, establishing a protocol for interline cooperation, and improving intermodal transfers. These measures will help mitigate the negative impacts on airline loyalty and destination image. (C) 2016 Elsevier Ltd. All rights reserved.

  • 8.
    Rodriguez Déniz, Héctor
    et al.
    Department of Transport Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Jenelius, Erik
    Department of Transport Science, KTH Royal Institute of Technology, Stockholm, Sweden.
    Villani, Mattias
    Linköpings universitet, Institutionen för datavetenskap, Statistik och maskininlärning. Linköpings universitet, Filosofiska fakulteten.
    Urban Network Travel Time Prediction via Online Multi-Output Gaussian Process Regression2017Ingår i: 2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    The paper explores the potential of Multi-Output Gaussian Processes to tackle network-wide travel time prediction in an urban area. Forecasting in this context is challenging due to the complexity of the traffic network, noisy data and unexpected events. We build on recent methods to develop an online model that can be trained in seconds by relying on prior network dependences through a coregionalized covariance. The accuracy of the proposed model outperforms historical means and other simpler methods on a network of 47 streets in Stockholm, by using probe data from GPS-equipped taxis. Results show how traffic speeds are dependent on the historical correlations, and how prediction accuracy can be improved by relying on prior information while using a very limited amount of current-day observations, which allows for the development of models with low estimation times and high responsiveness.

  • 9.
    Voltes-Dorta, Augusto
    et al.
    University of Edinburgh Business School, Management Science and Business Economics Group, EH8 9JS Edinburgh, United Kingdom.
    Rodriguez Déniz, Héctor
    Department of Transport Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
    Suau-Sanchez, Pere
    Cranfield University, Centre for Air Transport Management, MK43 0TR Bedfordshire, United Kingdom.
    Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports2017Ingår i: Transportation Research Part A: Policy and Practice, ISSN 0965-8564, E-ISSN 1879-2375, Vol. 96, s. 119-145Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper analyzes the vulnerability of the European air transport network to major airport closures from the perspective of the delays imposed to disrupted airline passengers. Using an MIDT dataset on passenger itineraries flown during February 2013, full-day individual closures of the 25 busiest European airports are simulated and disrupted passengers then relocated to minimum-delay itineraries. Aggregate delays are used to rank the criticality of each airport to the network, with the possibility of disaggregating the impact across geographical markets. The results provide useful reference values for the development of policies aimed at improving the resilience of air transport networks.

  • 10.
    Suau-Sanchez, Pere
    et al.
    Cranfield University, England.
    Voltes-Dorta, Augusto
    University of Edinburgh, Scotland.
    Rodriguez Deniz, Hector
    Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Tekniska fakulteten.
    Measuring the potential for self-connectivity in global air transport markets: Implications for airports and airlines2016Ingår i: JOURNAL OF TRANSPORT GEOGRAPHY, ISSN 0966-6923, Vol. 57, s. 70-82Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    One of the strategies that air travellers employ to save money is self-connectivity, i.e. travelling with a combination of tickets where the airline/s involved do not handle the transfer themselves. Both airports and airlines, particularly low-cost carriers, have recently started catering to the needs of this type of passengers with the introduction of transfer fees or the development of self-connection platforms. The evidence provided by the existing literature, however, suggests that the degree of implementation of these strategies falls short of its true potential. In order to investigate how much self-connectivity could be observed in global air transport markets, this paper develops a forecasting model based on a zero-inflated Poisson regression on MIDT data. We identify the airports that have the highest potential to facilitate self-connections, as well as the factors that hinder or facilitate the necessary airline agreements at major locations. The results from this paper have many implications in regards to the widespread implementation of self-connection services and the future of the air travel industry. (C) 2016 Elsevier Ltd. All rights reserved.

  • 11.
    Rodriguez Déniz, Héctor
    et al.
    School of Informatics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Voltes-Dorta, Augusto
    Facultat d'Economia i Empresa, Universitat de Barcelona, Barcelona, Spain.
    A frontier-based hierarchical clustering for airport efficiency benchmarking2014Ingår i: Benchmarking: An International Journal, ISSN 1463-5771, E-ISSN 1758-4094, Vol. 21, nr 4, s. 486-508Artikel i tidskrift (Refereegranskat)
  • 12.
    Rodriguez Déniz, Héctor
    et al.
    Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Suau-Sanchez, Pere
    Centre for Air Transport Management, Martell House, Cranfield University, Bedfordshire, United Kingdom.
    Voltes-Dorta, Augusto
    Management Science and Business Economics Group, University of Edinburgh Business School, Edinburgh, United Kingdom.
    Classifying airports according to their hub dimensions: an application to the US domestic network2013Ingår i: Journal of Transport Geography, ISSN 0966-6923, E-ISSN 1873-1236, Vol. 33, s. 188-195Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Government agencies classify airports for different purposes, including the allocation of public funding for capacity developments. In a context of hub classification, determining the contribution of each airport to the national network in terms of the two dimensions of hubbing -i.e., traffic generation and connectivity- is a key aspect. In this regard, the choice of an appropriate connectivity indicator is still an unresolved issue. This paper adapts the well-known flow centrality indicator to an air transport context and develops a novel measure of airport connectivity. An application to the US domestic network is provided, using quarterly data on passenger demand to perform a detailed time-series analysis of airport connectivity patterns between 1993 and 2012. The flow centrality indicator is then used to define an alternative airport classification method within the context of the Federal Aviation Administration’s National Plan of Integrated Airport Systems (NPIASs). Results show that there is potential for improving the existing airport typology by explicitly separating connectivity and traffic generation as classification criteria.

  • 13.
    Martín, Juan Carlos
    et al.
    Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Rodriguez Déniz, Héctor
    Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
    Voltes-Dorta, Augusto
    Universitat de Barcelona, Facultat d’Economia i Empresa, Barcelona, Spain.
    Determinants of airport cost flexibility in a context of economic recession2013Ingår i: Transportation Research Part E: Logistics and Transportation Review, ISSN 1366-5545, E-ISSN 1878-5794, Vol. 57, s. 70-84Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The recent economic downturn led to a significant contraction in the global demand for air travel and cargo. In spite of that, airports’ operating costs did not mirror the traffic trends and kept increasing during the same period, showing evident signs of lack of flexibility. With this background, this paper aims at identifying the drivers of airport cost flexibility in a context of economic recession. This is done by estimating a short-run stochastic cost frontier over a balanced pool database of 194 airports worldwide between 2007 and 2009. Using the total change in cost efficiency during the sample period as a proxy for cost flexibility, the impact of variables such as ownership, outsourcing, airline dominance, low-cost traffic, and revenue diversification is tested in a second-stage regression. Contrary to the existing literature, a higher level of outsourcing is shown to reduce cost flexibility. Results also indicate that low-cost traffic, diversification, and corporatization increase the airports’ ability to control costs. The negative impact of airline dominance suggests the need for more stringent regulations on slot allocation at congested airports in order to ensure optimal infrastructure usage.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf